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Abstract 

Background: Oral squamous cell carcinoma (OSCC) is a rising problem in global public health. The traditional physi-
cal and imageological examinations are invasive and radioactive. There is a need for less harmful new biomarkers. 
Tumor mutational burden (TMB) is a novel prognostic biomarker for various cancers. We intended to explore the 
relationship between TMB-related genes and the prognosis of OSCC and to construct a prognostic model.

Methods: TMB-related differential expressed genes (DEGs) were screened by differential analysis and optimized 
via the univariate Cox and LASSO Cox analyses. Risk Score model was constructed by expression values of screened 
genes multiplying coefficient of LASSO Cox.

Results: Seven TMB-related DEGs (CTSG, COL6A5, GRIA3, CCL21, ZNF662, TDRD5 and GSDMB) were screened. 
Patients in high-risk group (Risk Score >  − 0.684511507) had worse prognosis compared to the low-risk group (Risk 
Score <  − 0.684511507). Survival rates of patients in the high-risk group were lower in the gender, age and degrees of 
differentiation subgroups compared to the low-risk group.

Conclusions: The Risk Score model constructed by 7 TMB-related genes may be a reliable biomarker for predicting 
the prognosis of OSCC patients.

Keywords: Oral squamous cell carcinoma (OSCC), Tumor mutational burden (TMB), Differential expression genes 
(DEGs), Risk Score
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Background
Oral cancer is the sixth most common cancer type in the 
world [1]. Oral squamous cell carcinoma (OSCC) is the 
most commonly occurring oral cancer [2]. The OSCC 
represents a major public health issue, especially in the 
developing countries for example China [3]. OSCC usu-
ally arises from and develops in the oral cavity and 
oropharynx [4], which can induce damage in speech, 

swallowing and chewing function [2]. The risk factors of 
OSCC include smoking, excessive alcohol consumption, 
areca nut chewing (especially in Asia and Pacific area), 
occupational exposure to carcinogens, autoimmune 
chronic disease, persistent viral infections (e.g. human 
papillomavirus, HPV) and so on [5, 6]. Treatment options 
for the OSCC patients comprise of surgical resection, 
adjuvant radiotherapy and chemotherapy, as well as the 
rising immunotherapy [7–9]. But due to the tendency 
to metastasize [10], patients with advanced OSCC are 
likely to have a poor prognosis [11]. Traditional prognos-
tic indicators for example stages and grades of tumor are 
difficult to distinguish carcinomas with different biologi-
cal characteristics within the same histological subgroup 

Open Access

*Correspondence:  dentistcheng1984@163.com
†Fei Wu and Yuanyuan Du have contributed equally to this study
3 Department of Dental Prosthodontics, Yantai Stomatological Hospital 
of Binzhou Medical University, No. 142 Zhifu District, Yantai 264001, 
Shandong, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12903-022-02193-3&domain=pdf


Page 2 of 15Wu et al. BMC Oral Health          (2022) 22:152 

[12, 13]. Novel indicators such as immune-related genes 
[14], systemic inflammatory biomarkers [15], ferroptosis-
related genes [16] are emerging as effective biomarkers to 
stratify patients with different prognosis. These identified 
biomarkers provide a relatively comprehensive under-
standing of prognosis in OSCC and provide an additional 
tool for selecting patients who need more aggressive 
treatment. In order to improve accuracy of the predic-
tion, more biomarkers are urgently needed to be explored 
to provide an additional tool for prediction of prognosis 
for cancer patients [17, 18].

