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Abstract
Objective Marginal alveolar bone loss is one of the key features of periodontitis and can be observed via panoramic 
radiographs. This study aimed to establish a cascading learning method with deep learning (DL) for precise 
radiographic bone loss (RBL) measurements at specific tooth positions.

Materials and methods Through the design of two tasks for tooth position recognition and tooth semantic 
segmentation using the SegFormer model, specific tooth’s crown, intrabony portion, and suprabony portion of the 
roots were obtained. The RBL was subsequently measured by length through these three areas using the principal 
component analysis (PCA) principal axis.

Results The average intersection over union (IoU) for the tooth position recognition task was 0.8906, with an F1-score 
of 0.9338. The average IoU for the tooth semantic segmentation task was 0.8465, with an F1-score of 0.9138. When the 
two tasks were combined, the average IoU was 0.7889, with an F1-score of 0.8674. The correlation coefficient between 
the RBL prediction results based on the PCA principal axis and the clinicians’ measurements exceeded 0.85. Compared 
to those of the other two methods, the average precision of the predicted RBL was 0.7722, the average sensitivity was 
0.7416, and the average F1-score was 0.7444.

Conclusions The method for predicting RBL using DL and PCA produced promising results, offering rapid and 
reliable auxiliary information for future periodontal disease diagnosis.

Clinical relevance Precise RBL measurements are important for periodontal diagnosis. The proposed RBL-SF can 
measure RBL at specific tooth positions and assign the bone loss stage. The ability of the RBL-SF to measure RBL at 
specific tooth positions can guide clinicians to a certain extent in the accurate diagnosis of periodontitis.
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Introduction
Periodontitis is a chronic inflammatory condition of 
tooth-supporting tissues that leads to destruction of the 
periodontal ligament and alveolar bone [1]. Periodontitis 
is the seventh most prevalent disease worldwide, affect-
ing 1.09 billion people worldwide [2]. Severe periodonti-
tis affects approximately 11.2% of the global population, 
and for individuals, it represents a substantial burden, 
both in terms of health and finances, significantly com-
promising their quality of life [3]. The 2018 periodonti-
tis staging and grading classification aims to assess the 
severity, extent, progression rate, and response to stan-
dard therapy in patients with periodontitis. Alveolar 
bone loss is the main clinical feature of periodontitis, and 
two-dimensional intraoral radiography is the primary 
screening technique used for evaluating alveolar bone 
loss [4–6]. Rapid and accurate determination of the maxi-
mum radiographic bone loss (RBL) and calculation of the 
RBL (% of root length ×100) divided by age are critical 
for staging and grading periodontitis [7]. However, this 
approach is time-consuming and laborious for clinicians, 
making it difficult to guarantee consistency because cli-
nicians need to correctly identify anatomic markers, 
including the distance from the cemento-enamel junc-
tion (CEJ) to the alveolar bone crest (ABC), to locate the 
physiologically healthy ridge level, the basis of bone loss, 
and the apical point (AP), on radiographs.

Artificial intelligence (AI) aims to reproduce human 
cognitive processes and can achieve the same results as 
clinicians in less time. Moreover, this approach excels at 
helping clinicians by automating time-consuming tasks. 
AI can improve visual diagnosis in radiology, resulting 
in lower error rates than human observers, opening up 
an exciting era of clinical and research capabilities. The 
detection and classification of lesions, automatic image 
segmentation, data analysis, extraction of radiological 
features, and conversion to automatic printout are sig-
nificant technological developments in the application 
of computer-aided medicine [8]. Deep learning (DL) net-
works may be a useful tool for improving the accuracy 
and efficiency of evaluating RBL. Several studies have 
used DL to measure alveolar bone levels on panoramic 
or periapical radiographs [9–12]. However, many of these 
studies prioritize classifying the severity of RBL over 
pinpointing its exact value. Some techniques that aim 
to quantify RBL precisely are deemed overly complex. 
Moreover, many studies fail to determine the RBL for 
specific tooth positions, a limitation that could compro-
mise the accurate diagnosis of periodontal disease.

