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Abstract 

Background: To introduce a theoretical solution to a posteriori describe the pose of a cylindrical dental fixture as 
appearing on radiographs; to experimentally validate the method described.

Methods: The pose of a conventional dental implant was described by a triplet of angles (phi‑pitch, theta‑roll, and 
psi‑yaw) which was calculated throughout vector analysis. Radiographic‑ and simulated‑image obtained with an 
algorithm were compared to test effectiveness, reproducibility, and accuracy of the method. The length of the dental 
implant as appearing on the simulated image was calculated by the trigonometric function and then compared with 
real length as it appeared on a two‑dimensional radiograph.

Results: Twenty radiographs were analyzed for the present in silico and retrospective study. Among 40 fittings, 37 
resulted as resolved with residuals ≤ 1 mm. Similar results were obtained for radiographic and simulated implants 
with absolute errors of − 1.1° ± 3.9° for phi; − 0.9° ± 4.1° for theta; 0° ± 1.1° for psi. The real and simulated length of the 
implants appeared to be heavily correlated. Linear dependence was verified by the results of the robust linear regres‑
sion: 0.9757 (slope), + 0.1344 mm (intercept), and an adjusted coefficient of determination of 0.9054.

Conclusions: The method allowed clinicians to calculate, a posteriori, a single real triplet of angles (phi, theta, psi) by ana‑
lyzing a two‑dimensional radiograph and to identify cases where standardization of repeated intraoral radiographies was 
not achieved. The a posteriori standardization of two‑dimensional radiographs could allowed the clinicians to minimize 
the patient’s exposure to ionizing radiations for the measurement of marginal bone levels around dental implants.

Keywords: Dental informatics/bioinformatic, Computer simulation, Dental implant(s), Digital imaging/radiology, 
Mathematical modeling
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Background
Osseointegrated dental implants supporting fixed and remov-
able prostheses were found to be highly effective rehabilita-
tion strategies in the management of edentulous patients.

The radiographic assessment of the on-going peri-
implant vertical bone loss after implant placement was an 
essential issue for clinicians to address [1].

Periapical and panoramic radiographs and computer-
ized tomography allowed the clinician to measure mar-
ginal bone levels around a dental implant to evaluate its 
long-term stability, but with a varying degree of accuracy 
and reliability [1].

In two-dimensional radiography, different types of 
intraoral and extraoral equipment met the requirements 
for standardized evaluation of peri-implant marginal 
bone loss [2]. These types of equipment took into account 
the analytic basis of projective geometry which con-
sisted of specific features used for describing the spatial 
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relationships between x-ray source and object, and the 
complex relationships existing between the various layers 
(object plane image and detector plane image) [3].

The determination of the three-dimensional position and 
orientation of known objects from single perspective pro-
jections were initially proposed by Hoffmann and Esthap-
pan with a priori knowledge of positions of the specific 
markers [4]. Generally, external markers (alone or in com-
bination with a holding device) were and are employed to 
allow for an accurate estimate a posteriori of the object’s 
position and orientation, thereby providing both the refer-
ral points in space (set of three radiopaque ball bearings or 
spheres) and the known dimensions of the object being ana-
lyzed [5, 6].

Others suggested the possibilities of estimating fixture 
angulation, dimension, and position through distortion on 
its shadow as it appeared in the projective plane [7–11].

In computer vision, the pose of an object was the combi-
nation of position and orientation relative to some external 
and independent coordinate system. Here, pose referred to 
the orientation of the cylindrical implant concerning the 
image-coordinate frame. The “within-object features” was 
a direct consequence of the abovementioned footsteps, 
proposing to use the dental implant as a reference object 
of known dimensions in the image without any external 
markers [12]. That’s was made to minimize information 
about the position and to focus solely on the orientation. 
The procedure consisted of making the most of the more 
complex radiographic shadow of a conventional dental 
implant, which had, at least in part, the shape of a right cir-
cular cylinder with known diameter, brought.

In previous studies, rotational poses of the noncon-
ventional implants, with or without effects of image 
distortion, had been described; the components of the 
lengthwise- and crosswise-vector allowed clinicians 
to estimate sets of angles describing the position of an 
implant based on its appearance on a single two-dimen-
sional radiograph [13].

However, the abovementioned methods worked only 
with a non-cylindrical object, such as a blade implant, in 
which lengthwise- and crosswise-vector were orthogonal 
to one another and easy to find using an implant projec-
tion. At first glance, it might seem that rotation of the 
implant around its main axis does not provide meaning-
ful information since the implant had rotational sym-
metry. Rotating the implant about the long axis did not 
roughly influence its radiographic shadow but any degree 
turn about this axis resulted in a rotated image projection 
of the bone surrounding the implant by the same degree. 
So the calculus of this angle from a radiographic shadow 
was extremely important to ensure consistent reproduc-
ibility in marginal bone assessment, which was measured 
along the line of the implant.

The meaning of the paper was that the authors took 
patient radiographs with implant-images (implant 
dimensions were known from CT or optical scans) and 
calculated their “pose” relative to a referring point using 
an algorithm [3]. Then the authors simulated this posi-
tion again using another algorithm  [3] and compared 
computed differences between real measurements and 
the ones from the simulations.

The present article will:

(1) introduce a theoretical solution to obtain a triplet of 
angles (φ, θ, and ψ) describing the pose of the cylin-
drical fixture as shown, a posteriori, in a single two-
dimensional radiograph;

(2) present in silico and experimental application of the 
method for accuracy;

(3) verify the effectiveness of the method, attempting 
to relate real-length data to those calculated by the 
angular correction factor simulation.

Methods
Theory
Especially in the measurement of the marginal bone level 
around dental implants in repeated intraoral radiographs 
of the same patient, a very similar acquisition process, for 
which it’s hard to quantify the number of errors attributed 
to a series of characteristics, was needed. To properly ful-
fill standardized two-dimensional periapical radiography 
of a cylindrical dental implant in the alveolar bone, the 
following general requirements had to be respected:

• Three-dimensional position: angulations and trans-
lations in three-dimensional space of the dental 
implant as equal to each other as possible could be 
achieved with a customized bite block often formed 
of a rigid material combined with an extension cone 
paralleling device (an XCP-ORA, the eXtention Cone 
Paralleling-One Ring and Arm positioning system, 
Dentsply International, Elgin, Illinois, USA);

• Magnification: an image’s size could be either 
enlarged or reduced depending on the distance from 
the x-ray source to the detector, that is directly pro-
portional to the length of the XCP-ORA’s arm;

• Distortion: it could arise from an angle between the 
implant longitudinal axis and the imaging plane or 
a very oblique projection. An error in the misalign-
ment could most likely be generated because the 
Indicating Device (PID) of the Dental X-ray Tube 
(DXT) head was manually and poorly placed by 
the clinician without the help of the XCP device or 
because the patient moved during the measurement.
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The effects of both the image magnification level and 
the relative translation between dental implant and 
frame of the image were not significant because the den-
tal implant itself was the object of the investigation and 
acted as a benchmark for further analyses. After the 
components related to translation and magnification 
had been deleted, just three rotation components might 
be determined for describing implant orientation. The 
simplest way to do it is to describe the initial position of 
the cylindrical dental implant, given by the position of 
the apices described as the vector v0 = (x0,  y0,  z0). which 
is perpendicular to the ground (that is, perpendicular to 
the XY-plane along the implant direction  Zi and parallel 
to both the XZ- and YZ-plane, with implant directions  Yi 
and  Xi, respectively as appearing in Fig. 1). After apply-
ing a rotational matrix to the vector, its final position will 
be v1 = (x1,  y1,  z1) which sets the viewpoint after the rota-
tional-steps have been completed with three angles of 
rotation, pitch-φ, roll-θ, and yaw-ψ, those correspond to 
three separate and successive rotations along the implant 
main direction  Xi,  Zi, and  Yi.

