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L-mimosine and hypoxia can increase
angiogenin production in dental pulp-
derived cells
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Abstract

Background: Angiogenin is a key molecule in the healing process which has been successfully applied in the field
of regenerative medicine. The role of angiogenin in dental pulp regeneration is unclear. Here we aimed to reveal
the impact of the hypoxia mimetic agent L-mimosine (L-MIM) and hypoxia on angiogenin in the dental pulp.

Methods: Human dental pulp-derived cells (DPC) were cultured in monolayer and spheroid cultures and treated
with L-MIM or hypoxia. In addition, tooth slice organ cultures were applied to mimic the pulp-dentin complex. We
measured angiogenin mRNA and protein levels using qPCR and ELISA, respectively. Inhibitor studies with
echinomycin were performed to reveal the role of hypoxia-inducible factor (HIF)-1 signaling.

Results: Both, L-MIM and hypoxia increased the production of angiogenin at the protein level in monolayer
cultures of DPC, while the increase at the mRNA level did not reach the level of significance. The increase of
angiogenin in response to treatment with L-MIM or hypoxia was reduced by echinomycin. In spheroid cultures,
L-MIM increased angiogenin at protein levels while the effect of hypoxia was not significant. Angiogenin was also
expressed and released in tooth slice organ cultures under normoxic and hypoxic conditions and in the presence
of L-MIM.

Conclusions: L-MIM and hypoxia modulate production of angiogenin via HIF-1 differentially and the response
depends on the culture model. Given the role of angiogenin in regeneration the here presented results are of high
relevance for pre-conditioning approaches for cell therapy and tissue engineering in the field of regenerative
endodontics.
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Background
Angiogenin (Angiogenin / ANGIOGENIN) is a key mol-
ecule in the healing process which has been successfully
applied in the field of regenerative medicine and oncol-
ogy [1–7]. The applications comprise the support of
wound healing and bone regeneration where it has suc-
cessfully stimulated angiogenesis and tissue regeneration
in experimental settings [3, 4, 8]. While the known rele-
vance of angiogenin is based on a broad spectrum of
data in regenerative medicine, knowledge about the role
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of angiogenin in regenerative endodontics and the dental
pulp in general is currently limited. In vitro, cells of the
dental pulp produce angiogenin / ANGIOGENIN and
fast-setting calcium-silicate cements can modulate the
production of angiogenin / ANGIOGENIN [9, 10]. In
inflammation, innate immunity, neuroprotection, and
tissue regeneration ANGIOGENIN represents a factor
with high relevance also for regenerative endodontics
[11–14].
ANGIOGENIN is a secreted protein and part of the

ribonuclease superfamily for which reason it is also
known as ribonuclease 5 [8]. The ANGIOGENIN encod-
ing gene angiogenin is found on chromosome 14q11
[15]. The 14kDa basic single-chain protein consists of
le is distributed under the terms of the Creative Commons Attribution 4.0
.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
ive appropriate credit to the original author(s) and the source, provide a link to
changes were made. The Creative Commons Public Domain Dedication waiver
ro/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12903-017-0373-6&domain=pdf
http://orcid.org/0000-0001-9509-1555
mailto:hermann.agis@meduniwien.ac.at
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Janjić et al. BMC Oral Health  (2017) 17:87 Page 2 of 7
123 amino acids [8] and has 33% sequence identity and
65% homology with bovine pancreatic RNase A as well
as the same general catalytic residues [16]. The structure
of the ANGIOGENIN protein is characterized by two α-
helices, seven β-sheets, and three disulfide bonds [8].
Angiogenin / ANGIOGENIN is found in the early

