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Chitosan oligosaccharide inhibits skull
resorption induced by lipopolysaccharides
in mice
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Abstract

Background: Low-molecular-weight chitosan oligosaccharide (LMCOS), a chitosan degradation product, is water-
soluble and easily absorbable, rendering it a popular biomaterial to study. However, its effect on bone remodelling
remains unknown. Therefore, we evaluated the effect of LMCOS on lipopolysaccharide (LPS)-induced bone
resorption in mice.

Methods: Six-week-old male C57BL/6 mice (n = five per group) were randomly divided into five groups: PBS, LPS,
LPS + 0.005% LMCOS, LPS + 0.05% LMCOS, and LPS + 0.5% LMCOS. Then, the corresponding reagents (300 μL) were
injected into the skull of the mice. To induce bone resorption, LPS was administered at 10 mg/kg per injection. The
mice were injected three times a week with PBS alone or LPS without or with LMCOS and sacrificed 2 weeks later.
The skull was removed for micro-computed tomography, haematoxylin-eosin staining, and tartrate-resistant acid
phosphatase staining. The area of bone damage and osteoclast formation were evaluated and recorded.

Results: LMCOS treatment during LPS-induced skull resorption led to a notable reduction in the area of bone
destruction; we observed a dose-dependent decrease in the area of bone destruction and number of osteoclasts
with increasing LMCOS concentration.

Conclusions: Our findings showed that LMCOS could inhibit skull bone damage induced by LPS in mice, further
research to investigate its therapeutic potential for treating osteolytic diseases is required.
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Background
Chitosan oligosaccharide (COS) is a product of chitosan
degradation. Chitin is the second largest biological
macromolecule polysaccharide in nature, and chitosan is
the product of chitin deacetylation. Chitosan is a non-
toxic biocompatible molecule that possesses antibacterial
properties and promotes the growth of osteoblasts, cell
proliferation, and differentiation [1–4]. Chitosan is an
integral component of a new type of mixed biofilm par-
ticularly pertaining to the field of guided tissue regener-
ation (GTR) and guided bone regeneration (GBR) [5, 6].
In the field of bone-defect scaffold materials, a chitosan

composite porous scaffold was shown to have better
porosity and osteogenic activity with higher bone forma-
tion volume and rate than the conventional bone scaf-
fold material, making it a promising new material for
repairing bone defects [7]. Although the use of chitosan
in GBR, GTR, and bone defect scaffold applications has
been widely reported, it has certain disadvantages, such
as its large molecular weight, water insolubility, low deg-
radation rate, and relatively slow absorption rate. In con-
trast, COS, which is the product of chitosan degradation,
has a low molecular weight and is water-soluble and eas-
ily absorbed, rendering it a popular biomaterial to study
in recent years.
COS has been widely used in agriculture, industry,

biomedical biomaterials, food bioengineering, and other
fields for several decades. Several studies have also sug-
gested COS inhibits apoptosis and promotes the healing
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of bone defects [8–11]. COS is also reported to promote
the proliferation and differentiation of osteoblasts, and
the expression of genes related to bone defects [12, 13].
Nevertheless, the effect of low-molecular-weight chito-
san oligosaccharide (LMCOS) on bone remodelling has
not been reported. In this study, we evaluated the effect
of LMCOS on inflammatory bone destruction induced
by lipopolysaccharide (LPS) in mice. We established an
inflammatory bone destruction model and treated the
mice with different concentrations of LMCOS.

Methods
Materials and equipment
Six-week-old male C57BL/6 mice were from Shanghai
West Poole-Baykay Laboratory Animal Co., Ltd. (Shanghai,
China); bacterial LPS and a tartrate-resistant acid phosphat-
ase (TRAP) detection kit were purchased from Sigma-
Aldrich (St. Louis, MO, USA); chitosan oligosaccharide
powder (polymerization degree, 2–10; average molecu-
lar weight, 1000 Da; purity, > 98%; deacetylation de-
gree, 99%). The micro-CT scanner (μCT-100) used in
this study was purchased from Scanco Medical AG,
Brüttisellen, Switzerland. This study was approved by
the Ethics Committee of Shanghai Ninth People’s
Hospital (SH9H-2019-A502–1).

