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Background
Root canal treatment involves cleaning, shaping and 
obturation of the root canal system to prevent or treat 
apical periodontitis [1]. Despite relatively high suc-
cess rates (82–92%) [2], endodontic treatment still car-
ries risks of failure that can be influenced by procedural 
errors and mishaps [3]. Studies have demonstrated that 
errors including apical perforation, failing to achieve 
patency due to ledges or blockages, and improper obtu-
ration length can significantly reduce success rates [4–6]. 
This is concerning as such errors may lead to post-opera-
tive complications and tooth loss.
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Abstract
Background  To develop and validate a deep learning model for automated assessment of endodontic case difficulty 
from periapical radiographs.

Methods  A dataset of 1,386 periapical radiographs was compiled from two clinical sites. Two dentists and two 
endodontists annotated the radiographs for difficulty using the “simple assessment” criteria from the American 
Association of Endodontists’ case difficulty assessment form in the Endocase application. A classification task labeled 
cases as “easy” or “hard”, while regression predicted overall difficulty scores. Convolutional neural networks (i.e. VGG16, 
ResNet18, ResNet50, ResNext50, and Inception v2) were used, with a baseline model trained via transfer learning from 
ImageNet weights. Other models was pre-trained using self-supervised contrastive learning (i.e. BYOL, SimCLR, MoCo, 
and DINO) on 20,295 unlabeled dental radiographs to learn representation without manual labels. Both models were 
evaluated using 10-fold cross-validation, with performance compared to seven human examiners (three general 
dentists and four endodontists) on a hold-out test set.

Results  The baseline VGG16 model attained 87.62% accuracy in classifying difficulty. Self-supervised pretraining 
did not improve performance. Regression predicted scores with ± 3.21 score error. All models outperformed human 
raters, with poor inter-examiner reliability.

Conclusion  This pilot study demonstrated the feasibility of automated endodontic difficulty assessment via deep 
learning models.
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Anatomical complexities and aberrations in tooth 
crown and root canal morphology are key factors that 
may increase risks of procedural errors when treating dif-
ficult cases [7]. As such, appropriate pre-operative case 
assessment and referral of complex cases by general den-
tists to endodontic specialists is critically important to 
improve outcomes [8]. To aid standardized assessment of 
case difficulty, guidelines like the American Association 
of Endodontists’ (AAE) Endodontic case difficulty assess-
ment categorize complexity based on multiple criteria 
visible on radiographs [9]. These include tooth type, arch 
position, rotation, extent of crown destruction, root mor-
phology, apex diameter, and canal visibility. However, the 
manual application of these guidelines is time-consuming 
and prone to high subjectivity and interpreter variability 
[10, 11]. More objective automated assessment tools are 
needed to help general dentistry practitioners reliably 
gauge case difficulty from standard radiographs early on 
and identify cases warranting specialty referral.

Recent advances in artificial intelligence (AI), specifi-
cally deep learning, show strong promise for automating 
such complex diagnostic and treatment planning tasks in 
healthcare [12]. Deep learning utilizes multi-layered neu-
ral networks capable of automatically identifying intri-
cate patterns and relationships in data without the need 
for explicit human programming. Within medicine, deep 
learning has already demonstrated expert-level perfor-
mance analyzing medical images for various tasks. For 
example, deep learning models have shown accuracies 
rivaling healthcare specialists in diagnosing diabetic reti-
nopathy from retinal fundus images [13] and predicting 
skin cancer from clinical images [14]. Within the den-
tal field, preliminary research has applied deep learning 
models for tasks including tooth numbering [15, 16], 
caries diagnosis [17], detection of periapical lesions [18], 
and extraction difficulty of third molars [19, 20]. How-
ever, deep learning has traditionally relied heavily on 
supervised learning techniques, which require massive 
manually annotated datasets that are expensive, time-
consuming, and prone to human subjectivity, inconsis-
tency, and errors [21]. Transfer learning can mitigate this 
by initializing models with general image features learned 
on large datasets, before fine-tuning on more limited 
medical data. An alternative approach is self-supervised 
learning (SSL), which can pre-train neural networks on 
abundant unlabeled medical imaging data [22]. SSL mod-
els learn meaningful feature representations from the 
data itself without the need for manual labeling, which 
is especially valuable for specialized fields like dentistry, 
where annotated data is scarce. Moreover, studies have 
shown SSL models can surpass supervised models in dis-
ease detection from retinal images [23].