The vector is rotated in space and projected on 
the detector plane (YZ-plane) as described by the 

following components which depended on the triad 
of angles (φ, θ, ψ) and the magnitude of the vector’s 
components. For each main axis a Rodrigues rota-
tional matrix, Rω̂(α) = eω̂α corresponding to a rota-
tion by an angle α about a fixed axis specified by the 
unit vector ω̂ with the following explicit formula 
Rω̂(α) = î + ω̂sinα + ω̂2(1− cosα)  has been applied.  T1 
is the rotational matrix obtained by rotating the implant 
along the  Yi-direction and angle φ with its explicit form 
from Rodrigues’s second equation:

(1)

T1 =




1 0 0
0 1 0
0 0 1



+




0 0 1
0 0 0
−1 0 0



 sinϕ

+




0 0 1
0 0 0
−1 0 0




2

(1− cosϕ)

(2)T1 =




cosϕ 0 sinϕ
0 1 0

− sin ϕ 0 cosϕ





Fig. 1 a Line from the neck of the cylindrical implant to the apex, and symmetrical from left to right, is the direction 
−→
OA ; the direction 

−→
OA touches 

the centre of the implant shoulder in the implant reference point, i.e., the point O. Line from the point O to the external reference point, i.e., the 
point R, is the direction 

−→
OR ; in present example the point R is the centre of the implant shoulder of a further dental implant. 

−→
OA0 = (0 0 l) were 

the lengthwise starting vector (red arrow), where l is the implant length, and  RY and  RZ are the components of the crosswise vector (blue arrow), 
−→
OR0 = (0  RY  RZ), along plane AOR, represented by the trapezoid indicated by the thin black lines, and passing through point A = (a1,  a2,  a3), O = (o1, 
 o2,  o3) and R = (r1,  r2,  r3). b Drawing of the two vectors, 

−→
OA and 

−→
OR on mega pixel simulated two‑dimensional image of a dental implant with 

measured reference points on another implant: mesial point, distal point, point A, point O and point R with (c) the list of variables and that of their 
values as obtained from the free standalone software Osiris 4.19 which was used to acquire the two‑dimensional coordinates of the points. d 
Three‑dimensional renderings of the cylindrical implant using the three consecutive rotational angles φ, θ and ψ along the three direction of the 
main implant axes  Xi,  Yi and  Zi



Page 4 of 16Cosola et al. BMC Oral Health          (2021) 21:100 

T2 is the second rotational matrix obtained by rotating 
the implant along the  Zi-direction (after rotation of φ) 
with angle θ:

T3 is the third rotational matrix obtained by rotating the 
implant along the  Xi-direction (after φ and θ rotations) 
with angle ψ:

When the three rotational matrices were combined in the 
following order T1 ⊗ T2 ⊗ T3, the matrix  T4 simplifies to 
become:

(3)

T2 =




1 0 0

0 1 0

0 0 1



+




0 cosϕ 0

− cosϕ 0 − sin ϕ

0 sin ϕ 0



 sin θ−




0 cosϕ 0

− cosϕ 0 − sinϕ

0 sinϕ 0




2

(1− cos θ)

(4)T2 =




cos θ+ sin2 ϕ− sin2 ϕ cos θ cosϕ sin θ − sinϕ cosϕ+ sin ϕ cosϕ cos θ

− cosϕ sin θ cos θ − sinϕ sin θ

− sinϕ cosϕ+ sin ϕ cosϕ cos θ sin ϕ sin θ cos θ+ cos2 ϕ− cos2 ϕ cos θ





(5)

T3 =




1 0 0
0 1 0
0 0 1



+




0 − sinϕ cos θ sin θ

sin ϕ cos θ 0 − cosϕ cos θ
− sin θ cosϕ cos θ 0



 sinψ

−




0 − sinϕ cos θ sin θ

sin ϕ cos θ 0 − cosϕ cos θ
− sin θ cosϕ cos θ 0




2

(1− cosψ)

(6)T3 =





cosψ

+ cos2 ϕ cos2 θ

− cosψ cos2 ϕ cos2 θ




cosϕ sin θ cos θ

− cosϕ sin θ cos θ cosψ
− sinψ cos θ sinψ




sin ϕ cosϕ cos2 θ

− sin ϕ cosϕ cos2 θ cosψ
+ sin θ sinψ


cosϕ sin θ cos θ

− cosϕ sin θ cos θ cosψ
+ sin ϕ cos θ sinψ




cosψ

+ sin2 θ

− sin2 θ cosψ




sin ϕ sin θ cos θ

− sinϕ sin θ cos θ cosψ
− cosϕ cos θ sinψ





sin ϕ cosϕ cos2 θ

− sinϕ cosϕ cos2 θ cosψ
− sin θ sinψ




sin ϕ sin θ cos θ

− sinϕ sin θ cos θ cosψ
+ cosϕ cosϕ sinψ




cosψ

+ sin2 ϕ cos2 θ

− sin2 ϕ cos2 θ cosψ





(7)T4 = T1T2T3 =




cosϕ cos θ sin θ sin ϕ cos θ

sin ϕ sinψ− cosϕ sin θ cosψ cos θ cosψ − cosϕ sinψ− sin ϕ sin θ cosψ
− sinϕ cosψ− cosϕ sin θ sinψ cos θ sinψ cosϕ cosψ− sin ϕ sin θ sinψ





When the transformation is expressed in the form of vec-
tors, v1 = T4 ⋅ v0
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the vector v1 can be written in the following explicit form:

Equations 9, 10 and 11 can be used to describe any vector 
in the space (like how a combination of arbitrary  x0,  y0, 
and  z0 vectors).

To resolve the three-dimensional rotation of a cylindrical 
object two vectors are required. So lengthwise and cross-
wise vectors are introduced to simplifies the equation sys-
tem. As depicted in Fig. 1, the lengthwise vector, 

−→
OA , goes 

from the point located at the center of the implant shoul-
der, that is point O = (0, 0, 0) , to the point in the center of 
the implant apex, that is the point A = (AX,AY, AZ).

The crosswise vector, 
−→
OR , goes from the point 

O = (0, 0, 0) to point R = (RX, RY, RZ).
The method allows clinicians to calculate the implant 

pose with a known reference object. In this perspective, 
the center of another implant shoulder (point R of implant 
2 in Fig. 1), which has a different pose from the currently 
analyzed implant (implant 1 in Fig. 1), can be used to dis-
close the pose rotation along the long axis of the implant 1. 
Any other fixed reference point can be used in place of the 
shoulder of implant 2, however (referring object of Fig. 1).