Tumor mutational burden (TMB) is defined as the 
number of mutations existing within a tumor and is often 
reported as the number of mutations per DNA megabase 
of genomic territory [19]. Because of the development 
of next generation sequencing techniques, a cost- and 
time-effective sequencing of genes makes significant 
improvement in detecting gene mutations [20]. Growth 
and progression of cancers are reported to be related to 
the immune suppression, and in order to evade immuno-
surveillance and eradication of the host immune system, 
tumors often upregulate immune checkpoints [21, 22]. 
Immunotherapies based on immune checkpoint inhibi-
tors (ICIs) have emerged as a new treatment for many 
types of cancers [23]. High TMB levels is often con-
nected with better prognosis and higher rates of treat-
ment response after ICIs therapy which may attribute to 
higher potential immunogenic neoantigens facilitating 
anti-tumor immune response [24, 25]. And TMB levels 
are emerging as a novel prognostic biomarker for the 
response to immunotherapy in oncology clinic [21, 26, 
27]. Previous studies have reported that cancer patients 
with higher TMB levels have higher response rates fol-
lowing ICI therapy than those with lower TMB levels, for 
example non-small cell lung cancer (NSCLC) [28], mela-
noma [29] and breast cancer [26]. TMB levels are used 
for the prediction of the prognosis for cancer patients 
following immunotherapy in solid tumors such as breast 
cancer, lung cancer and gastrointestinal cancers [30]. 
And Kang et.al. have reported that TMB was also related 
to the prognosis of cutaneous melanoma and prognos-
tic model constructed by TMB-related grenes might be 
used to predict prognosis of cancer patients [31]. These 
researches support that TMB has the potential as a 
promising biomarker for predicting the cancer patients 
with different prognosis [32]. Although previous stud-
ied have identified the prognostic signature constructed 
by TMB-related genes for patients with ovarian cancers 
[33] and the prognostic value of TMB for patients with 
head and neck squamous cell carcinoma has also been 
studied [34], there are few articles about the prognostic 
value of TMB-related genes for OSCC patients and the 
prognostic signature constructed by TMB-related genes 

for OSCC patients has not been throughly explored. We 
aimed to explore the prognostic value of TMB-related 
genes for and to build a prognostic signature for OSCC 
patients. Besides, Risk Score models constructed by 
molecular biomarkers utilizing LASSO Cox regression 
analysis have already been used to diagnose and to pre-
dict the prognosis of patents in solid tumors [35].

In this study, we explored the connection between 
TMB-related genes and the prognosis of OSCC patients 
through bioinformatic analysis. We hoped to construct a 
prognostic Risk Score model to be helpful in separating 
patients with different prognosis.

Material and methods
Data collection
Data of the mRNA expression and clinical information 
about 306 OSCC patients were downloaded from the 
Cancer Genome Atlas (TCGA, https:// tcga- data. nci. nih. 
gov/ tcga/) database. The full clinical information of 306 
OSCC patients was shown in Table  1. Maf files of 311 
OSCC patients were also downloaded from the TCGA 
database for further analysis and clinical information 
of 311 OSCC patients was listed in Table  2. Moreover, 
the dataset GSE41613 was downloaded from the Gene 
Expression Omnibus (GEO, https:// www. ncbi. nlm. nih. 
gov/ geo/) database. The dataset was comprised of 97 
OSCC patients with complete survival information. The 
GEO dataset was derived from HPV-negative OSCC 
patients, while the HPV status of TCGA cohort was 
unknown. Patients’ data were processed by the Affym-
etrix Human Genome U133 Plus 2.0 Array.

Differential analysis
Analysis of differential expression genes (DEGs) was 
based on limma function package [36] of R programming 
software (version4.1.0, the same below). The |Log2FC|> 1 
and adjusted P value ≤ 0.01 were used to screen DEGs 
associated with TMB.

Functional enrichment analysis
Functional enrichment analysis was applied to the TMB-
related DEGs using the “clusterProfiler” package [37] 
of R programming software. The Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways and Gene 
Ontology (GO, including Biological Process, Molecular 
Function and Cellular Component) terms were used to 
examine the enriched GO terms and KEGG pathways. 
Threshold of adjusted P value < 0.05 of Benjamini and 
Hochberg (BH) method were used to screen significantly 
enriched GO terms and KEGG pathways.