Convolutional neural networks (CNNs) are the 
predominant DL architecture within dentistry [13]. 
However, their limited receptive field can hinder segmen-
tation performance when applied to large-scale medi-
cal images. In contrast, transformer architectures excel 

in grasping global dependencies, meaning that they can 
more effectively understand long-distance dependencies 
and intricate structures, making them ideal for process-
ing large images. The self-attention mechanism in trans-
formers allows the model to adaptively determine the 
receptive field, enhancing the capture of features and 
structures across different scales and improving seg-
mentation accuracy. SegFormer is an efficient semantic 
segmentation framework that integrates multiple trans-
former encoders to capture multi-scale features and 
employs a lightweight multilayer perceptron (MLP) for 
decoding [14]. The transformer architecture within Seg-
Former can adaptively determine the receptive field to 
handle large-scale radiographs. Furthermore, its multi-
scale structure is useful for discerning hierarchical infor-
mation in radiographs, such as the varying sizes of teeth 
and their respective components in panoramic radio-
graphs. Additionally, the decoder’s reduced parameter 
count potentially mitigates the risk of overfitting in medi-
cal image segmentation. Therefore, this study focused on 
tooth position recognition and RBL measurement using 
an innovative SegFormer-based model, RBL-SF, and com-
pare its performance with clinician evaluations on pan-
oramic radiographs.

Materials and methods
Radiographic data collection
This study was approved by the Ethics Committee of the 
State Key Laboratory of Oral Diseases, West China Hos-
pital of Stomatology, Sichuan University (WCHSIRB-
D-2023-370), and conducted in accordance with the 
checklist for AI in dental research [15]. Each standard-
ized radiograph was captured by a panoramic X-ray unit 
(Veraviewepocs, X550 EX-2). Digital images were cap-
tured using a charge-coupled device (CCD) sensor with 
a size of #1 or #2. Radiographs that were not in the stan-
dard format were excluded from the study.

Alveolar bone level measurement
The teeth were numbered from 1 to 32 on the panoramic 
images using the universal numbering system. The objec-
tive of tooth semantic segmentation was to distinguish 
the crown, suprabony root part, and intrabony root sec-
tion. As illustrated in Fig. 1, the process began with tooth 
position recognition based on the SegFormer framework. 
The dental regions were subsequently extracted accord-
ing to the identified tooth position data, followed by 
tooth segmentation within the extracted dental areas. 
This approach significantly reduced the input image 
size for the tooth semantic segmentation task, allowing 
improved segmentation accuracy even when memory 
resources were constrained. Combining these results 
allowed the delineation of details such as the tooth 
crown, suprabony root part, and intrabony root section.
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The RBL of each tooth was calculated separately using 
two methods (Fig.  2a). The first used the formula max 
(L1/L2, R1/R2) ×100, which represents the maximum 
length of the proximal and distal CEL to ABC lines 
length as a percentage of the CEJ to AP line length. For 
the second method, RBL was expressed as the maximum 

percentage of the distance from the proximal and distal 
CEJ to the ABC level and the distance from the CEJ to 
the AP, described as max (L3/L4, R3/R4) ×100. Measur-
ing the RBL required identifying the tooth structure’s 
main axis. However, due to the intricacy of the geomet-
ric projection of teeth and its deviation from traditional 

Fig. 2 Manual X-ray bone loss measurement method and PCA measurement method based on tooth semantic segmentation results. (a) Two manual 
methods for RBL measurement are described as max (L1/L2, R1/R2) ×100 and max (L3/L4, R3/R4) ×100. The red lines indicate the length of the CEL to 
the ABC, and the green lines indicate the length of the CEJ to the AP. The yellow lines indicate the distance from the CEL to the ABC, and the blue lines 
indicate the distance from the CEJ to the AP. L and R represent proximal and distal, respectively. (b) The external ellipse of the tooth body and its principal 
axis were obtained via PCA. The red line indicates the tooth’s smallest enclosing ellipse, and the dark blue line represents the tooth’s longitudinal axis. The 
green dot represents the center of the red ellipse. (c) Length A of the principal axis of the ellipse passed through the convex hull of the suprabony portion 
of the root. (d) Length B of the principal axis of the ellipse passed through the convex hull of both the suprabony and intrabony portions of the root. PCA, 
principal component analysis; CEJ, cemento-enamel junction; ABC, alveolar bone crest; AP, apical point

 