Since the depth in a single two-dimensional image is 
not taken into account, it’s been arbitrarily established 
that the dimension along X-axis is disregarded. So the 
system of equations obtained with the known magnitude 
of 

−→
OA and 

−→
OR are:

(8)




x1
y1
z1



 =




cosϕ cos θ sin θ sin ϕ cos θ

sin ϕ sinψ− cosϕ sin θ cosψ cos θ cosψ − cosϕ sinψ− sin ϕ sin θ cosψ
− sinϕ cosψ− cosϕ sin θ sinψ cos θ sinψ cosϕ cosψ− sin ϕ sin θ sinψ








x0
y0
z0





(9)

x1 = cosϕ cos θx0 + (sin ϕ sinψ− cosϕ sin θ cosψ)y0
+ (− sin ϕ cosψ− cosϕ sin θ sinψ)z0

(10)y1 = sin θx0 + cos θ cosψy0 + cos θ sinψz0

(11)

z1 = sin ϕ cos θx0 + (− cosϕ sinψ− sin ϕ sin θ cosψ)y0
+ (cosϕ cosψ− sin ϕ sin θ sinψ)z0

(12)−→
OAY = sin θAx + cos θ cosψAy + cos θ sinψAz

The components viewed from the detector plane and 
measured within a single two-dimensional radiograph are 
−→
OAY,

−→
OAZ and 

−→
OBY,

−→
OBZ , and depend on the triad of 

angles (φ, θ, ψ) and on the vectors’ components 
−→
OA0 =




0
0
l



  and 
−→
OR0 =




0
RY

RZ



The four vector-com-

ponent equations undergo simplification using the 
known magnitude of the lengthwise ( 

−→
OA ) and crosswise 

vector ( 
−→
OR).

in which  RY and  RZ can be directly measured by a three-
dimensional viewing software (dentascan or CAD/CAM 
Computer-Aided Design/Computer-Aided Manufactur-
ing technology) or explicitly calculated by Eqs. 20 and 21 
as reported in the “Appendix”.

The  RX parameter is 0, whereas  RY and  RZ are described 
as the following:

(13)

−→
OAY = sin ϕ cos θAx + (− cosϕ sinψ− sin ϕ sin θ cosψ)Ay

+ (cosϕ cosψ− sin ϕ sin θ sinψ)Az

(14)−→
ORY = sin θRx + cos θ cosψRy + cos θ sinψRz

(15)

−→
ORY = sin ϕ cos θRx + (− cosϕ sinψ− sin ϕ sin θ cosψ)Ry

+ (cosϕ cosψ− sin ϕ sin θ sinψ)Rz

(16)−→
OAY = cos θ sinψl

(17)−→
OAZ = (cosϕ cosψ− sin ϕ sin θ sinψ)l

(18)−→
ORY = cos θ cosψRY + cos θ sinψRZ

(19)
−→
ORZ = (− cosϕ sinψ− sin ϕ sin θ cosψ)RY

+ (cosϕ cosψ− sin ϕ sin θ sinψ)RZ
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with n from 1 to 3, and m from 1 to 3 in the inter-
est of brevity of the equations which depend on the 
three dimensional coordinates of O = (o1, o2, o3) , 
A = (a1, a2, a3) and R = (r1, r2, r3) obtained from either 
CT or optical scans.

If the marginal bone level (MBL) has to be measured 
along the 

−→
OA , a correction factor by using the dental 

implant itself as internal standard must be employed. 
The correction factor can be obtained by considering 
the length of the implant (len) expressed by the equation 
of the magnitude of 

−→
OA  along the plane of the detector 

(YZ-plane).

The value of the correction factor CF is given by Eq. 23:

where MBL and MBL^ are, respectively, the measured 
and corrected values of the marginal bone level.

The calculated correction factor is identical to that cal-
culated in a previous study [13].

Experimental evaluation
CT scans and radiographs of patients who had under-
gone dental implant placement were retrospectively 
collected from the case sheets between the years 2014 
and 2016. Patients were informed about the type of the 
present in silico study and signed an informed consent 
form before data selection and analysis and approval 
for this retrospective analysis was obtained from the 
local Ethical Committee. Implants were usually placed 
according to the instructions of the manufacturers 
employing an electric handpiece, electro-magnetic 
(Magnetic Mallet, Osseotouch www.osseo touch .com, 
Turbigo, Milano, Italy) and piezo-electric devices (Pie-
zosurgery, Mectron, Carasco, Italy). Ethics approval 

(20)RY =

√√√√
3∑

m=1

(
om +

(∑3
n=1 (rn − on)(an − on)∑3

n=1 (an − on)
2

)

(am − om)− rm

)2

(21)RZ =

√√√√
3∑

m=1

(om − rm)
2
−

3∑

m=1

(
om +

(∑3
n=1 (rn − on)(an − on)∑3

n=1(an − on)
2

)

(am − om)− rm

)2

(22)OAYZ = len ·

√
(cos θ sinψ)2 + (cosϕ cosψ− sin ϕ sin θ sinψ)2

(23)MBL∧ = MBL ·

(
1/

√
(cos θ sinψ)2 + (cosϕ cosψ− sin ϕ sin θ sinψ)2

)

was not required for this in  vitro study. The pre-
sent paper was prepared according to the SQUIRE2.0 
checklist.

The cone-beam computerized tomography scan 
(Gendex GXCB-500, Gendex Dental Systems) pro-
vides a finely-detailed three-dimensional overview of 
the bony architecture around the implants inserted in 
it. The following set of default parameters have been 
applied in the acquisition of scans: 120 kV, 30.89 mAs, 
0.2  mm × 0.2  mm × 0.2  mm isotropic voxel size, and 
8.72  mm diameter of Field Of View. Digital intra-oral 
periapical radiographs were taken (70 kVp, 7 mA) using 

a CMOS (Complementary Metal Oxide Semiconductor) 
digital sensor (Schick CDR Elite, Schick Technologies 
Inc., Long Island City, NY, USA) and imaging software 
(FONA Computed Dental Radiography DICOM 4.5, 
Schick Technologies Inc., Long Island City, NY, USA) 
with a pixel pitch of 100  μm (0.1  mm × 0.1  mm; bit 
depth, 8-bit grayscale).

Experimental simulation
Experimental evidence that supported the validity of 
the abovementioned vector equations and verified the 
model’s accuracy was given by an algorithm using com-
ponents 

−→
OAY , 

−→
OAZ , 

−→
ORY , 

−→
ORZ directly measured on 

the radiographs as per in Fig. 1 and “Appendix”. Digital 
prototypes of cylinder screwed, root-form, 1 mm-tread 
pitch dental implants were obtained by a Cone Beam 
Computerized Tomography scanner (Gendex GXCB-
500, Gendex Dental Systems) with the following set-
ting: 120 kV, 30.89 mAs, isotropic voxel size of 200 μm. 
The virtual 3D phantom-implant was voxelized and 

http://www.osseotouch.com
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interpolated from the original.dcm file with the follow-
ing setting: 100 μm × 100 μm × 100 μm, bit depth 8-bit 
grayscale.