Inflammatory bone destruction model and LMCOS
treatment
LPS was dissolved in phosphate-buffered saline (PBS) at
a concentration of 1 g/L. The LPS bone destruction
model was described previously; briefly, bone destruc-
tion was induced by injecting LPS between the subcuta-
neous tissue and bone periosteum of the head in mice
[14]. The mice were randomly divided into five groups
(n = five per group): control mice injected with PBS only
(300 μL); mice injected with LPS (200 μL) and PBS
(100 μL); mice injected with LPS (200 μL) and 0.005%
LMCOS (100 μL); mice injected with LPS (200 μL) and
0.05% LMCOS (100 μL); mice injected with LPS (200 μL)
and 0.5% LMCOS (100 μL). The mice were injected
three times per week and euthanized 2 weeks later. To
reduce pain for euthanasia, the mice were briefly anaes-
thetized in an isoflurane-filled box to induce early un-
consciousness, and then the mice were killed with
cervical dislocation.

Micro-computed tomography
The cranium of each mouse was harvested, and the soft
tissue around the bone was separated for micro-
computed tomography (micro-CT). The scanning pa-
rameters were 70 kV, 114mA, and a scanning thickness
of 50 μm. A bone mass analysis was performed to evalu-
ate bone damage quantitatively after three-dimensional
reconstruction.

Haematoxylin and eosin (H&E) staining
The calvarial bone tissue of each mouse was fixed in 4%
paraformaldehyde for 24 h and then washed overnight.
Subsequently, the tissue was decalcified with 10% EDTA
at 4 °C, dehydrated by a graded series of ethanol, and
embedded in paraffin after n-butyl alcohol exchanges.
Each specimen was sectioned to a near-far-median sagit-
tal section thickness of 4 μm. Following sectioning, H&E
staining was performed to visualize cranial cap bone de-
fects under a microscope.

TRAP staining
The TRAP stain was prepared according to the manu-
facturer’s instructions. Calvarial bone specimens were
deparaffinized with dimethylbenzene and processed with
a graded series of ethanol concentrations. The TRAP
stain was then applied to the tissues and incubated at
37 °C for 1 h. Subsequently, the tissues were re-stained
with haematoxylin for 2 min, cleared with xylene, and
mounted and sealed with neutral gum. The tissue slides
were observed under an optical microscope, and TRAP-
positive cells (brown) were counted and subjected to
statistical analysis.

Statistical analysis
The data are presented as the mean ± standard deviation,
and statistical analysis was performed using the SPSS
21.0 software package (IBM, Armonk, NY, USA). A sin-
gle factor analysis of variance and Student-Newman-
Keuls (SNK) test were used for the statistical analysis. A
P-value < 0.05 indicated a significant difference between
groups.

Results
LMCOS decreases the formation of bone resorption pits
induced by LPS
The formation of cranial resorption pits was assessed
using micro-CT. Compared with the PBS-only control
group, the formation of cranial resorption pits was more
apparent in the LPS group (Fig. 1a and b). However,
LPS-induced bone resorption pits were significantly re-
duced in mice treated with LMCOS compared with the
LPS treated group, and the bone resorption pits were re-
duced further with increasing LMCOS concentrations
(Fig. 1a and b).
The statistical analysis of the micro-CT scans of the

skull caps of mice showed that the skull bone mass of
mice in the LPS group was reduced compared with that
of mice in the blank control group. The bone mass of
the LPS + 0.005% LMCOS group, LPS + 0.05% LMCOS
group, and LPS + 0.5% LMCOS group was higher than
that of the LPS group. Furthermore, the number of bone
trabeculae was higher in the high-dose group than in the
low-dose group. Compared with the LMCOS group, the
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PBS group and LPS group exhibited statistically signifi-
cant differences. At the same time, bone indexes such as
bone resorption cavities, bone trabeculae thickness, and
number showed that the high-concentration LMCOS
group had stronger inhibiting effects on bone resorption
than that of the low concentration LMCOS group (Fig.
1c) (**p < 0.05, *p < 0.05).

LMCOS limits LPS-induced cranial bone damage
The H&E staining results showed that the cranium of
LPS-treated mice was notably damaged compared with
that of mice in the PBS control group (Fig. 2a and b).
However, in mice treated with LMCOS, the cranial dam-
age induced by LPS was significantly inhibited, and bone
resorption was significantly reduced. The bone damage

Fig. 1 a and b. Mouse calvarial bone resorption was detected with Micro-CT. PBS group; LPS group; LPS + 0.005% LMCOS group; LPS + 0.05%
LMCOS group; LPS + 0.5% LMCOS group; c. Calvarial bone volume was measured by micro-CT, and calvarial bone mass measurement was
expressed by the bone mass ratio between the experimental group and the control group (**p < 0.05, *p < 0.05). The arrows represented bone
resorption pits

Fig. 2 a and b. Mouse calvarial bone resorption was examined with H-E staining. PBS group; LPS group; LPS + 0.005% LMCOS group; LPS + 0.05%
LMCOS group; LPS + 0.5% LMCOS group. The arrows represented bone resorption pits
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was further decreased by increasing concentrations of
LMCOS (Fig. 2a and b).