Fig. 1 Flowchart of tooth position recognition and tooth semantic segmentation. The workflow begins with the utilization of SegFormer for tooth posi-
tion recognition on panoramic images to identify the locations of 32 teeth. Based on the tooth position data, specific regions containing teeth were 
extracted from the panoramic radiographs. After this extraction, semantic segmentation of the teeth was performed on the cropped regions. Ultimately, 
combining the tooth position information with the semantic segmentation results yielded the semantic segmentation of individual teeth. The direction 
of the blue arrow indicates the process sequence
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Euclidean geometry, conventional graphical algorithms 
struggle to define this main axis. Therefore, this research 
initially applied the circumscribed ellipse of teeth for 
Euclideanization, a procedure accomplished utilizing 
principal component analysis (PCA), as illustrated in 
Fig.  2b. The PCA approach involved treating the figure 
as a scatter plot, calculating the covariance matrix, and 
subsequently computing its eigenvalues and eigenvec-
tor, leading to the identification of the ellipse’s principal 
axis based on the maximum eigenvalue’s corresponding 
eigenvector and the minor axis based on the minimum 
eigenvalue’s corresponding eigenvector. The principal 
axis signifies the direction of the maximum variance in 
the data, indicating a broader spread in that direction. 
Therefore, the PCA principal axis could be equated with 
the tooth structure’s main axis. For RBL measurements, 
the PCA principal axis length within the segmented 
region was adequate. However, in cases with multiple 
tooth roots, the principal axis might traverse non-target 
areas, necessitating a preliminary convex hull calculation. 
The length of the principal axis inside the convex hull was 
subsequently determined, as detailed in Fig. 2c and d.

To summarize, the RBL calculation for a specific tooth 
position involved the following steps: a). The SegFormer 
tool was used to pinpoint the tooth’s position, and based 
on these data, the dental areas were extracted. b). Seg-
Former was utilized to execute semantic segmentation on 
the extracted panoramic images. The crown, intrabony 
root section, and suprabony portion of all the teeth were 
identified. c). The tooth position data were merged with 
region information to generate a bone level segmenta-
tion image for a specific tooth position. d). PCA was 
implemented to determine the tooth’s smallest enclos-
ing ellipse. The principal axis of the PCA represents the 
tooth’s longitudinal axis. First, we calculated the length 
(A) of this principal axis within the convex hull of the 
suprabony region (Fig. 2c). Next, we computed the length 
(B) of this axis within both the suprabony and intrabony 
regions (Fig. 2d).

The RBL percentage was calculated through a ratio cal-
culation, expressed as follows:

 
RBL% =

A

B
× 100 (1)

Based on the staging and grading of periodontitis criteria 
published in 2018, the severity of RBL was further classi-
fied as follows: stage I (RBL < 15%), stage II (RBL ranging 
between 15 and 33%), and stage III (RBL extending to the 
middle or apical third of the root; ≥33%) [7].

Image pre-processing and augmentation
To handle large-scale panoramic images, the model 
leverages SegFormer, which was built upon a transformer 
encoder. This approach provided access to an expansive 
receptive field, thus boosting segmentation accuracy. 
The model focused on two main tasks: recognizing tooth 
positions and segmenting alveolar bone levels. For anno-
tating tooth positions, the open-source tool LabelMe was 
used. In contrast, Adobe Photoshop CS6 was utilized for 
annotating alveolar bone levels.

SegFormer model
The overall structure of SegFormer is depicted in Fig. 3. 
Four transformer encoding blocks are employed to derive 
multi-scale features, followed by the utilization of a light-
weight MLP for the fusion of features at different scales, 
facilitating decoding and semantic segmentation. The 
transformer encoding modules of the SegFormer model 
utilized the mix transformer encoder (MiT) to effectively 
reduce the computational time complexity, incorporating 
an efficient self-attention mechanism. The MiT model 
included a range of models with varying parameter sizes, 
named MiT-B0 to MiT-B5. In this study, the moderately 
sized MiT-B3 model was selected as the feature extrac-
tion module for SegFormer. Once tooth position recogni-
tion was performed on the panoramic images, only the 

Fig. 3 Diagram of the SegFormer model. SegFormer incorporates four transformer blocks, represented by the orange parts, with each capturing feature 
at scales of 1/4, 1/8, 1/16, and 1/32 of the original image dimensions. These features were unified to a consistent scale using an MLP layer and then pro-
cessed through another MLP layer for classification. H and W indicate the input image’s height and width, respectively. C1 to C4 and C denote the feature 
map channel counts. Ncls specifies the class count. MLP, multilayer perceptron
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tooth region of the panoramic images was extracted for 
further alveolar bone level segmentation.