For endodontic case difficulty assessment, which 
involves assessing multiple anatomical factors, an SSL 

approach seems promising. However, no previous stud-
ies found that have investigated deep learning tech-
niques for standardized pre-operative assessment of 
non-surgical endodontic treatment case difficulty. In this 
study, we aimed to develop and validate a diagnostic tool 
using deep learning on periapical radiographs to deter-
mine endodontic case difficulty based on established 
guidelines.

Materials and methods
Study design
This retrospective study utilized deep convolutional neu-
ral network models to assess endodontic case difficulty 
from periapical radiographs based on AAE guidelines. 
In our research paper, we examined five pre-trained and 
state-of-the-art convolutional neural network (CNN) 
architectures, namely ResNet50, ResNet18, Incep-
tion V2, VGG16 (with batch normalization layers), and 
ResNext50. Additionally, we explored four self-super-
vised learning (SSL) approaches, namely SimCLR, MoCo, 
BYOL, and DINO. All models were employed to catego-
rize endodontic case difficulty for binary classification 
analysis. Additionally, the top performing model was lev-
eraged to predict overall difficulty scores through regres-
sion. The Ethics Committee of the Hamadan University 
of Medical Sciences approved this study (IR.UMSHA.
REC.1402.026). The study results were reported in accor-
dance with the Checklist of Artificial intelligence in Med-
ical imaging [24].

Dataset and preparation
A dataset of 1,386 periapical radiographs of adult patients 
was compiled, including images from the radiology 
department of Hamadan University of Medical Sciences 
and a private dental clinic in Hamadan, Iran. Radiographs 
were captured using MINRay (Soredex, Tuusula, Finland) 
radiology system and Optime (Soredex, Tuusula, Finland) 
size #2 phosphorplate sensors. Radiographic exposure 
settings were standardized with a tube voltage of 60 kV, 
tube current of 7 mA, and exposure times ranging from 
0.16 to 0.32 s adjusted based on tooth type. Inclusion cri-
teria were permanent teeth with fully visible crowns and 
roots without obscuring artifacts. Exclusion criteria were 
deciduous teeth, impacted teeth, presence of orthodon-
tic appliances, and poor image quality due to processing 
errors or patient motion or any other artifacts.

Ground truth annotations
All images were de-identified using randomized numeric 
labels. The periapical images needed for the research 
were selected by the main researcher (S.S) and two den-
tists (N.G and A.M) labeled the dataset for endodontic 
case difficulty based on the latest AAE guidelines. Dif-
ficulty ratings of low (1 point), moderate (2 points) and 
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high (5 points) were assigned for the following criteria: 
tooth type, inclination, rotation, crown anatomy, root 
morphology, apex diameter, and canal visibility, mirror-
ing the scoring system used in the “simple assessment” in 
AAE EndoCase mobile application.

The AAE guidelines involve both subjective assess-
ments and objective measurements. Objective mea-
surements were performed for the following features 
using Digimizer software v5.4.9 (MedCalc Software, 
Mariakerke, Belgium): Tooth length, Inclination: Tooth 
angle deviation in the mesiodistal dimension and canal 
curvature: Angle of canal curvature measured using 
Schneider’s method. Apex diameter is categorized based 
on morphology - blunderbuss apexes were considered 
open (> 1.5 mm) while parallel-walled open apexes were 
considered “between 1 and 1.5”. For crown destruction, 
cuspal coverage restorations and missing cusps were con-
sidered extensive. Reference images with measurements 
were used to improve standardization of tooth length and 
diameter ratings.