LMCOS reduces the number of TRAP-positive cells
The TRAP staining showed that LMCOS inhibited oste-
oclastogenesis induced by LPS (Fig. 3a and b). The num-
ber of TRAP-positive cells was graphed and subjected to
statistical analysis (Fig. 3c). The number of osteoclasts
increased in the LPS group compared with the control
group. At the same time, the number of osteoclasts in
the LPS + 0.005% LMCOS group, LPS + 0.05% LMCOS
group, and LPS + 0.5% LMCOS group was lower than
that in the LPS group alone. The number of osteoclasts
in the high-dose group was less than that in the low-
dose group. Compared with the LMCOS group, the PBS
group and LPS group exhibited statistically significant
differences. In the processing of osteoclasts, the group
with a high concentration of LMCOS exhibited stronger
inhibitory effects on bone resorption than that of the
group with a low concentration of LMCOS. LMCOS
treatment significantly reduced the number of TRAP-
positive cells induced by LPS.

Discussion
In GBR, GTR, and related technologies, bone healing ma-
terials remain the most critical components of the tech-
nologies. Currently, the main clinical applications of GBR
and GTR include autogenous bone [15], heterogeneous

bone [16], allogeneic bone [17–19], and artificial synthetic
materials [20]. The ideal bone healing materials should
possess the following characteristics: 1) biocompatibility
and non-toxicity; 2) biodegradability and absorbency; 3) a
biological activity that simulates the structure of the bone
matrix and promotes the regeneration of bone tissue [21].
In recent years, numerous studies have shown that

chitin, chitosan, COS, and their derivatives also have
certain effects on in vitro cultured cells, mainly to pro-
mote cell proliferation and differentiation. The osteo-
genic properties of these materials in bone defect
reconstruction have also been evaluated in several stud-
ies [22, 23]. A new chitosan composite porous scaffold
has been studied and entered the application stage.
Chitosan-composite porous stent, a new material for
repairing bone defects, has better porosity and good
osteogenic activity, with bone formation volume and
bone formation rate superior to those of conventional
bone scaffold materials [24]. However, its large molecu-
lar weight, water insolubility, low degradation rate, and
relatively slow absorption rate have restricted its applica-
tions in medicine. As a degradation product of chitosan,
LMCOS has the advantages of low molecular weight,
biocompatibility, biodegradability, antibacterial proper-
ties, and absorbability [25]. Compared with chitosan,
LMCOS has an improved degradation rate and solubil-
ity. Furthermore, studies have shown that LMCOS can
promote osteoblast proliferation [4]. Nevertheless, the

Fig. 3 a and b. Mouse calvarial bone resorption was examined with TRAP staining. PBS group; LPS group; LPS + 0.005% LMCOS group; LPS +
0.05% LMCOS group; LPS + 0.5% LMCOS group; c. Quantitative analysis of TRAP-positive cells (**p < 0.05, *p < 0.05). The arrows represented bone
resorption pits (TRAP, × 10)
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role of LMCOS in inhibiting osteoclasts is yet to be
determined.
Results of our preliminary study provided early evi-

dence of the LMCOS effect on osteoclasts, indicating its
inhibitory effect on the osteoclast process. To further ex-
plore the ability of LMCOS to inhibit the osteoclast
process, we utilized a mouse LPS-induced cranial bone
destruction model to evaluate the effect of LMCOS on
inflammatory bone damage [26]. LPS induces mono-
nuclear macrophages to secrete a variety of inflamma-
tory mediators and promote the fusion of osteoclast
precursors, maintains mature osteoclast activity, and
stimulates osteoclasts to perform bone resorption func-
tions [27]. We tested different concentrations of LMCOS
in an experimental animal model to assess its dose-
dependent inhibition of the osteoclast process. Using
micro-CT scanning, we verified that LPS induced signifi-
cant cranial bone resorption; however, LMCOS was able
to reduce bone resorption lacunae in a dose-dependent
manner. Results of the H&E staining also showed that
LMCOS could significantly inhibit bone damage induced
by LPS. TRAP staining further confirmed that the num-
ber of osteoclasts was decreased with LMCOS interven-
tion compared with that in mice injected with LPS only.
Therefore, our findings indicated that LMCOS limits
LPS-induced bone destruction by inhibiting osteoclast
formation.

Conclusions
In summary, our study demonstrated the ability of
LMCOS to inhibit skull bone destruction induced by
LPS in mice. Our findings suggested the therapeutic ap-
plication of LMCOS for treating bone diseases, although
the specific molecular mechanism needs further studies.
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