Different loss functions were used for the two tasks. 
For tooth position recognition, due to the overlap of 
regions among numerous teeth, a multi-label loss func-
tion was used to identify each complete tooth position, 
thus avoiding the restriction of assigning each pixel to 
only one class. In this framework, the loss function was 
critical for training the model to accurately predict mul-
tiple class memberships for each pixel. We defined our 
primary loss function, Lmulti , as follows:

 

Lmulti = − 1

W1 ×H1 × C1
W1∑

i=1

H1∑

j=1

C1∑

k=1

(yi,j,k log(pi,j,k) + (1 − yi,j,k) log(1− pi,j,k))
 (2)

where W1 and H1 are the width and height of the output 
grid, respectively. C1 was the total number of classes; for 
this study, there were 32 classes corresponding to differ-
ent tooth positions. pi,j,k represents the predicted prob-
ability that the pixel at location (i, j) belongs to class k, as 
output by the neural network after the sigmoid activation 
function. yi,j,kwas a binary indicator, which is 1 if the 
pixel at position (i, j) belongs to class k and 0 otherwise. 
This formulation of Lmulti  compels the model to predict 
a probability distribution over classes for each pixel that 
closely aligns with the true label distribution, thereby 
addressing the inherent challenge of multi-label segmen-
tation wherein a single pixel could simultaneously belong 
to multiple classes.

In our tooth semantic segmentation model, we com-
puted the cross-entropy loss, which assesses the differ-
ence between the predicted class probabilities and the 
actual labels for each pixel. For a given image with height 
H2 and width W2, the loss function Lcewas defined as the 
average negative log probability of the true class across all 
pixels:

 
Lce = − 1

W2 ×H2

W2∑

i=1

H2∑

j=1

C2∑

k=1

yi,j,k log (pi,j,k)  (3)

where H2 and W2 are the height and width of the output 
grid, respectively. C2 was the number of classes, which 
was 4 in this segmentation task and corresponded to the 

four classes: background (0), intrabony root Sect.  (1), 
suprabony root part (2), and tooth crown (3). yi,j,kwas a 
binary indicator, which is 1 if the pixel at position (i, j) 
belongs to class k and 0 otherwise. The probabilities pi,j,k  
were the values obtained by applying the softmax func-
tion to the network’s output logits for each pixel location 
(i, j) and class k. The softmax function converts these 
logits into probabilities by exponentiating each logit and 
then normalizing these exponentiated values across all 
classes for each pixel, ensuring that the probabilities for 
each pixel across all classes sum to 1.

Model training and validation
The dataset consisted of a total of 705 images. Of these, 
80% were used for training, 10% for validation, and the 
remaining 10% served as the testing subset. The input 
data for both tooth position identification and alveo-
lar bone level segmentation were consistent across the 
training, validation, and testing phases. During train-
ing, several data augmentation techniques were applied, 
including horizontal flipping, vertical flipping, Gaussian 
blurring, and random cropping. Notably, when identi-
fying tooth position, any data augmentation that could 
alter the tooth’s position should be avoided. The models 
were evaluated on a separate subset of 70 images. The 
specific data distribution is shown in Table 1.

The evaluation metrics included the F1 score, inter-
section over union (IoU), accuracy (PA), sensitivity and 
specificity. The formulas for these five metrics were as 
follows:

 
F1− score =

2× TP

2× TP + FP + FN
 (4)

 
IoU =

TP

TP + FN + FP
 (5)

 
PA =

TP + TN

TP + FN + FP + TN
 (6)

 
Sensitivity =

TP

TP + FN
 (7)

 
Specificity =

TN

TN + FP
 (8)

where TP (true positives) signifies the number of positive 
instances accurately identified, demonstrating the mod-
el’s proficiency in historically capturing pertinent events. 
FP (false positives) refers to the instances incorrectly 
labeled as positive, despite being negative, indicating the 
model’s commission errors. FNs (false negatives) denote 
positive instances wrongly classified as negative, under-
scoring errors of omission that are critical in scenarios 

Table 1 Data distributions of the training set and test set
Training set Test set