To establish standardized criteria, an initial set of 100 
periapical radiographs were annotated by two dentists. 
Their difficulty ratings were reviewed by a third senior 
endodontist, and any disagreements or uncertainties 
were discussed to reach a consensus. This process refined 
the assessment criteria and improved inter-rater reli-
ability. The two dentists then independently labeled the 
remaining radiographs in the dataset using the finalized 
criteria and rubric. One researcher (S.S.) evaluated the 
differences in ratings between the two researchers. In 
cases of disagreement, two board-certified endodontists 
with at least 10 years of experience (H.K., and E.K) were 
consulted to provide the decisive rating. AAE low and 
moderate difficulty were combined into an easy category 
since low difficulty corresponds only with a few anterior 
and premolar cases. Cases with combined scores ≤ 10 
were categorized as “easy” while scores ≥ 11 were labeled 
as “hard” (high difficulty) for binary classification.

Image preprocessing
Individual teeth were cropped from the periapical radio-
graphs by a trained dentist (S.S). Images were cropped 
with at least 10-pixel margin and converted to JPEG for-
mat. They were resized to size 224 × 224 for all models 
except Inception v2 which required 299 × 299 images.

Model architecture
Baseline models
Transfer learning was used to improve model training 
efficiency. All models were initialized with weights pre-
trained on ImageNet. By transferring knowledge from 
this large general image dataset, the network could focus 
on fine-tuning dental radiograph features rather than 
learning from scratch. This enabled faster convergence 

with less data compared to a randomly initialized model. 
When fine-tuning the ImageNet pre-trained models, all 
layers were frozen except for the batch normalization 
layers. This allowed adjustments to the distribution of 
layer inputs to better fit the dental radiograph data, while 
retaining the learned feature representations from Ima-
geNet in the convolutional layers. Additional, fully con-
nected layers were constructed on top of the base models 
to generate predictions for the endodontic case difficulty 
tasks.

SSL models
Self-supervised pretraining was performed using con-
trastive learning technique [25]. The key idea is to train 
models to differentiate between augmented views of 
the same image (positive pairs) and views from differ-
ent images (negative pairs). This forces the model to 
learn generalized visual representations based solely on 
the medical image data, without using any labeled cat-
egories. Typically, two separate augmented crops are cre-
ated from each unlabeled dental radiograph. An encoder 
processes one augmented view while a separate encoder 
looks at the other view. If the crops originate from the 
same image, the encoded representations should be 
pulled closer together by the model. If they are from 
different images, the representations should be pushed 
apart. By optimizing this contrastive signal across many 
image pairs, the model learns robust features, uncon-
founded by any downstream task labels. For pretraining, 
we leveraged a diverse dataset of 20,295 unlabeled pan-
oramic, bitewing, and periapical radiographs from a pri-
vate clinic. After unsupervised pretraining, the encoder 
was transferred to initialize our classification model. 
The pretrained features were frozen, and a classifier was 
trained on top using the smaller labeled dataset to cat-
egorize case difficulty.

Training details
Models are implemented in Python using PyTorch 1.7.1 
on Google Collaboratory platform. Training occurred on 
an NVIDIA T4 Tensor core graphics processing unit with 
12GB GDDR5 VRAM, paired with an Intel Xeon proces-
sor containing two 2.2  GHz cores and 13GB of RAM. 
Key hyperparameters were set at a learning rate of 0.001, 
batch size of 4 (baseline models) and 8 (SSL models), and 
Adam optimizer, following a randomized search strat-
egy. The loss function is calculated via categorical cross-
entropy for the classification task and mean squared 
error for the regression task. Due to dataset imbal-
ance, we applied the weighted loss function. Early stop-
ping was used to prevent the overfitting of the model. 
Data were augmented using random horizontal flip, 
random rotation, color jitter, random affine, and Trivi-
alAugment method [26]. TrivialAugment is an automatic 
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augmentation method that takes an image x and a set of 
augmentations A as input. It then simply samples a ran-
dom augmentation from A uniformly, as well as a ran-
dom augmentation strength m from the range [0,30]. The 
sampled augmentation is applied to image x with prob-
ability m, and the augmented image is returned.