phase during hard and soft tissue regeneration [17, 18].
ANGIOGENIN is involved in angiogenesis and thus a
key factor in cancer genesis but also tissue regeneration
[1–7]. Various pro-angiogenic factors such as vascular
endothelial growth factor, fibroblast growth factor, and
endothelial growth factor stimulate angiogenin /
ANGIOGENIN production [8, 19]. In the complex
process of angiogenesis, ANGIOGENIN induces a var-
iety of cell responses. ANGIOGENIN binds to endothe-
lial and smooth muscle cells triggering cell migration,
cell invasion, proliferation of endothelial cells, and for-
mation of tubular structures [19, 20]. These functions
are based on ANGIOGENIN’s ribonuclease activity,
basement membrane degradation, signaling transduc-
tion, and nuclear translocation [21, 22]. Furthermore,
emerging evidence supports the notion that ANGIO-
GENIN is involved in the cell response to stress and cell
survival [23]. All these processes highlight the relevance
of ANGIOGENIN and led to the development of thera-
peutic strategies which target this mechanism [3, 4].
Hypoxia-based strategies are a novel and promising ap-

proach to stimulate healing of the dental pulp in regenera-
tive endodontics. While this approach emerged in a wave
of various hypoxia-based approaches in regenerative
medicine which dramatically improved our understanding
of the effects of hypoxia, the impact of hypoxia in the den-
tal pulp is not fully understood [24–30]. There is exisiting
evidence from other fields of research that hypoxia can in-
duce angiogenin / ANGIOGENIN via the transcription
factor hypoxia-inducible factor (HIF)-1 [31, 32]. The role
of ANGIOGENIN in the dental pulp is, however,
unknown.
Here we hypothesized that hypoxia stimulates the pro-

duction of angiogenin / ANGIOGENIN in the pulp in
2D monolayer, 3D spheroid, and tooth slice organ cul-
tures. We show that the hypoxia mimetic agent L-
mimosine (L-MIM) and hypoxia modulate production of
angiogenin / ANGIOGENIN via HIF-1 differentially and
the response depends on the culture model. These re-
sults are of high relevance for pre-conditioning ap-
proaches for cell therapy and tissue engineering in the
field of regenerative endodontics which aim to improve
the pro-angiogenic capacity of the transplanted cells.

Methods
Cell culture
Human dental pulp-derived cells (DPC) were prepared
from extracted third molars after informed consent was
given by the donors (Ethics Committee of the Medical
University of Vienna, Vienna, Austria). Patients were
recruited at the School of Dentistry, Medical University
of Vienna, Vienna, Austria. The extraction of third mo-
lars from donors was part of standard care. The dental
pulp was exposed and the tissue was collected. Explant
cultures were done in α-minimal essential medium (α-
MEM) (Invitrogen Corporation, Carlsbad, CA, USA)
with 10% fetal calf serum (FCS; PAA Laboratories, Linz,
Upper Austria, Austria) and antibiotics at 37 °C, 5%
CO2, and 95% atmospheric moisture.

Monolayer culture of dental-pulp-derived cells
For the monolayer cultures, DPC were seeded at 50,000
cells/cm2 and incubated overnight. Then DPC were treated
with 1 mM L-MIM or hypoxia for 24 h. This dose was
based on the results of previous in vitro studies [24, 33].
For hypoxia, an established assay was applied with minor
modifications [34]. In brief, DPC were placed into a BD
GasPak EZ Pouch system for hypoxic conditions (Becton,
Dickinson and Company, Franklin Lakes, NJ, USA). In
indicated experiments, cells were also treated with echino-
mycin at 1 μM to block HIF-1 activity. Untreated cells
cultured under normoxic conditions served as control.

Spheroid culture of dental pulp-derived cells
For the spheroid cultures, 3D Petri Dishes® (Microtissues
Inc., Providence, RI, USA) were used. The dishes were
filled with 2% agarose to produce molds with 35 circular
recesses. The molds were then soaked in α-MEM sup-
plemented with 10% FCS and antibiotics (Invitrogen
Corporation, Carlsbad, CA, USA). Afterwards, the molds
were transferred to the well plates and 75 μL of cell sus-
pension with 7,300,000 cells/mL were pipetted into the
molds. After 10 min settling time the well was filled with
cell culture medium as described in the manufacturer’s
description and incubated overnight. Then spheroids of
DPC were stimulated with L-MIM or hypoxia as
described above in the monolayer cultures.