Number of images 705 70
Number of molars 5332 531
Number of premolars 5481 540
Number of canines 2800 277
Number of incisors 5478 550
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where missing positive detections could lead to signifi-
cant repercussions. The TN (true negatives) represents 
the number of negative instances correctly identified as 
such, illustrating the model’s ability to discern nonevents 
accurately. The F1-score was an equilibrium between pre-
cision (the fraction of TP out of all positive predictions) 
and recall (the fraction of TP out of all actual positives), 
optimizing the balance between these measures, which is 
particularly beneficial in imbalanced datasets. The IoU, 
which is utilized primarily in semantic segmentation 
evaluation, assesses the congruency between predicted 
and actual positive regions, accentuating the precision 
of spatial predictions. The PA computed the ratio of all 
correct predictions (both TP and TN) within the data-
set, providing an overview of the overall model efficacy 
historically. Sensitivity measures the model’s ability to 
correctly identify positive instances, which is vital in 
applications where failing to detect a positive instance is 
costly. Specificity gauged the ability to accurately identify 
negative instances, which is crucial in instances where 
false positives had significant consequences.

The training was conducted over 150 epochs using the 
AdamW optimizer with a batch size set to 1. The PyTorch 
1.12.1 framework facilitated the deep learning process, 
and all training and testing operations were executed 
on an NVIDIA GeForce GTX 3090 GPU. The statistical 
analysis was conducted with MATLAB 2022a software. 
The correlation coefficient and p value were calculated 
using the ‘corr’ function in MATLAB.

Results
Tooth position recognition and tooth semantic 
segmentation
In the task of tooth position recognition, an impressive 
IoU of 0.8906 was registered, coupled with an F1-score 
of 0.9338, positioning it as the pinnacle of precision in 
predicting tooth placement. The accuracy was slightly 
tapered in the tooth semantic segmentation task, with 
an IoU of 0.8465 and an F1-score of 0.9138. However, a 
juxtaposition of these two tasks in their combined over-
lay brought forth a subtle decrement in both metrics: the 
IoU decreased to 0.7889, and the F1-score retreated to 
0.8674 (Table 2).

When focusing on the nuanced task of tooth seman-
tic segmentation by category, differences emerge in 
class-specific accuracies. The tooth crown exhibited the 
highest precision, registering an IoU of 0.8709 and an 
F1-score of 0.9226. Following this, the intrabony portion 
of the root exhibited an IoU of 0.7837 and an F1-score 
of 0.8674. The suprabony root portion, which may pres-
ent the greatest segmentation challenge, yielded an IoU 
of 0.7121 and an F1-score of 0.8150 (Table 2).

RBL measurements and staging evaluation
By comparing the RBL values derived from the PCA 
principal axis to those measured by clinicians in 70 
patients in the test set, for a total of 1898 teeth, the DL-
based measurements were found to be significantly cor-
related with the manual measurements (Fig.  4). When 
the RBL was calculated by measuring the length (L1/L2, 
R1/R2) and vertical distance (L3/L4, R3/R4), the pre-
dicted values showed correlations of 0.8505 and 0.8516, 
respectively (Fig. 4a and b). The results of the two mea-
surement methods were consistent for different tooth 
categories (Fig.  4c and j). Notably, premolars displayed 
the strongest correlation, surpassing 0.87, whereas the 
other tooth types all consistently achieved coefficients 
above 0.83. This strong alignment suggested that the RBL 
values calculated through our approach closely mirrored 
the manual measurements.

Furthermore, the predictive accuracy of the two clini-
cal methods was different when the severity of alveolar 
bone resorption was staged according to the maximum 
RBL permanent teeth of the entire dentition, excluding 
the third molar (Table 3). Compared with the first mea-
surement method (max (L1/L2, R1/R2) ×100), predic-
tions for Stage I indicated an impressive specificity of 
0.9542 and a slight sensitivity of 0.6196. For Stage II, the 
method showed a sensitivity of 0.7885 and a specificity of 
0.7337, indicating potential misclassifications. Stage III 
was the most consistent, with a balancing sensitivity of 
0.7960 and specificity of 0.8980 (Table 3). However, when 
juxtaposed against the second measurement method 
(max (L3/L4, R3/R4) ×100), the predictive model slightly 
improved its sensitivity for Stage I to 0.6451 while pre-
serving comparable specificity. Stage II displayed a mod-
est increase in sensitivity to 0.8046, and the specificity 
of stage III increased notably to 0.9112, even though the 
sensitivity marginally decreased (Table 3). Although both 
methods demonstrated comparable precision, recall, and 
F1-scores, a closer examination revealed a slight advan-
tage in several aspects of the prediction results for the 
second method. Moreover, the RBL percentage from the 
PCA principal axis closely aligned with that from the sec-
ond measurement method, highlighting its superior val-
ues (Fig. 2).