A simulated radiograph could be generated through the 
overlapping of all the phantom-layers depicting implant 
in three-dimensions along the direction of the x-axis, so 
obtaining a projected phantom-implant in the YZ-plane 
(like it is the detector plane) by a subroutine described in 
a preceding article [3].

Variables
Determination of numerical variables
For each dental implant, a dentascan program was used 
to acquire the three-dimensional coordinates of the three 
reference points A, O, and R to calculate l,  RY, and  RZ, 
that is the magnitude of the vectors ( 

−→
OA0 and 

−→
OR0 ), in 

other words, input parameters to be inserted in the right-
hand side of equations from 16 to 19. A free standalone 
software (Osiris 4.19 the University of Genève. Switzer-
land) applying a mouse-driven measurement tool was 
used to acquire the two-dimensional coordinates of the 
points A, O, and R to calculate the components 

−→
OAY,

−→
OAZ 

and 
−→
ORY,

−→
ORZ , that is, input parameters to be inserted in 

the left-hand side of equations from 16 to 19. Measure-
ments of coordinates and components were taken twice 

by two independent investigators (CS, PDM). The diam-
eter of the dental implant at healing cap/implant-abut-
ment connection (∅ from 4 to 5 mm), which was one of 
the cleanest and more consistent features to be certainly 
identified in a cylindrical shaped object, allowed the 
investigators to calibrate all the images. Numbers in vec-
tors analysis provided a resolution of a hundredth of a 
millimeter.

Pose angle triplet
One set of angles (triad) was given by a triplet of rota-
tional angles φ, θ and ψ (pitch, roll, and yaw, respec-
tively). The position of each radiographic cylindrical 
dental implant could be described by a radiographic triad 
of angles (rφ, rθ, rψ) which was estimated by numerically 
solving the system of equations from 16 to 19 by using 
the algorithm suggested by Toti et al. [13], radiographic 
components r

−→
OAY , r

−→
OAZ , r

−→
ORY , r

−→
ORZ , and following 

setting for the algorithms running on a matrix elaborator 
(MatLab 7.13, The MathWorks, Natick, MA, USA): “Lev-
enberg–Marquardt” ON.

For each radiographic implant (with input: length, 
diameter triad of angles, and referring points) a projected 
phantom of a dental implant was generated; analyzing 

Fig. 2 a, b Inter‑onserver and c, d Intra‑observer reproducibility (Bland–Altman plots) of the measured lengths in millimeters of the two vectors 
−→
OA and 

−→
OR . The straight horizontal line represents the mean difference between sessions and the dashed horizontal lines represent the limits of 

agreement (95% confidence interval)



Page 8 of 16Cosola et al. BMC Oral Health          (2021) 21:100 

Ta
bl

e 
1 

M
ea

su
re

d-
 (r
ad

io
gr
ap

hi
c)

 a
nd

 s
im

ul
at

ed
-v

al
ue

s 
(s
im

ul
at
ed

) o
f t

he
 c

om
po

ne
nt

s 
of

 v
ec

to
r −
→ O
A

 a
nd

 v
ec

to
r −
→ O
R

 w
it

h 
re

la
te

d 
va

lu
es

 o
f r

ot
at

io
na

l a
ng

le
s

Ra
di

og
ra

ph
Co

m
po

ne
nt

s 
(m

m
)

A
ng

le
s 

(°
)

O
pt

im
iz

at
io

n 
m

et
ri

c

−→ O
A
Y

−→ O
A
Z

−→ O
R
Y

−→ O
R
Z

φ
θ

ψ
It

er
at

io
ns

Re
si

du
al

Fi
rs

t-
or

de
r o

pt
im

al
it

y
St

at
us

 o
f e

qu
at

io
n

M
ea

n
M

ea
n

M
ea

n
M

ea
n

M
ea

n
M

ea
n

M
ea

n
M

in
M

ax
M

in
M

ax
M

in
M

ax

1
Ra

di
og

ra
ph

ic
0.

04
9.

06
12

.5
7

−
 2

.7
5

−
 1

5.
90

31
.9

8
1.

45
6

7
0.

05
48

0.
49

35
−

 2
.5
⋅1

0−
10

−
 8

.6
⋅1

0−
13

In
ac

cu
ra

cy

Si
m

ul
at

ed
−

 0
.1

3
9.

11
12

.2
8

−
 2

.3
6

−
 1

3.
65

34
.3

0
2.

43
5

7
0.

48
65

0.
57

78
−

 4
.8
⋅1

0−
11

−
 1

.4
⋅1

0−
12

In
ac

cu
ra

cy

2
Ra

di
og

ra
ph

ic
−

 0
.2

6
9.

30
12

.8
6

1.
92

20
.4

8
30

.4
8

1.
68

4
5

2⋅
10

−
05

0.
00

08
−

 9
.0
⋅1

0−
12

−
 1

.4
⋅1

0−
13

So
lv

ed

Si
m

ul
at

ed
−

 0
.2

1
8.

82
12

.8
0

2.
56

26
.7

3
30

.6
8

1.
08

5
5

0.
00

29
0.

02
14

−
 4

.7
⋅1

0−
11

−
 1

.2
⋅1

0−
13

In
ac

cu
ra

cy

3
Ra

di
og

ra
ph

ic
3.

45
9.

33
12

.1
0

−
 5

.6
4

10
.8

0
24

.5
8

−
 2

2.
43

6
7

3⋅
10

−
05

0.
01

09
−

 2
.7
⋅1

0−
11

−
 1

.0
⋅1

0−
16

In
ac

cu
ra

cy

Si
m

ul
at

ed
3.

52
9.

21
12

.4
0

−
 5

.2
1

16
.0

5
21

.2
3

−
 2

2.
45

6
7

0.
00

14
0.

00
82

−
 1

.1
⋅1

0−
11

−
 1

.1
⋅1

0−
13

So
lv

ed

4
Ra

di
og

ra
ph

ic
−

 3
.6

1
9.

20
9.

20
1.

61
−

 2
7.

63
46

.2
3

31
.8

5
5

5
0.

00
05

0.
01

85
−

 5
.9
⋅1

0−
11

−
 1

.4
⋅1

0−
12

In
ac

cu
ra

cy

Si
m

ul
at

ed
−

 3
.7

3
9.

54
9.

47
2.

21
−

 2
4.

05
45

.0
0

30
.9

8
5

6
0.

02
80

0.
08

80
−

 5
.1
⋅1

0−
11

−
 5

.9
⋅1

0−
14

In
ac

cu
ra

cy

5
Ra

di
og

ra
ph

ic
−

 3
.6

3
8.

43
4.

67
5.

91
−

 2
6.

33
62

.4
0

52
.3

0
6

6
0.

00
50

0.
27

29
−

 3
.7
⋅1

0−
11

−
 1

.4
⋅1

0−
13

In
ac

cu
ra

cy

Si
m

ul
at

ed
−

 3
.7

7
8.