Tooth slice organ culture
After informed consent was obtained, 600 μm thick slices
from extracted third molars without any sign of inflamma-
tion were prepared. For slicing the teeth, a diamond saw
(Exakt 300 CL and D64 0,2 mm, EXAKT Norderstedt,
Germany) was used. Directly after cutting, the slices were
placed in α-MEM (Invitrogen Corporation) supplemented
with 10% FCS and antibiotics for 48 h at 37 °C, 5% CO2,
and 95% atmospheric moisture. Then the tooth slices were
treated with L-MIM at 1 mM or hypoxia for 48 h according
to the concentrations used in previous studies [24, 35].
From one set of tooth slices total RNA was extracted and
angiogenin mRNA levels were assessed using RT-qPCR.
Culture supernatants were assessed by ELISA to quantify
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the amount of ANGIOGENIN protein. Furthermore, MTT
assays were applied on the tooth slices to quantify
the vital tissue. In brief, tooth slices were incubated
with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) at 1 mg/mL for 2 h. Formazan was solu-
bilized with DMSO and measured with the Synergy HTX
multiplate reader (BiotTek, Bad Friedrichshall, Germany)
at 550 nm. ANGIOGENIN levels in the culture medium
were normalized to formazan formation of the pulp in the
tooth slices.
Reverse transcription quantitative polymerase chain
reaction
One day after treatment with L-MIM or hypoxia, total
RNA was isolated from DPC of both culture models as
well as the pulp tissue of the tooth slices using the
RNeasy Plus Mini Kit, according to the protocol of the
manufacturer (Qiagen, Hilden, NW, Germany). We per-
formed synthesis of cDNA with the High Capacity
cDNA Reverse Transcription Kit (Applied Biosystems,
Carlsbad, CA) and diluted for reverse transcription
quantitative polymerase chain reaction (RT-qPCR) as
recommended by the manufacturer. cDNA was ampli-
fied with TaqMan® Real-Time PCR Master Mix (Applied
Biosystems) and TaqMan® assays (Applied Biosystems)
for angiogenin. Gapdh served as housekeeping gene
(Table 1). mRNA levels were calculated by the ΔΔCt
method, relative to the gapdh gene expression levels.
Immunoassays
Supernatants of the monolayer, spheroid, and tooth slice
organ cultures were assessed using ELISA for ANGIO-
GENIN (human angiogenin DuoSet® ELISA kit R&D Sys-
tems Europe, Ltd. Abingdon, UK). The absorbance was
measured at 450 nm (Correction at 540 nm) in a Synergy
HTX multiplate reader (BiotTek). The concentration of
total ANGIOGENIN was calculated with the standard
curve method following the protocol of the manufacturer.
Statistical analysis
Statistical analysis was performed with IBM SPSS Statis-
tics Version 23 (IBM Corporation, Armonk, NY, USA),
using the Kruskal-Wallis-test post hoc Mann-Whitney-
test corrected for multiple testing by Bonferroni correc-
tion. The level of significance was set at p < 0.05.
Table 1 All TaqMan® assays that were used for qPCR are listed
in this table ( Thermo Fisher Scientific, MA, USA)

Gene symbol Gene name Assay ID

Ang angiogenin Hs04195574_sH

Gapdh glyceraldehyde-3-phosphate dehydrogenase Hs02758991_g1
Results
L-mimosine and hypoxia increase the production of
angiogenin / ANGIOGENIN in monolayer cultures of dental
pulp-derived cells
We measured the production of angiogenin at the mRNA
level in response to L-MIM and hypoxia. Angiogenin was
expressed in monolayer cultures of DPC under normoxic
conditions. Modulation of angiogenin by both, L-MIM and
hypoxia did not reach the level of significance (p < 0.05) in
DPC monolayer cultures at the mRNA level (Fig. 1 a). At the
protein level L-MIM and hypoxia increased ANGIOGENIN
compared to the untreated cells (p < 0.05) as observed in the
culture supernatants (Fig. 1 b). Our results show that hyp-
oxia mimetic agents and hypoxia can increase the release of
ANGIOGENIN in DPC cultured in monolayers.