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Construction of prognostic Risk Score model
Univariate Cox regression analysis, based on the 
expression values of the 324 TMB-related DEGs, was 
performed on the 306 OSCC patients with the thresh-
old of P < 0.01 to screen the DEGs which were associ-
ated with prognosis of OSCC. LASSO Cox regression 
analysis was performed on the screened DEGs to opti-
mize the genes using the glmnet package [38] of R pro-
gramming software. Then Risk Score of each patient 
was calculated using the following formula based on 
the screened TMB-related DEGs:

In this formula,  Coefi and  Xi are the coefficient cal-
culated by LASSO Cox and expression value of each 
gene (the expression value of mRNA in this research) 
respectively. Survival, survminer and two-sided log-
rank test of R package were used to test the Risk Scores. 
Patients were assigned into low-risk and high-risk 
groups according to the median of Risk Score.

Survival analysis
We used the survival and survminer packages of R pro-
gramming software to estimate the OS rates of different 
groups using Kaplan–Meier method. The significance 
of difference of OS rates between different groups 
was tested by log-rank test. The independence of Risk 
Score in predicting the prognosis of OSCC patients was 
examined by multivariate Cox regression analysis. Age 
and degree of differentiation were included in the study 
as the clinicopathological factors affecting the progno-
sis of many cancers. The TNM status was included in 
the multivariate Cox regression analysis as the reliable 
maker for treatment decision but the tumor size or/and 
extension (T) was excluded because of its inadaptabil-
ity to the regression model. The four factors and Risk 
Score were included in the multivariate Cox regression 
analysis as variables.

Risk score =

n∑

i=1

Coefi ∗ Xi,

Table 1 Clinicopathological characteristics of OSCC patients 
from TCGA database

Characteristics Patients (N = 306)

No %

Gender

 Female 102 33.33

 Male 204 66.67

Age

  ≤ 61 (Median) 157 51.31

  > 61 (Median) 149 48.69

Grade

 GX 3 0.98

 G1 49 16.01

 G2 191 62.42

 G3 62 20.26

 Unknown 1 0.33

Survival time

 Long (> 5 years) 31 10.13

 Short (< 5 years) 275 89.87

OS status

 Dead 143 46.73

 Alive 163 53.27

M

 M0 289 94.44

 M1 2 0.65

 Mx 12 3.92

 Unknown 3 0.98

N

 N0 160 52.29

 N1 56 18.30

 N2 76 24.84

 N3 2 0.65

 Nx 9 2.94

 Unknown 3 0.98

T

 T1 18 5.88

 T2 97 31.70

 T3 73 23.86

 T4 110 35.95

 Tx 5 1.63

 Unknown 3 0.98

Primary site

 Anterior floor of mouth 2 0.65

 Border of tongue 1 0.33

 Cheek mucosa 19 6.21

 Floor of mouth 51 16.67

 Gum 8 2.61

 Hard palate 4 1.31

 Lip 3 0.98

 Lower gum 2 0.65

 Mouth 20 6.54

Table 1 (continued)

Characteristics Patients (N = 306)

No %

 Overlapping lesion of lip, oral cavity 
and pharynx

69 22.55

 Palate 1 0.33

 Tongue 125 40.85

 Upper gum 1 0.33
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Construction of nomogram model
Nomogram is often used to predict the prognosis of 
many types of cancers. In our study, nomogram con-
structed by the independent factors was built to predict 
1-year, 3-year and 5-year OSs of patients. We used rms 
(https:// CRAN.R- proje ct. org/ packa ge= rms) package of 
R programming software to build nomogram. In order to 
observe the accuracy of the predicted probability, a cali-
bration curve was drawn.

Calculation of immune cell infiltration proportion
CIBERSORT algorithm [39] was based on gene expres-
sion matrix. It used predisposed 547 barcode genes and 
employed deconvolution method to characterize the 
composition of immune infiltration cells. And CIBER-
SORT was used to calculate the infiltration proportion 
of 22 immune cells of each patient. The sum of estimated 
proportions of all immune cells in each patient was 1.