40
4.

55
6.

67
−

 2
4.

80
62

.2
3

53
.8

0
6

6
0.

00
01

0.
00

49
−

 7
.2
⋅1

0−
14

−
 9

.2
⋅1

0−
17

So
lv

ed

6
Ra

di
og

ra
ph

ic
4.

58
9.

20
9.

33
−

 5
.5

4
24

.4
0

37
.1

5
−

 3
3.

88
7

7
0.

05
01

0.
11

26
−

 5
.1
⋅1

0−
11

−
 3

.8
⋅1

0−
12

In
ac

cu
ra

cy

Si
m

ul
at

ed
4.

27
8.

04
9.

13
−

 4
.8

3
31

.7
3

36
.0

5
−

 3
5.

93
9

9
0.

60
50

0.
72

98
−

 1
.9
⋅1

0−
11

−
 6

.1
⋅1

0−
12

In
ac

cu
ra

cy

7
Ra

di
og

ra
ph

ic
−

 2
.0

1
6.

28
10

.6
6

−
 5

.1
0

−
 5

7.
45

39
.3

3
19

.8
5

6
7

1.
09

31
1.

33
95

−
 2

.7
⋅1

0−
10

−
 5

.6
⋅1

0−
12

U
ns

ol
ve

d

Si
m

ul
at

ed
−

 2
.5

7
6.

57
11

.0
8

−
 5

.2
8

−
 5

8.
50

38
.4

3
20

.7
8

5
5

0.
11

28
0.

17
50

−
 2

.0
⋅1

0−
10

−
 5

.9
⋅1

0−
11

In
ac

cu
ra

cy

8
Ra

di
og

ra
ph

ic
2.

77
8.

35
14

.0
4

−
 3

.0
3

33
.0

5
9.

00
−

 1
5.

35
8

8
0.

02
96

0.
10

85
−

 2
.6
⋅1

0−
11

−
 1

.5
⋅1

0−
13

In
ac

cu
ra

cy

Si
m

ul
at

ed
2.

51
7.

76
13

.7
6

−
 2

.6
9

38
.6

0
8.

73
−

 1
5.

35
7

7
0.

01
42

0.
06

27
−

 1
.6
⋅1

0−
10

−
 9

.5
⋅1

0−
13

In
ac

cu
ra

cy

9
Ra

di
og

ra
ph

ic
−

 1
.9

5
9.

40
13

.6
2

1.
52

−
 6

.1
8

22
.9

3
12

.8
8

5
10

0.
10

02
0.

23
57

−
 9

.5
⋅1

0−
11

−
 2

.4
⋅1

0−
12

In
ac

cu
ra

cy

Si
m

ul
at

ed
−

 2
.2

3
9.

38
13

.4
1

1.
91

−
 6

.7
0

24
.3

0
14

.7
3

6
8

0.
10

79
0.

15
40

−
 8

.8
⋅1

0−
11

−
 3

.7
⋅1

0−
12

In
ac

cu
ra

cy

10
Ra

di
og

ra
ph

ic
4.

63
7.

30
13

.0
3

−
 7

.0
6

−
 3

2.
88

4.
45

−
 2

6.
50

9
10

0.
04

51
0.

15
90

−
 1

.5
⋅1

0−
01

−
 2

.3
⋅1

0−
13

In
ac

cu
ra

cy

Si
m

ul
at

ed
4.

59
7.

37
13

.7
8

−
 6

.8
5

−
 3

2.
90

4.
95

−
 2

4.
58

9
12

0.
70

22
0.

98
30

−
 7

.8
⋅1

0−
11

−
 4

.7
⋅1

0−
12

In
ac

cu
ra

cy

11
Ra

di
og

ra
ph

ic
−

 5
.0

5
−

 8
.3

6
−

 9
.4

5
3.

96
9.

88
−

 1
0.

38
14

8.
23

15
17

0.
18

92
0.

25
92

−
 1

.2
⋅1

0−
11

−
 7

.8
⋅1

0−
12

In
ac

cu
ra

cy

Si
m

ul
at

ed
−

 5
.6

0
−

 8
.5

3
−

 9
.9

8
4.

00
0.

00
0.

00
14

7.
13

16
42

0.
76

88
0.

86
21

−
 0

.2
57

0
1.

2⋅
10

−
08

In
ac

cu
ra

cy

12
Ra

di
og

ra
ph

ic
−

 1
.8

7
−

 8
.6

6
−

 1
0.

43
1.

80
26

.5
3

−
 1

4.
15

16
6.

73
12

14
1.

01
70

1.
14

64
−

 2
.9
⋅1

0−
11

−
 5

.1
⋅1

0−
12

U
ns

ol
ve

d

Si
m

ul
at

ed
−

 2
.1

7
−

 8
.6

7
−

 9
.8

6
1.

22
24

.8
5

−
 1

2.
13

16
6.

78
8

9
0.

02
24

0.
06

86
−

 4
.6
⋅1

0−
12

−
 7

.5
⋅1

0−
13

In
ac

cu
ra

cy

13
Ra

di
og

ra
ph

ic
−

 0
.1

6
−

 9
.9

3
−

 8
.6

6
−

 0
.9

6
−

 1
3.

13
27

.0
8

18
0.

55
9

10
0.

02
13

0.
09

63
−

 4
.1
⋅1

0−
11

−
 4

.2
⋅1

0−
13

In
ac

cu
ra

cy

Si
m

ul
at

ed
0.

13
−

 9
.6

2
−

 8
.6

6
−

 1
.0

5
−

 1
2.

00
26

.6
3

17
9.

58
9

10
0.

02
52

0.
05

49
−

 1
.9
⋅1

0−
11

−
 2

.5
⋅1

0−
12

In
ac

cu
ra

cy

14
Ra

di
og

ra
ph

ic
0.

51
−

 8
.6

4
−

 6
.1

6
1.

81
−

 3
4.

68
49

.8
0

18
4.

43
7

7
0.

00
02

0.
00

98
−

 1
.1
⋅1

0−
12

−
 3

.9
⋅1

0−
15

So
lv

ed

Si
m

ul
at

ed
0.

39
−

 8
.5

3
−

 6
.4

7
1.

87
−

 3
4.

05
47

.5
3

18
3.

20
6

7
8⋅

10
−

06
0.

01
63

−
 6

.5
⋅1

0−
11

−
 4

.1
⋅1

0−
14

In
ac

cu
ra

cy

15
Ra

di
og

ra
ph

ic
−

 3
.3

1
−

 9
.6

7
−

 8
.6

9
0.

14
17

.0
8

27
.6

3
15

9.
08

8
9

0.
02

96
0.

14
91

−
 4

.6
⋅1

0−
11

−
 9

.4
⋅1

0−
13

In
ac

cu
ra

cy

Si
m

ul
at

ed
−

 3
.3

3
−

 9
.2

5
−

 9
.2

6
0.

35
19

.3
3

19
.2

0
15

9.
55

6
8

4⋅
10

−
05

0.
02

22
−

 1
.8
⋅1

0−
11

−
 2

.9
⋅1

0−
12

In
ac

cu
ra

cy

16
Ra

di
og

ra
ph

ic
−

 3
.7

4
−

 9
.1

6
−

 7
.0

8
3.