Data partitions
Initially, 202 cropped tooth images were used for our test 
using a random stratified sampling method. The model 
was trained using 10-fold stratified cross-validation to 
prevent overfitting and assess generalizability. The data-
set was randomly split into 10 equal folds, with each fold 
containing a similar distribution of easy and hard cases. 
For each fold, the model was trained on the other 9 folds 
and validated on the held-out fold. This was repeated 
until all folds served as the validation set once. All model 
hyperparameters were tuned using the 9-fold training 
sets only. The cross-validation results were then aggre-
gated to evaluate model performance. Model generaliz-
ability was assessed by averaging accuracy across the 10 
validation folds.

Clinician assessment
Periapical images from the test set were provided to three 
general dentists and four endodontists for individual 
assessment separately. The examiners, comprising gen-
eral dentists with an average of 2.6 years and endodon-
tists with an average of 8 years of clinical experience, were 
given a brief orientation on case difficulty assessment 
using the simple assessment in EndoCase application. 
No formal calibration was performed in order to evaluate 
independent analysis. The evaluations were conducted 
under consistent controlled conditions, with images dis-
played on standard 1080p monitors in a darkened room 
to minimize external distractions and simulate ideal clin-
ical viewing settings. Working independently, the evalu-
ators categorized each tooth into ‘hard’ or ‘easy’ groups 
based on their clinical experience and judgment, guided 
qualitatively by the criteria outlined in the assessment 
tools.

Evaluation
We evaluated models and clinician performance on a 
held-out test set. The accuracy, precision, recall, and 
F1-score of the model/clinician on the test set were pre-
sented for each class and dataset.

	
Precision =

TP

TP + FP

	
Recall =

TP

TP + FN

	
Accuracy =

TP + TN

TP + TN + FP + FN

	
F1 score =

2TP

2TP + FP + FN

Where TP, TN, FP, and FN are the number of true-pos-
itive, true-negative, false-positive, and false-negative 
samples, respectively. Confusion matrices were generated 
and receiver operating characteristic (ROC) curves plot-
ted with Area Under the Curve (AUC) metrics assessed 
for each model. Interobserver agreement performance 
was assessed using Fleiss kappa. The results were inter-
preted as follows: Kappa < 0.2: Slight agreement, 0.21–0.4: 
Fair agreement, 0.41–0.6: Moderate agreement, 0.61–0.8: 
Substantial agreement, 0.81: Almost perfect agreement. 
Statistical analyses were performed using SPSS for Win-
dows version 15 (SPSS Inc., Chicago, IL, USA).

Results
Study populations
The distribution of case difficulty items is presented in 
Table 1. Our dataset comprises 603 molar teeth and 783 
anterior/premolars.

Classification task
The results from 10-fold cross validation, accuracy, pre-
cision, recall, and F-1 score are presented in Table  2. 
Additionally, ROC curves of models are shown in Fig. 1. 
Inception v2 and DINO models had the best cross-val-
idation accuracy, at 91.05% and 91.04%, respectively. 
VGG16 and Inception v2 models had the best AUC 
score, at 94.36% and 92.42%, respectively. VGG16 model 
had the best overall precision, recall, and accuracy across 
all models.

In Fig. 2 error samples of VGG16 model are illustrated. 
Error analysis showed that false predictions in “Easy” 
category predominantly occurred in teeth with reduced 
canals. False predictions in the “Hard” category were 
mainly associated with anterior tooth with open apex and 
long tooth.

Regression task
Given its superior classification performance, the VGG16 
model was selected for the regression task. The average 
mean squared error was recorded at 10.32. The model 
can predict the difficulty score with an error margin of 
± 3.21.

Clinician assessment
The evaluation metrics of human performance is pro-
vided in Table  3. All human scores were lower than 
deep learning models. The Fleiss Kappa interobserver 
agreement between all groups, general dentists and 
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endodontists were 0.22, 0.54, and 0.39, respectively. Gen-
eral dentists have moderate agreement but the level of 
agreement between the endodontists and all observers is 
fair.

Discussion
Assessment of case complexity remains a key challenge in 
endodontic diagnosis and treatment planning, requiring 
comprehensive evaluation through clinical examination, 
radiographic analysis, and understanding of the opera-
tor’s skills [1]. Attempting procedures beyond one’s capa-
bilities risks intraoperative errors and subsequent harm 
to patient health, while also exposing clinicians to poten-
tial legal repercussions [8]. Thus, guidelines have been 
developed to determine case difficulty for procedures 

like molar extraction and root canal therapy, aiding clini-
cal decision-making. Our present study demonstrates for 
the first time that deep learning models can predict end-
odontic treatment difficulty from periapical radiographs 
with high accuracy.