Results
Identification of DEGs
Figure  1A was a flow diagram of study to clarify the 
design of our study. We processed the maf files of 311 
OSCC patients using maftools package of R program-
ming software and the results showed TP53, TTN 
and FAT1 had the highest mutation rates (Fig.  1B). 161 
patients with TMB values in the front 25% (≤ 1.16) and 
the back 25% (≥ 2.38) were divided into the low-TMB 
group and high-TMB group (Fig. 1C). Then 157 mRNA 
expression profiles were found from the 306 patients. 
324 DEGs associated with TMB were screened out of 
the 157 patients, using the limma function package of R 
programming software. In the high- vs low-TMB group, 
up-regulated genes and down-regulated genes were 48 
and 276 respectively (Fig. 1D). Expression levels of DEGs 
were significantly different between high- and low-TMB 
groups (Fig. 1E).

Go terms and KEGG pathway analysis of DEGs
GO and KEGG enrichment analyses were done to the 
324 TMB-related DEGs. Significant enrichment terms 
were found among the muscle system process, contractile 

Table 2 Clinicopathological characteristics of OSCC patients 
from TCGA database

Characteristics Patients (N = 311)

No %

Gender

 Female 107 34.41

 Male 204 65.59

Age

  ≤ 61 (Median) 159 51.13

  > 61 (Median) 152 48.87

Grade

 GX 3 0.96

 G1 50 16.08

 G2 196 63.02

 G3 61 19.61

 Unknown 1 0.32

Survival time

 Long (> 5 years) 32 10.29

 Short (< 5 years) 279 89.71

OS status

 Dead 146 46.95

 Alive 165 53.05

M

 M0 294 94.53

 M1 2 0.64

 Mx 12 3.86

 Unknown 3 0.96

N

 N0 162 52.09

 N1 57 18.33

 N2 78 25.08

 N3 2 0.64

 Nx 9 2.89

 Unknown 3 0.96

T

 T1 18 5.79

 T2 98 31.51

 T3 77 24.76

 T4 110 35.37

 Tx 5 1.61

 Unknown 3 0.96

Primary site

 Anterior floor of mouth 2 0.64

 Border of tongue 1 0.32

 Cheek mucosa 19 6.11

 Floor of mouth 53 17.04

 Gum 8 2.57

 Hard palate 4 1.29

 Lip 3 0.96

 Lower gum 2 0.64

 Mouth 21 6.75

Table 2 (continued)

Characteristics Patients (N = 311)

No %

 Overlapping lesion of lip, oral cavity 
and pharynx

67 21.54

 Palate 1 0.32

 Tongue 129 41.48

 Upper gum 1 0.32

https://CRAN.R-project.org/package=rms
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fiber, actin binding in GO terms and Cardiac muscle con-
traction in KEGG Pathways. Top 10 Go terms and top 20 
KEGG pathways of the TMB-related genes were shown 
on Fig. 2A, B. Full results of Go and KEGG enrichment 
analyses were listed on Additional file  1: Table  S1 and 
Additional file 2: Table S2.

Construction and validation of Risk Score model
Univariate Cox analysis was applied to the 306 OSCC 
patients in TCGA using the gene expression values of 
the 324 TMB-related genes as continuous variables, 
with P value < 0.01 as the threshold. Hazard ratio (HR) 
of each gene was calculated. The results showed as fol-
lows: CTSG (HR = 0.84, 95% CI: 0.77–0.91, P = 0.00003), 
COL6A5 (HR = 0.87, 95% CI: 0.8–0.94, P = 0.00068), 
TSPAN11 (HR = 0.84, 95% CI: 0.75–0.93, P = 0.0012), 
GRIA3 (HR = 0.88, 95% CI: 0.81–0.95, P = 0.0021), 
CCL21 (HR = 0.9, 95% CI: 0.84–0.97, P = 0.0031), 
ZNF662 (HR = 0.87, 95% CI: 0.78–0.96, P = 0.0072), 
TDRD5 (HR = 1.1, 95% CI: 1–1.1, P = 0.0076), GSDMB 
(HR = 1.2, 95% CI: 1–1.3, P = 0.0079) (Fig. 3A).