11
1.

40
41

.2
0

15
0.

30
8

9
0.

16
64

0.
23

73
−

 9
.7
⋅1

0−
11

−
 1

.6
⋅1

0−
12

In
ac

cu
ra

cy

Si
m

ul
at

ed
−

 3
.7

7
−

 8
.6

0
−

 7
.3

8
3.

16
−

 2
.3

5
38

.9
9

15
1.

10
7

8
1⋅

10
−

06
0.

00
83

−
 1

.7
⋅1

0−
12

−
 7

.9
⋅1

0−
15

So
lv

ed



Page 9 of 16Cosola et al. BMC Oral Health          (2021) 21:100  

Ta
bl

e 
1 

(c
on

ti
nu

ed
)

Ra
di

og
ra

ph
Co

m
po

ne
nt

s 
(m

m
)

A
ng

le
s 

(°
)

O
pt

im
iz

at
io

n 
m

et
ri

c

−→ O
A
Y

−→ O
A
Z

−→ O
R
Y

−→ O
R
Z

φ
θ

ψ
It

er
at

io
ns

Re
si

du
al

Fi
rs

t-
or

de
r o

pt
im

al
it

y
St

at
us

 o
f e

qu
at

io
n

M
ea

n
M

ea
n

M
ea

n
M

ea
n

M
ea

n
M

ea
n

M
ea

n
M

in
M

ax
M

in
M

ax
M

in
M

ax

17
Ra

di
og

ra
ph

ic
−

 3
.4

4
−

 9
.4

2
−

 9
.7

5
0.

79
−

 1
3.

88
−

 1
0.

80
16

0.
45

8
12

0.
03

74
0.

09
44

−
 5

.0
⋅1

0−
12

−
 7

.3
⋅1

0−
13

In
ac

cu
ra

cy

Si
m

ul
at

ed
−

 3
.4

2
−

 9
.4

4
−

 1
0.

07
0.

92
−

 1
0.

93
−

 5
.0

8
16

1.
15

13
21

0.
10

83
0.

17
25

−
 2

.2
⋅1

0−
11

−
 2

.2
⋅1

0−
12

In
ac

cu
ra

cy

18
Ra

di
og

ra
ph

ic
1.

44
−

 9
.8

5
−

 1
0.

23
−

 1
.5

9
18

.7
8

−
 1

0.
00

18
4.

40
16

18
1.

46
29

1.
68

26
−

 8
.4
⋅1

0−
12

−
 7

.4
⋅1

0−
13

U
ns

ol
ve

d

Si
m

ul
at

ed
0.

96
−

 9
.4

4
−

 9
.8

7
−

 2
.1

2
20

.2
5

−
 5

.6
0

18
4.

30
12

14
0.

17
40

0.
26

35
−

 2
.9
⋅1

0−
11

−
 4

.2
⋅1

0−
12

In
ac

cu
ra

cy

19
Ra

di
og

ra
ph

ic
−

 1
.9

8
−

 8
.4

8
−

 7
.8

6
3.

39
23

.1
0

−
 3

8.
70

16
4.

18
8

8
0.

20
27

0.
23

52
−

 6
.7
⋅1

0−
13

−
 9

.2
⋅1

0−
14

In
ac

cu
ra

cy

Si
m

ul
at

ed
−

 2
.1

5
−

 8
.4

0
−

 8
.2

8
3.

51
24

.2
3

−
 3

5.
25

16
3.

35
7

8
0.

28
34

0.
38

26
−

 3
.7
⋅1

0−
11

−
 2

.4
⋅1

0−
12

In
ac

cu
ra

cy

20
Ra

di
og

ra
ph

ic
2.

77
−

 9
.1

6
−

 9
.0

4
−

 1
.8

4
30

.1
5

−
 1

8.
55

19
3.

43
10

12
0.

79
90

0.
96

05
−

 9
.6
⋅1

0−
11

−
 1

.5
⋅1

0−
12

In
ac

cu
ra

cy

Si
m

ul
at

ed
2.

58
−

 9
.0

9
−

 9
.4

8
−

 2
.4

0
27

.6
5

−
 1

1.
80

19
2.

18
11

11
0.

70
52

0.
84

34
−

 3
.0
⋅1

0−
11

−
 3

.4
⋅1

0−
12

In
ac

cu
ra

cy

Re
su

lts
 o

f t
he

 fi
tt

in
g 

(s
ta

tu
s 

of
 th

e 
fit

tin
g)

 w
ith

 th
e 

op
tim

iz
at

io
n 

m
et

ric
, t

ha
t i

s, 
th

e 
ou

tp
ut

 o
f t

he
 v

ar
ia

bl
es

 th
os

e 
th

e 
m

ac
hi

ne
 b

y 
us

in
g 

“L
ev

en
be

rg
–M

ar
qu

ar
dt

 a
lg

or
ith

m
” t

rie
d 

to
 m

in
im

iz
e 

so
 th

at
 y

ou
 e

nd
 u

p 
w

ith
 th

e 
be

st
 

pe
rf

or
m

in
g 

m
ac

hi
ne

 m
od

el
s:

 s
ys

te
m

 o
f e

qu
at

io
ns

 so
lv

ed
 if

 re
si

du
al

s ≤
 1

0–2
; p

os
si

bl
e 

in
ac

cu
ra

cy
 in

 s
ol

ut
io

n 
if 

 10
–2

 <
 re

si
du

al
s ≤

 1
; s

ys
te

m
 o

f e
qu

at
io

ns
 u

ns
ol

ve
d 

if 
re

si
du

al
s >

 1



Page 10 of 16Cosola et al. BMC Oral Health          (2021) 21:100 

simulated images, simulated components s
−→
OAY,s

−→
OAZ

,s
−→
ORY,s

−→
ORZ were obtained, and the simulated triad of 

angles (sφ, sθ, sψ) was calculated as shown in Fig.  2. So 
radiographic and simulated triads could be statistically 
compared.

Statistical analysis
The solution of the system of equations was computed 
with a specific algorithm (MatLab7.13, The MathWorks, 
Natick, MA, USA). The correlation between the radio-
graphic length of implants and that simulated by using 
the angular correction factor of implants was tested by 
robust linear regression. Inter- and intra-observer agree-
ments were tested by Bland–Altman analysis. Absolute 
differences between the radiographic and virtual triad of 
angles (test of accuracy) were calculated.

Results
Twenty intraoral radiographs (10 in the upper- and 10 
in the lower-jaw) were selected and analyzed for the pre-
sent in silico retrospective study. Y- and Z-components 
of the two-directional vectors 

−→
OA and 

−→
OR were measured 

for each selected cylindrical dental implant. The compo-
nents were used in a non-linear fitting procedure, and tri-
ads of angles—describing the rotations—were estimated. 
Table 1 shows the values of the components of the esti-
mated angles with the results of statistical analysis.