Echinomycin reduces the increase of angiogenin /
ANGIOGENIN in response to L-mimosine and hypoxia
To assess the role of HIF-1α in the underlying mechan-
ism, inhibitor studies with echinomycin, an inhibitor of
HIF-1 function, were performed. Echinomycin reduced
mRNA production of angiogenin in the presence of L-
MIM (p < 0.05) (Fig. 2 a, b). Furthermore, our data show
that echinomycin reduces the effect of L-MIM and
hypoxia on ANGIOGENIN protein production in DPC
monolayer cultures (p < 0.05) (Fig. 2 c, d). These data
demonstrate that HIF-1 activity is required for the effect
of hypoxia mimetic agents and hypoxia on ANGIO-
GENIN production in monolayer cultures of DPC.

L-mimosine, but not hypoxia, stimulates the production
of angiogenin / ANGIOGENIN in spheroid cultures of
dental pulp-derived cells
To mimic the 3D matrix of the dental pulp we used the
spheroid culture model. In these cultures, the increase
of angiogenin mRNA upon L-MIM treatment did not
reach the level of significance (p > 0.05) (Fig. 3 a). At the
protein level ANGIOGENIN was increased by L-MIM
(Fig. 3 b). The effect of hypoxia in the spheroid culture
model did not reach the level of significance at both the
mRNA and the protein level (Fig. 3 a, b). These suggest
that the effect of hypoxia mimetic agents and hypoxia
on ANGIOGENIN production are less pronounced
under 3D than under 2D conditions.

Angiogenin / ANGIOGENIN is produced in tooth slice
organ cultures
Next we aimed to reveal the impact of hypoxia mimetic
agents and hypoxia on the production of ANGIOGENIN
in the dental pulp. Therefore, we applied the tooth slice
organ culture model. Our results show that angiogenin
mRNA was expressed in pulp tissue under normoxia,
hypoxia, and in the presence of L-MIM (Fig. 4 a). We
found a trend to an increase in angiogenin upon



Fig. 1 L-mimosine and hypoxia stimulate angiogenin / ANGIOGENIN production in monolayer cultures of dental pulp-derived cells. Dental pulp-derived cells
(DPC) were incubated with L-mimosine (L-MIM) at 1 mM or hypoxia for 24 h in monolayer cultures. mRNA of angiogenin (a) and protein of ANGIOGENIN (b)
were assessed by RT-qPCR and ELISA, respectively. a Bars represent mRNA levels as mean + standard deviation, relative to the normoxic control (dashed
line). Two independent experiments were performed with three donors. Kruskal Wallis test p < 0.05. post hoc Mann-Whitney * p < 0.05 b Bars show
mean + standard deviation of ANGIOGENIN relative to the normoxic control (dashed line). Two independent experiments were performed with three
donors. Kruskal Wallis test p < 0.05. post hoc Mann-Whitney * p < 0.05
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treatment with L-MIM and hypoxia. Due to the limited
number of tooth slices, no statistical evaluation of angio-
genin mRNA was performed as the resulting power was too
low. Interestingly, no trend for a modulation of ANGIO-
GENIN protein levels in the culture supernatant was ob-
served upon treatment with L-MIM or hypoxia (Fig. 4 b).
Again no statistical evaluation of ANGIOGENIN protein
levels was performed as the resulting power was too low
due to the limited number of tooth slices. Overall these data
show that ANGIOGENIN is produced in the dental pulp,
also in the presence of hypoxia mimetic agents and hypoxia.

