Skip to main content

Table 2 Software and Hardware

From: Current state of the art in the use of augmented reality in dentistry: a systematic review of the literature

Author

Year

Hardware

Software

Jiang W.

2018

N/A

probably custom

Murugesan YP.

2018

2 stereo cameras and a translucent mirror

new rotation matrix and translation vector (RMaTV) algorithm custom made by the authors

Pulijala Y.

2018

oculus rift

leap motion (gaming industry)

Schreurs R.

2018

Kolibri navigation system, external laptop, 15 cilinders polyjet printer (Objet30 Prime; Stratasys Ltd., Eden Prairie, MN, USA).

self made C++ using the Open Inventor toolkit n Microsoft Visual Studio 2008.

Won JY.

2017

photocamera, laptop

Mimics software to export STL; Rapidform Explorer, free software; Actual Transparent Window

Zhou C.

2017

robot system, ar visualization system, glasses, code,nVisor ST60, Micron Tracker system,

AR Toolkits

Plessas A.

2017

N/A

N/A

Llena C.

2018

computer and mobiles, scanners

Aumentaty Viewer software .aty

Zhu M.

2017

semi transparent glass. Laser scanner (Konica Minolta Vivid 910)

mimics - materialise; Autodesk 3ds Max (version 9)

Wang J.

2017

4 k camera and a computer

self developed string codes

Liu WP

2015

da Vinci si robot

ITK-Snap (for manipulating cbcta)

Suenaga H.

2015

2 charge-coupled device stereo camera (Edmund Optics Inc., Barrington, NJ, USA)

Rexcan DS2 3D scanner, cbct

HALF SILVERED MIRROR

Mimics® Version 16 (Materialise, Leuven, Belgium) and Geomagic Control (Geomagic, Cary, NC, USA)

AlarisTM 30 U RP technology (Objet Geometries, Rehovot, Israel); HALCON software Version 11 (MVTec Software GmbH, Munich, Germany)

Espejo-Trung LC.

2015

laptop and camera, scanner (XCadCam, Brazil)

3D-modeling program (HITLabNZ

Qu M.

2015

head-mounted display (HMD)

Mimics CAD/CAM software (Materialise, Ann Arbor, Michigan, USA); software AR Toolkits

Wang J.

2014

3D display, an AR window, a stereo camera for 3D measurement, and a workstation for information processing. Mirror/ar window

self developed

Badiali G.

2014

“wearable augmented reality for medicine” (WARM) devicelight. Weight, stereoscopic head-mounted display (HMD) Z800 instrument of eMagin (Bellevue, WA, USA); 3D printer (Stratasys Elite; Eden Prairie, MN, USA)

Augmented reality is provided by software that runs on conventional personal computers; Maya (Autodesk; Toronto, Canada)

Katić D.

2015

head-mounted display

NDI Polaris tracking system and self developed

Wang J.

2014

customized stereo camera with real-time 3-D contour matching marker free. Half-silvered mirror. A marker is attached directly to the tool. Stereo cameras

All of the algorithms were implemented using C++. The machine vision library HALCON was used for camera calibration and image processing

Zinser MJ

2013

interactive portable custom display navigational unit (BrainLab®, Vector Vision2)

3-dimensional planning software (I-plan CMF®, BrainLab) to manipulate cbct

Lin YK

2013

head mounted display

ImplantSmart, Changhua, Taiwan

Suenaga H.

2013

tracking system Polaris Spectra optical tracking system (Northern Digital Inc., Waterloo, Ontario, Canada)

mirror, cameras, tracking marker.

image pro- cessing software (Mimics; Materialise, Leuven, Belgium).

superimposed 3D images of the surgical instrument (SUCCESS-40MV; OSADA, Tokyo, Japan)

Aichert A.

2012

monocular AR system

n/a

Bruellmann DD.

2013

standard intra-oral or microscope cameras connected to a standard computer.

The new software was implemented using C++, Qt, and the image processing library OpenCV; UI-Toolkit

Zhu M.

2011

computer

ARToolKit recognises the marker; Rapidform matches the marker with the mandible image. (Materialise, Ann Arbor, MI).

Mimics. virtual image’s position and orientation were adjusted through 3D Max (Van Nuys, CA)

Bogdan CM.

2011

Sensable’s PHANToM® OmniTM haptic feedback

VirDenT, programming language, such as C++ or Java.

Suebnukarn S.

2010

PHANTOM Omni (SensAble Inc., Woburn, MA, USA).

 

Wierinck ER.

2007

infrared camera, and two computers

DentSimTM computerized training system (DenX, Jerusalem, Israel)

Mischkowski RA

2006

portable LCD screen with a digital camera behind

X-Scope®

Wierinck ER.

2006

haptic simulators

DentSimTM; DenX, Jerusalem, Israel)

Ewers R.

2005

UMTS (universal mobile telecommunication system)

Apple PowerMac G3 and G4 workstations. Optoelectronic tracking systems ProReflex Motion-Capture MCU240 (Qualisys Inc., Gothenburg, Sweden), Polaris (NDI Northern Digital Inc., Waterloo, Ontario, Canada), and FlashPoint 5000 3D Localizer (Image Guided Technologies Inc., Boulder, CO). semitransparent head-mounted displays. UMTS cell-phone handset (Siemens U10; Siemens, Erlangen, Germany)

VirtualPatient System and MedScanII software (both from MedLibre Inc., Munich, Germany) are used for intraoperative navigation.

Nijmeh AD

2005

multiple

multiple

Wierinck ER.

2005

DentSimTM (DenX, Jerusalem, Israel)

virtual reality (VR) system (DentSimTM)

Ewers R

2005

optoelectronic tracking systems: ProReflex™ Motion-Capture MCU240 (Qualisys Inc., Sweden), Polaris™ (NDI Northern Digital Inc., Canada), FlashPoint 5000™ 3D Localizer (Image Guided Technologies Inc., USA). Electromagnetic systems (since 1999 only used for research purposes): Polhemus Isotrac II™ (by Polhemus Inc., USA) and Aurora™ (NDI Inc., Ont., Canada), Fastrak™.

various types of navigation software (Virtual Vision™, MedScanII™, Virtual Implant™, Artma Medical Technologies, Vienna)