Among all the fitting results (40), 37 resulted as resolved 
with residuals ≤ 1 mm, whereas 32 of them reported on 
the possible inaccuracies. Results for the 3 non-linear fit-
tings indicated unsolved equations with residuals > 1 mm. 
However, the system was well over determined (more 
equations, four, than unknowns, three).

Fig. 3 Radiographs of lower and upper arch dental implants (on the right: a, c) and related virtual phantom with respective referring points (on the 
left: b, d)
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As was to be expected, how angles and rotations had 
been set out in the theoretical section indicated that in 
the upper-jaw implants ψ might be of values close to 180° 
(downwards, in the range between 148.2° and 193.4° with 
a mean of 169.2°), whereas in the lower-jaw implants ψ 
ranged from − 33.9° to 52.3° with a mean of 2.2 (upwards) 
(Fig. 3).

Reproducibility of the angular measurements
Intra-examiner and inter-examiner reproducibility 
were described in detail with Bland and Altman plots in 
Fig. 2. The intra-examiner differences ranged from − 0.18 
to + 0.2 mm for observer 1, and from − 0.25 to + 0.25 mm 
for observer 2, respectively. The inter-examiner differ-
ences ranged from − 0.18 to + 0.33 mm for session 1, and 
from − 0.28 to + 0.16 mm for session 2, respectively.

Accuracy of the angular measurements
The description of the output triad of angles for real 
radiographs was of − 7.8° ± 29.3°, 30.9° ± 17.1°, and 
2.2° ± 27.6° respectively for angles φ, θ, and ψ in the 
lower jaw, whereas was of 6.5° ± 21.2°, 4.3° ± 29.5°, and 
169.2° ± 15.6° respectively for angles φ, θ, and ψ in the 
upper jaw. Very similar values were obtained for the 
simulated triad of angles, as they appear in the virtual 
phantoms: − 4.8° ± 31.9° and 5.7° ± 20.7° for angle φ; 
30.6° ± 16.9° and 6.3° ± 25.9° for angle θ; 2.6° ± 28.0° 
and 168.8° ± 15.2° for angle ψ, for the lower- and the 
upper-jaws, respectively. Absolute error, as shown in 
Fig.  4, was: − 1.1° ± 3.9° for angle φ; − 0.9° ± 4.1° for 
angle θ; 0° ± 1.1° for angle ψ.

Correction factors for marginal bone level
Radiographs with the related phantoms of cylindri-
cal dental implants, simulated by using the results of 
triad-fitting, are shown in Fig.  2. As shown in Fig.  4, 
radiographic lengths of the implant as measured on 
the radiographs and simulated lengths calculated with 
the angular correction factors appeared to be heavily 
correlated. Such a linear dependence was verified by 
the results of robust linear regression, which employed 
an iteratively reweighted least-squares algorithm less 
sensitive to outliers. All collected data were included 
without any data exclusion and the following coef-
ficients resulted 0.9757 (slope) and + 0.1344 (inter-
cept), with an adjusted coefficient of determination of 
0.9054.

Discussion
The number of degrees of freedom in intra-oral radio-
graph describing the projection of an object on the detec-
tor’s surface could be reduced by the use of devices for 
image standardization, that is, bite block with fixed-
length extension cone paralleling instruments coupled 
with equipment indicating the direction of the dental 
x-ray tube. In this way, the degrees of freedom went from 
nine to six; moreover, those related to the object’s trans-
lation in space had a negligible effect because the dental 
implant was the reference object for the radiograph.

The basic idea of the present study was that a cylindri-
cal object did not have enough information, at this stage, 
to resolve all degrees of freedom about the position and 
direction of the dental implant.

Fig. 4 a Accuracy was measured as the difference between two sets of angles (three angles of rotations) obtained comparing cylindrical implants 
on real radiographs versus phantom projection on virtual radiographs. Data were represented as scatter (empty points) and box‑and‑whisker plot 
(the box line represents the lower. median. and upper quartile values; the whisker lines include the rest of the data). Outliers (solid points) were data 
with values beyond the ends of the whiskers. b Linear dependence between registered length of the implant as it appears in the radiograph and 
length as obtained by means of the angular correction factor (CF). The dashed line represents the robust fit (equation and adjusted coefficient of 
determination are indicated in the graph)
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Several authors attempted to reduce the number of 
degrees of freedom to simplify the analysis of the physi-
cal system. Some authors let the coordinate system be 
located external to the relevant structures using at least 
three radiopaque spheres of known dimension [4–6]; 
one of them later had been quite successful in achieving 
a solution to the descriptions of the geometric structure 
about the position of the cylindrical dental implant in 
space [12]; he designed the system of the rigid object to 
be as compact as possible while describing translational 
and rotational vector graphics. However, the degree of 
freedom related to the rotation along the main axis of 
the dental implant remained unknown. The author sug-
gested that lost rotation might be solved by simply add-
ing an extra reference point not collinear with the dental 
implant axis. Theoretically, a known pose of the cylindri-
cal dental implant through three reference points, two 
inside the implant body, and the third in a mesial or dis-
tal position (further dental implant, tooth, or identifiable 
anatomic landmark) reduced all degrees of freedom to 
one.

In a previous paper, Toti and co-workers suggested 
that “vector analysis” attempted to estimate the pose 
of a blade implant [13]. It should be noted that compo-
nents of the lengthwise vector were the same as those 
reported in Eqs.  6 and 7; the only adjustment was the 
value of the parameter l which represented the length of 
the cylindrical dental implant. On the contrary, the y and 
z components of the crosswise vector had more complex 
equations in which the two terms  (RY and  RZ) depended 
on both the three-dimensional position of the third refer-
ence point (R) and the triad of angles (φ, θ, ψ).

The system given by equations from 6 to 9 admitted 
explicit solutions; thereby disregarding solutions could be 
doubled or quadrupled if inverse trigonometric functions 
were introduced. An equation solver allowed clinicians 
to obtain very easily an explicit solution given in terms 
of a single triad of angles. The measurements of fixed 
parameters (l,  RY,  RZ) and input variables ( 

−→
OAY,

−→
OAZ,

−→
ORY

,
−→
ORZ ) appeared to give reproducible and reliable results 
when analyses had been performed with Bland and Alt-
man test (inter- and intra-observer differences ranging 
from − 0.28 mm to + 0.33 mm).

Unfortunately, the present formulation did not take 
into account the distorting effects produced by the mis-
alignment between the detector ring radius and the x-ray 
beam caused by neglect of radiological guidelines or 
involuntary patient movement [14]. Even if a theoretical 
approach to assess the quality of the image standardiza-
tion had not yet been developed for a cylindrical object, 
data points on implant lengths radiographically meas-
ured and then calculated using the angular correction 
factors (Eq.  11) well matched the straight line, so the 

assumption of the linear dependence was justified and 
the linear regression model could be applied with accept-
able accuracy (value of the adjusted coefficient of deter-
mination of 0.9054).

Results of non-linear fittings accounting for differences 
between radiographic (rφ, rθ, rψ) and a simulated triad of 
angles (sφ, sθ, sψ) showed that absolute errors had means 
ranging from − 1.1° to 0° with low measures of disper-
sion (e.g. standard deviations ≤ 4.1°). The results were 
in agreement with those described in a previous paper 
(absolute error from − 0.29 to + 0.64 where 4.35° was the 
maximum standard deviation) [13].