Table 2 Performance evaluation for tooth position recognition 
and tooth semantic segmentation
Task name IoU F1-score
Tooth position recognition 0.8906 0.9338
Tooth semantic segmentation 0.8465 0.9138
Overlay of two tasks 0.7889 0.8674
Intrabony portion of the root 0.7837 0.8674
Suprabony portion of the root 0.7121 0.8150
Crown 0.8709 0.9226
IoU, intersection over union
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Fig. 4 Scatter plot of the PCA principal axis method versus the measurements taken by clinicians. (a) and (b) scatter plots for all teeth, whereas (c)-(j) 
scatter plots for four distinct types of teeth. The x-axis denotes the PCA principal axis ratio, specifically A/B from Fig. 2, and the y-axis represents the mea-
surement values. PCA, principal component analysis
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Table 3 Evaluation results using the PCA principal axis method. The results include four evaluation metrics: precision, sensitivity, F1 
score, and specificity. The ‘Support’ column indicates the sample size for each classification, while the max (L1/L2, R1/R2) and max (L3/
L4, R3/R4) represent two measurement methods of reference labels

Precision Sensitivity F1-score Specificity Support
Stage I (max (L1/L2, R1/R2)) 0.7651 0.6196 0.6847 0.9542 368
Stage I (max (L3/L4, R3/R4)) 0.7685 0.6451 0.7014 0.9552 355
Stage II (max (L1/L2, R1/R2)) 0.7424 0.7885 0.7648 0.7337 936
Stage II (max (L3/L4, R3/R4)) 0.7334 0.8046 0.7674 0.7326 906
Stage III (max (L1/L2, R1/R2)) 0.7802 0.7960 0.7880 0.8980 593
Stage III (max (L3/L4, R3/R4)) 0.8149 0.7752 0.7945 0.9112 636
Macro avg (max (L1/L2, R1/R2)) 0.7625 0.7347 0.7458 1897
Macro avg (max (L3/L4, R3/R4)) 0.7722 0.7416 0.7444 1897

Fig. 5 Semantic segmentation of periapical radiographs. (a) and (b) display two periapical radiographs, while (c) and (d) represent their respective se-
mantic segmentation results
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Discussion
The RBL is undeniably a pivotal assessment metric in 
the expansive domain of periodontal disease and serves 
as an indispensable tool, offering clinicians invaluable 
insights into the intricacies and severity of periodontitis. 
Although intraoral two-dimensional radiographs are the 
conventional method for assessing RBL, they are often 
perceived as time-consuming and inherently subjective, 
leading to variations in assessment among different cli-
nicians. To address these challenges, recent efforts have 
witnessed a surge in the exploration of automated image 
processing techniques. Notably, with the advent of DL, a 
new horizon has emerged for medical image processing. 
In this context, CNN-based approaches have garnered 
widespread attention due to their potent feature extrac-
tion capabilities. Numerous endeavors employ CNNs to 
measure precise RBL values or classify RBL levels. Using 
radiographic findings, such DL models provide a swift 
and reliable preliminary periodontal diagnosis. Despite 
the promising performance exhibited by CNNs, their 
application to panoramic oral images is not devoid of 
limitations. A primary concern is the restricted recep-
tive field of CNNs, which sometimes struggles when 
tasked with delineating larger, more complex structures. 
Unfortunately, downsizing the input image, a common 
solution, compromises its resolution. This inadvertently 
diminishes the accuracy of segmentation, a critical com-
ponent in this assessment. Furthermore, obtaining spe-
cific tooth-related RBL values can offer clinicians more 
nuanced references for periodontal diagnosis—a gap in 
current methodologies. This study aimed to bridge these 
gaps by introducing the advanced DL model SegFormer 
and integrating the PCA methodology to identify the 
main axis of the tooth structure. This innovative com-
bination is crucial for obtaining accurate RBL values. 
Broadly, with SegFormer as our foundation, we formu-
lated two essential tasks: tooth position recognition and 
tooth semantic segmentation.