Deep learning has garnered considerable interest in 
medicine owing to its high learning capacity and demon-
strated ability to automate intricate diagnostic and treat-
ment planning tasks. In endodontics, deep learning has 
shown promise in detecting vertical root fracture [3] and 
special tooth anatomies like C-shaped canals [27], and 
taurodontism [28]. They may also assist in gauging treat-
ment complexity to inform planning and referral needs. 
For instance, CNNs have been applied to categorize 
third molar surgery difficulty [29]. We examined several 

Table 1  The distribution of case difficulty items
Category Subcategory Number of Labels
Tooth type Anterior/Premolar: 783

First Molar: 331
Second Molar: 272

Inclination Less than 10 degrees: 1195
Between 10 to 30 degrees: 164
More than 30 degrees: 27

Rotation Less than 10 degrees: 1308
10 to 30 degrees: 32
More than 30 degrees: 46

Crown Morphology Normal crown shape: 912
Severe crown destruction: 474
Taurodontism: 110
Microdontia: 0
Abutment bridge: 128
Porcelain veneer: 0
Full coverage restoration: 209
Fusion: 0
Dens in dente: 0
Restoration does not reflect original anatomy: 4

Root morphology Root curvature angle Less than 10 degrees: 1121
Between 10 to 30 degrees: 191
More than 30 degrees: 74

Crown and root axis substantially different: 26
Radix ento/paramolaris: 62
Long tooth (longer than 30 mm): 79
Canal splits in middle or apical third: 44
Maxillary premolar with 3 roots: 0
Mandibular anterior or premolar with 2 roots: 91
S-shaped canal curvature: 48
C-shaped morphology: 98

Apex Diameter Closed (less than 1 mm): 1294
Between 1 to 1.5 mm: 46
Open (more than 1.5 mm): 46

Canal and pulp chamber Visible/not reduced: 1301
Visible/reduces: 286
Not visible: 69
Pulp Stones: 136
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state-of-the-art convolutional neural network architec-
tures for this classification task. Among the supervised 
models examined, Inception v2 achieved the highest 
cross-validation accuracy at 91.05%, while VGG16 dem-
onstrated the best overall test performance - attaining 
87.62% accuracy, 94.36% AUC, with the top precision, 
recall and F1-scores. The self-supervised DINO model 
narrowly exceeded VGG16 in cross-validation accuracy, 
while most other SSL techniques failed to match these 
top supervised models. While self-supervised pretrain-
ing demonstrates promise for medical imaging tasks, it 
did not improve overall accuracy in this study compared 
to supervised training alone. Error analysis revealed the 
majority of model errors occurred in cases with reduced 
canal visibility, long tooth lengths, and open apices. These 
features were severely underrepresented in the dataset, 
indicating that SSL may still be advantageous given suf-
ficient sample diversity. Nevertheless, all deep learning 
models showed higher precision and recall than human 
raters. The low inter-rater agreement highlights issues 
with consistency using the AAE guideline. Automated 
AI assessment could address these reliability limitations 
while improving accuracy.

For root canal therapy, the AAE case difficulty assess-
ment is widely utilized, and had proved useful in predict-
ing endodontic mishaps [30], obturation length [1] and 
4-year clinical success rate [31]. It categorizes cases as 
“low difficulty,” “moderate difficulty” or “high difficulty” 
based on both patient-related and tooth-related factors. 
However, we only assessed simple tooth related factors 
that can be assessed on periapical radiographs using 
“simple assessment” in AAE’s EndoCase application. We 
combined low and moderate difficulty into “easy” cat-
egory and high difficulty into “hard” category for our 
classification analysis, since low difficulty only possess a 
very few cases of anterior and premolar teeth. The pres-
ent study is the first time to incorporate deep learning in 
endodontic case difficulty assessment. By developing an 
objective, computational method, we aimed to address 
longstanding issues with subjectivity in conventional 
human-based assessments. Our model could help stan-
dardize case selection for dental students and junior cli-
nicians by supplementing evaluation with a data-driven 
approach.