And if anyone asked where experimental errors arose, 
it’s supposed to be caused by the cylindrical shape of the 
dental implant for which an exact calculation of the coor-
dinates of three referring points (O, A, and R) could dif-
ficulty result. Moreover, virtual phantom obtained from 
two-dimensional radiographic simulation had not high 
enough resolution for such application (pixel resolution 
of 0.05 mm). Another source of error in the calculation 
of components could arise from the divergence between 
the x-ray beam and the normal vector to the detector 
surface. The problem of the misalignment could not yet 
be resolved a posteriori for a cylindrical system, at least 
so far.

Cliniciancs need to be especially mindful to understand 
that all the processes implemented using algorithms [13], 
such as measurements of the components of the length-
wise and crosswise vectors and angles calculation of the 
pose or virtual simulation of the pose of the cylindrical 
implant are completely independent from each other; dif-
ferences between true and simulated could only be due 
to measurement errors (and maybe discretization errors 
due to the pixel values).

Instead of making a radiograph under known geometric 
conditions, then computing the pose of the implant from 
it, and then comparing the pose to the known pose in the 
imaging geometry, the authors decided to directly meas-
ure the pose of the implant on a real radiograph and to 
simulate obtained angular results. This is because it is very 
difficult to experimentally check the position of a cylindri-
cal object through three angles one of which including the 
component describing a rotation of the object along the 
main axis (hidden component). Moreover, there is also 
a slight misassumption included in the definition of the 
projection of the real-world points O, A, and R: due to the 
projection geometry, the center of the elliptical shadow 
cast by the (upper) end of the cylinder does not coincide 
with the real-world center-point along the longitudinal 
axis (A). However, the influence of this misassumption on 
the accuracy of the method is expected to be negligible, 
as for common geometries describing the difference could 
be of sub-pixel magnitude.



Page 13 of 16Cosola et al. BMC Oral Health          (2021) 21:100  

Externalization of the present results (system of 
Eqs. 16–19) could be used for pose determination of any 
conical/cylindrical object observed in two-dimensional 
radiographs. For example, the present method to evalu-
ate the angulations of teeth, knowing their length and 
through the use of only one referring point, offered an 
interesting perspective in the fields of orthodontics.

There is no doubt that any improvement in the resolu-
tion of the detector and automated detection of param-
eters and components could help refine the method. The 
authors are trying to solve equations involving parame-
ters related to errors in alignment.

There are limitations in the present study. The main 
concern is the small sample size with only twenty 
intraoral radiographs (ten each from upper and lower 
jaw) that may be not enough to have confirmative con-
clusions. Another potential bias is that the intraoral 
radiographs were taken from anterior or posterior 
regions with possible different results due to different 
bone thickness.

Conclusions
Theoretical and experimental methods, estimating the 
pose of a cylindrical dental implant in three-dimensional 
space allowed clinicians to calculate a posteriori single 
triad of angles (φ, θ, ψ) by analyzing two-dimensional 
images. The value of the correction factor calculated 
based on data obtained by analysis of angles supplies the 
clinician with additional information for the real meas-
urement of the implant marginal bone level. The a pos-
teriori standardization of two-dimensional radiographs 
could allow the clinicians to minimize the patient’s 
exposure to ionizing radiations for the measurement of 
success or failure rates. Finally, information about the 
rotation of a cylindrical like structure (tooth) could be 
useful in various fields of dentistry.
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Appendix
The crosswire vector
A line thorough O = (o1, o2, o3) and A = (a1, a2, a3) is 
formed by points P =

(
x, y, z

)
 for which vector 

−→
OP has 

the same direction of the vector 
−→
AO as per

So

And the system of coordinates for P is

The plane perpendicular to the vector 
−→
AO and passing 

through R = (r1, r2, r3) is

(24)−→
OP = t

−→
AO(Eq. 1, with t real)

(25)

(
x − o1, y− o2, z − o3

)
= (t(a1 − o1), t(a2 − o2), t(a3 − o3)).

(26)






x = o1 + t(a1 − o1)
y = o2 + t(a2 − o2)
z = o3 + t(a3 − o3)

(27)
(a1 − o1, a2 − o2, a3 − o3) ·

(
x − r1, y− r2, z − r3

)
= 0
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from which Cartesian equation of the plane is the 
following:

Then equation of the straight line intersecting the piano 
in the point H can be obtained by the following system:

in which t has the following equation:

and the point H = (h1, h2, h3) has the following 
coordinates:

The Y coordinate is the distance between H and R that is:

And the coordinate Z is:

or

(28)(a1 − o1)x − r1(a1 − o1)+ (a2 − o2)y− r2(a2 − o2)+ (a3 − o3)z − r3(a3 − o3) = 0

(29)






x = o1 + t(a1 − o1)
y = o2 + t(a2 − o2)
z = o3 + t(a3 − o3)

(a1 − o1)x − r1(a1 − o1)+ (a2 − o2)y− r2(a2 − o2)+ (a3 − o3)z − r3(a3 − o3) = 0

(30)t =
r1(a1 − o1)− o1(a1 − o1)+ r2(a2 − o2)− o2(a2 − o2)+ r3(a3 − o3)− o3(a3 − o3)(

(a1 − o1)
2
+ (a2 − o2)

2
+ (a3 − o3)

2
)

(31)






h1 = o1 +

�
r1(a1−o1)−o1(a1−o1)+r2(a2−o2)−o2(a2−o2)+r3(a3−o3)−o3(a3−o3)�

(a1−o1)
2
+(a2−o2)

2
+(a3−o3)

2
�

�
(a1 − o1)

h2 = o2 +

�
r1(a1−o1)−o1(a1−o1)+r2(a2−o2)−o2(a2−o2)+r3(a3−o3)−o3(a3−o3)�

(a1−o1)
2
+(a2−o2)

2
+(a3−o3)

2
�

�
(a2 − o2)

h3 = o3 +

�
r1(a1−o1)−o1(a1−o1)+r2(a2−o2)−o2(a2−o2)+r3(a3−o3)−o3(a3−o3)�

(a1−o1)
2
+(a2−o2)

2
+(a3−o3)

2
�

�
(a3 − o3)

(32)Y =

√
(h1 − r1)

2
+ (h2 − r2)

2
+ (h3 − r3)

2

(33)Y =

√√√√
3∑

n=1

(hn − rn)
2

(34)Z =

√
(
(o1 − r1)

2
+ (o2 − r2)

2
+ (o3 − r3)

2
)
−

(
(h1 − r1)

2
+ (h2 − r2)

2
+ (h3 − r3)

2
)

(35)Z =

√√√√
3∑

n=1

(on − rn)
2
−

3∑

n=1

(hn − rn)
2

and explicit magnitude equations of the initial crosswise 
vector 

−→
OR0 from the point O (0, 0, 0) to point R  (RX,  RY, 

 RZ) are:

(36)RX = 0
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Four components of the lengthwise 
−→
OA and the crosswise 

vector 
−→
OR are:
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