Discussion
Angiogenin (angiogenin / ANGIOGENIN) is a key mol-
ecule in angiogenesis and healing. Here we show that
Fig. 2 Hypoxia inducible factor-1 signaling is involved in the increase of angioge
pulp-derived cells (DPC) in monolayer cultures were treated with L-mimosine (L-M
24 h. mRNA levels of angiogenin (a, b) and protein levels of ANGIOGENIN (c, d) w
levels as mean+ standard deviation, relative to the normoxic control (dashed line)
Kruskal Wallis test p< 0.05. post hoc Mann-Whitney * p< 0.05 c, d Bars represent
(dashed line). Experiments were conducted twice with 3 different donors, respect
ANGIOGENIN is increased in monolayer cultures of
DPC in response to treatment with the hypoxia mimetic
agent L-MIM and hypoxia. This increase in ANGIO-
GENIN was abolished in the presence of the HIF-1
activity inhibitor echinomycin suggesting that active
HIF-1 is required for the increase in ANGIOGENIN.
ANGIOGENIN was also produced in 3D spheroid cul-
tures and in tooth slice organ cultures. However, the re-
sponse of the cultures to treatment with L-mimosine
and hypoxia depends on the culture model.
Here we present novel evidence showing the regula-

tion of ANGIOGENIN in DPC. The hypoxia mimetic
agent L-MIM and hypoxic conditions stimulate ANGIO-
GENIN in monolayer cultures of DPC. These results are
in line with previous studies on other cell lines of non-
nin / ANGIOGENIN upon stimulation with L-mimosine or hypoxia. Dental
IM) at 1 mM or hypoxia with and without echinomycin at 1 μM to for
ere assessed by RT-qPCR and ELISA, respectively. a, b Bars represent mRNA
. Experiments were conducted twice with three different donors, respectively.
mean+ standard deviation of ANGIOGENIN relative to the normoxic control
ively. Kruskal Wallis test p< 0.05. post hoc Mann-Whitney * p< 0.05



Fig. 3 Angiogenin / ANGIOGENIN production in spheroid cultures of dental pulp-derived cells in response to L-mimosine and hypoxia. Dental pulp-derived
cells (DPC) in spheroid cultures were treated with L-mimosine (L-MIM) at 1 mM or hypoxia for 24 h. mRNA levels of angiogenin (a) and protein levels
of ANGIOGENIN (b) were assessed by RT-qPCR and ELISA, respectively. a Bars represent mRNA levels as mean + standard deviation, relative to the
normoxic control (dashed line). Experiments were conducted twice with 3 different donors, respectively. Kruskal Wallis test p> 0.05. b Bars represent mean
+ standard deviation of ANGIOGENIN protein levels relative to the normoxic control (dashed line). Experiments were conducted twice with three different
donors, respectively. Kruskal Wallis test p< 0.05. post hoc Mann-Whitney * p< 0.05 vs. control (dashed line)
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oral origin such as retinal pigment endothelial cells or
human renal proximal tubular epithelial cells in culture
[31, 32].
Here we used DPC in monolayer cultures which repre-