Recognizing overlapping teeth in panoramic images 
poses significant challenges. To address this, our study 
innovated a unique labeling technique utilizing a multi-
label loss function to ensure precise recognition of over-
lapping teeth, circumventing the issue typically seen in 
segmentation algorithms where a pixel can correspond to 
only one label.

For tooth semantic segmentation, we identified three 
key regions: the crown, the suprabony root part, and the 
intrabony root portion. These areas are quintessential for 
extracting RBL data. Accurate identification of these seg-
ments enables precise RBL evaluation. By amalgamating 
both the tooth position recognition and dental seman-
tic segmentation tasks, bone-level information for spe-
cific teeth can be obtained, allowing for the computation 
of RBL values based on the lengths the main axis of the 

tooth structure traverses within these regions. For a set 
of 70 test images, the SegFormer model yielded average 
IoU and F1-scores of 0.8906 and 0.9338, respectively, 
for tooth position recognition. This finding underscores 
the model’s superior performance in tooth identification 
even amidst missing or overlapping scenarios. Concur-
rently, for tooth semantic segmentation, the average IoU 
and F1 score were 0.8465 and 0.9138, respectively. When 
both tasks were merged, the average IoU and F1 score 
reached 0.7889 and 0.8674, respectively. This integration 
resulted in a slight accuracy reduction, which remained 
within an acceptable range.

To determine the main axis of the tooth structure, we 
pioneered the use of the PCA principal axis to emulate 
the main axis of the tooth structure. The illustrative dia-
grams provided in the manuscript depict a high degree 
of congruence between the PCA principal axis and the 
main axis of the conceptual tooth structure. RBL val-
ues derived from PCA on SegFormer’s segmentation 
results demonstrated correlation coefficients of 0.8505 
and 0.8516 with two measurement techniques, indicat-
ing a high correlation with clinician-measured outcomes. 
According to the tooth position-specific statistics, the 
anterior molars had the highest correlation coefficient, 
exceeding 0.87, whereas the other tooth types also had 
a correlation coefficient greater than 0.83. Therefore, the 
obtained RBL value has high reliability compared to the 
measurements made by clinicians. Based on the 2018 
staging standards, we compared the staging accuracy of 
the proposed method against that of two clinical mea-
surement techniques, emphasizing the reliable staging 
accuracy of this method. The proposed approach, which 
encompasses tooth position recognition, tooth semantic 
segmentation, and PCA-based RBL computation, offers 
several advantages over existing DL paradigms. These 
include deriving precise RBL values for specific teeth, 
higher automation levels, fewer requisite steps with the 
capability to handle panoramic images, heightened effi-
ciency, and greater mathematical interpretability and 
reliability in diagnosis due to the PCA principal axis 
determination. However, certain limitations still exist. 
Even though SegFormer has fewer parameters and data 
augmentation was employed during training, more 
images are essential for further enhancing its perfor-
mance and efficiency. Currently, on our hardware, the 
inference speed for tooth position recognition and tooth 
semantic segmentation was 1.54  s, which means that it 
takes 1.54  s to process a single panoramic image. Addi-
tionally, when a tooth’s shape is elongated along the main 
axis direction of the tooth structure and shortened in the 
direction perpendicular to it, the principal axis of the 
PCA might represent a direction perpendicular to the 
main axis of the tooth structure, although such scenarios 
are exceedingly rare. Notably, this method aids clinicians 
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by providing RBL reference values for treatment planning 
and does not diagnose periodontitis at different stages. 
Moreover, segmenting features such as crowns can assist 
in diagnosing other dental conditions, highlighting the 
versatility of these methods. Our model also demon-
strated notable transferability capabilities. Although 
SegFormer was originally trained on panoramic images, 
it proved effective in semantic segmentation tasks on 
periapical radiographs, as illustrated in Fig. 5. Although 
we ceased utilizing the tooth position recognition model, 
the semantic segmentation outcomes continued to offer 
valuable insights for clinicians. This finding exemplified 
the robust generalization capacity inherent to deep learn-
ing models, which allowed them to seamlessly adjust to 
diverse data types. To extract RBLs for individual teeth 
in periapical radiographs, one simply needs to tweak the 
recognition target of the tooth position model to differ-
entiate individual teeth. In essence, our approach show-
cased flexibility, necessitating only slight modifications to 
meet the unique demands of each specific task.
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