In addition to classification, we applied the model for 
regression to predict individual difficulty scores utiliz-
ing the scoring system of AAE’s EndoCase application. 

Table 2  The results from cross validation accuracy and precision, recall, and F1-score of all models in the test set
Model Name Cross validation Test

Average accuracy AUC Score Accuracy Class Precision Recall F1 score
VGG16 89.11 94.36 87.62 Easy 75.32 90.62 82.26

Hard 95.2 86.23 90.49
Weighted Average 88.9 87.6 87.8

ResNet18 89.19 89.07 84.65 Easy 72.00 84.37 77.69
Hard 92.12 84.78 88.30
Weighted Average 85.7 84.6 84.9

ResNet50 90.80 90.62 85.15 Easy 73.61 82.81 77.94
Hard 91.53 86.23 88.80
Weighted Average 85.85 85.14 85.35

ResNext50 90.71 91.34 84.16 Easy 76.66 71.87 74.19
Hard 87.32 89.85 88.57
Weighted Average 83.94 84.15 84.01

Inception v2 91.05 92.42 86.14 Easy 81.03 73.43 77.04
Hard 88.19 92.02 90.07
Weighted Average 85.92 86.13 85.94

BYOL 83.94 86.95 79.70 Easy 65.3 76.56 70.50
Hard 88.18 81.15 84.52
Weighted Average 80.93 79.69 80.07

SimCLR 87.16 91.16 82.67 Easy 69.33 81.25 74.82
Hard 90.55 83.33 86.79
Weighted Average 83.82 82.67 82.99

MoCo v2 82.76 85.71 79.21 Easy 63.09 82.81 71.62
Hard 90.67 77.53 83.59
Weighted Average 81.93 79.20 79.79

DINO 91.04 91.07 85.15 Easy 74.28 81.25 77.61
Hard 90.90 86.95 88.88
Weighted Average 85.63 85.14 85.30
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Fig. 2  Error samples in VGG16 predictions. a, reduced canal b, open apex c, long tooth

 

Fig. 1  Receiver Operating Characteristic (ROC) curves illustrating the prediction performance of models on the test set, with each model represented 
by a distinct color
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This scoring system developed by endodontic specialists 
categorizes complexity on a scale starting at 7. VGG16 
predicted scores to within ± 3.21 units. Predicting the 
overall difficulty level rather than a binary label may offer 
useful clinical insights. Higher scores could flag chal-
lenging cases requiring more appointment time or spe-
cialist referral to reduce clinician fatigue and improve 
outcomes. With further validation, AI-predicted dif-
ficulty scoring could potentially assist in balanced pre-
operative case scheduling. Further studies are needed 
to assess the clinical significance of difficulty scores. 
Moreover, there is a need to develop AI-optimized rat-
ing guidelines, better suited to algorithmic analysis. 
Retooling for AI compatibility could improve assessment 
standardization.

This study had some limitations. By performing binary 
classification rather than predicting specific difficulty 
factors, some diagnostic detail was lost. Additionally, 
periapical radiographs provide limited two-dimensional 
information compared to 3D modalities like cone-beam 
CT. Assessing complex anatomical factors in 3D teeth 
using 2D images presents challenges. For example, accu-
rate characterization of canal curvatures, divisions and 
root morphologies like radix ento/paramolaris is diffi-
cult without clear 3D visualization. Furthermore, clinical 
examination is imperative for comprehensive assessment 
of patient-specific factors as well as tooth inclination 
and rotation. Moving forward, integrating three-dimen-
sional imaging and patient record details could enhance 

modeling capabilities. Future work should also aim to 
elucidate individual tooth characteristics driving treat-
ment complexity.

Conclusion
This pilot investigation highlights the promise of deep 
learning to automate endodontic difficulty assessment as 
a clinical decision support tool. With further refinements 
to models and data sources, such an approach could 
potentially help standardized preoperative evaluation.
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