sent a heterogeneous population and which can include
cells, positive for mesenchymal stem cell markers, as
well as low levels of hematopoetic stem cell markers
[36–39]. In this setup it is unclear which population
contributes to which extent to the observer effect. How-
ever, this setup closer represents the situation in the
dental pulp than in isolated cell populations based on
surface markers. To mimic the 3D structure of the pulp
and therefore more closely the in vivo situation, we used
3D spheroid cultures of DPC in addition of 2D cultures
[40]. Being aware of the background of a highly complex
in vivo situation in the pulp-dentin complex which
Fig. 4 Angiogenin / ANGIOGENIN is produced in tooth slice organ cultures. Toot
mRNA levels of angiogenin (a) and protein levels of ANGIOGENIN (b) were ass
as mean + standard deviation, relative to the normoxic control from tooth
ANGIOGENIN protein levels normalized to MTT and relative to the normox
combines soft tissue containing fibroblasts, stem cells,
blood vessels embedded in hard tissue, we therefore
used the tooth slice organ culture [35]. Thereby we give
a broad perspective on the effect of hypoxia mimetic
agents and hypoxia on the production of angiogenin /
ANGIOGENIN in the DPC. Our results show a differen-
tial response of angiogenin / ANGIOGENIN. It is there-
fore possible that cells cultured in the different 3D
in vitro models are less sensitive to treatment with L-
mimosine or hypoxia than cells cultured in monolayer
cultures. It is also possible that cells in the core of the
spheroids and within the pulp tissue of the tooth slices
have already reached low levels of oxygen. Further treat-
ment with hypoxia or L-MIM might therefore not be as
effective. However, comparing the response at mRNA
levels with the response at protein levels in particular in
h slices were cultured with and without L-mimosine (L-MIM) or hypoxia.
essed by RT-qPCR and ELISA, respectively. a Bars represent mRNA levels
slices of two donors. b Bars represent mean + standard deviation of
ic control (dashed line) from tooth slices of two donors
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the tooth slice model suggests that angiogenin /
ANGIOGENIN is produced in response to L-MIM and
hypoxia, but is not released in its full extent. A clear
limitation of this study is that the timing for sample col-
lection for the evaluation of mRNA and protein was lim-
ited to one time point. Based on previous studies a
stimulation period of 24 h was chosen for monolayer
and spheroid cultures and 48 h was chosen for tooth
slice cultures which showed a hypoxia-induced cellular
response [24, 33, 35]. Both 24 and 48 h have been shown
to be within the time frame of the effect of hypoxia on
angiogenin production in non-oral cells [41]. However, it
might be possible that the peak of angiogenin expression
and ANGIOGENIN protein production is not at the
same time point. Thus the kinetics of angiogenin /
ANGIOGENIN production remains to be determined in
future studies.
Hypoxia-based strategies are a promising approach in

regenerative endodontics. Several studies have shown
that targeting the cellular oxygen sensors with hypoxia
mimetic agents or by hypoxic conditioning can support
the pro-angiogenic capacity of the cells and increase cell
survival and grafting capacity [24–30]. Also cell-free ap-
proaches for regenerative medicine have been described
using conditioned medium, also known as secretome of
cells of the dental pulp for tissue regeneration [42, 43].
Hypoxic pre-conditioning can support the pro-
angiogenic capacity [43–45]. Here, in the present study
we are the first to present that hypoxia mimetic agents
and hypoxia can stimulate the production of ANGIO-
GENIN in DPC and that the effect depends on the
in vitro model. It is possible that the elevated ANGIO-
GENIN levels contribute to the high pro-angiogenic cap-
acity of secretome for cells of the dental pulp. However,
due to the low stability of angiogenin it is unclear to
which extent ANGIOGENIN might play a role in the
therapeutic application of the secretome. While also
strategies with recombinant ANGIOGENIN have been
reported, a key factor seems to be the controlled release
of ANGIOGENIN at the defect site [3, 4]. This challenge
has stimulated research in ANGIOGENIN releasing
scaffolds in particular for bone regenerative applications.
Another strategy is the gene therapy approach [3, 4, 46].
Adeno-associated virus-mediated angiogenin gene
transfer showed promising results [46]. However, no
angiogenin-based strategy for regenerative endodontics
was reported yet and the role of angiogenin in the dental
pulp remains an enigma. What we have contributed are
insights into the way how hypoxia mimetic agents and
hypoxia regulate the production of angiogenin.

Conclusions
In conclusion, our results show that the hypoxia mimetic
agent L-MIM and hypoxia can stimulate angiogenin
production in DPC and that this cellular response depends
on HIF-1 activity. These results on the modulation of
angiogenin in the dental pulp will be a primer for future
studies which will address the role of angiogenin in pulp
regeneration. Thus, the results of this study are of high
relevance for pre-conditioning approaches in cell therapy
and tissue engineering for regenerative endodontics.
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