Then LASSO Cox regression analysis was performed 
on the 8 TMB-related DEGs in the training set. Based on 
the lambda values corresponding to the number of differ-
ent genes in LASSO Cox regression analysis, the optimal 
number of genes was determined to 7 genes (Fig. 3B, the 
lowest lambda value), and the selected set of genes were 
CTSG, COL6A5, GRIA3, CCL21, ZNF662, TDRD5 and 
GSDMB.

The gene expression values were weighted 
with the regression coefficients to construct a 
prognostic Risk Score model using the follow-
ing formula, Riskscore = (0.06885258) * Express 
Value of GSDMB + (-0.11112627) * Express 
Value of CTSG + (-0.05027612) * Express Value 
of GRIA3 + (-0.01323639) * Express Value 
of CCL21 + (0.03488614) * Express Value of 
TDRD5 + (-0.05750775) * Express Value of 
ZNF662 + (-0.01785164) * Express Value of COL6A5. 
Patients in the TCGA database and GEO validation sets 
were divided into high-risk and low-risk groups accord-
ing to median of Risk Scores (-0.684511507). It was 
found that in TCGA database and GEO validation sets, 
patients in the high-risk group (patients with the Risk 
Score > 0.684511507) had lower OS rates than those in 
the low-risk group from the survival analysis (Fig.  3C, 

D). Other than that, from time-dependent receiver oper-
ating characteristic (ROC) analysis, the area under the 
curve (AUC) of 1-year, 3-year, and 5-year survivals of 
patients in the TCGA database were 0.67, 0.67 and 0.64 
(Fig. 3E); the AUC of 1-year, 3-year, and 5-year survivals 
of patients in the GEO validation sets were 0.64, 0.62 and 
0.66 (Fig. 3F). It indicated that the Risk Score model was 
a reliable prognostic indicator of OSCC patients in both 
datasets.

Independence of the Risk Score as a prognostic indicator
As the tumor size or/and extension (T) did not fit to the 
regression model, five factors comprising of age, degree 
of differentiation, regional lymph node involvement 
(N), distant metastasis (M) and median of Risk Score 
were included in the multivariate Cox regression analy-
sis (one non-differentiation sample was removed) to test 
whether the Risk Score was an independent prognos-
tic indicator. The results (Fig.  4A) showed that the Risk 
Score and degree of differentiation were significantly 
associated with OS. The low-risk group had lower death 
risk and the low Risk Score was a reliable prognostic fac-
tor (HR = 0.46, 95%CI: 0.32–0.65, P < 0.001). The results 
on fulfillment of proportional hazard’s assumption for 
all variables included in the multivariate Cox regression 
analysis were listed in Additional file 3: Table S3.

To further discuss the prognostic value of Risk Score 
for OSCC patients in various clinical pathological fac-
tors (including age, gender and degree of differentiation), 
the OSCC patients were regrouped according to age, 
gender and degree of differentiation to perform Kaplan–
Meier survival analysis. Results showed that between 
female and male subgroups (Fig.  4B–C), ≤ 61  years 
and > 61 years old subgroups (Fig. 4D, E), as well as G1, 
G2 and G3 degree of differentiation subgroups (Fig. 4F–
H), the OS rates of patients in the high-risk groups were 
all lower than those of the low-risk groups. These results 
indicated that Risk Score was an independent prognostic 
indicator for OSCC patients.

Nomogram model predicts the prognosis of OSCC patients
The four independent risk factors including age, degree 
of differentiation, N status were used to construct nom-
ogram model (Fig.  5A). For each patient, to obtain the 
actual point of Risk Score and degree of differentiation, 
two lines were drawn up to determine the points and the 

Fig. 1 Mutation status and differential gene analysis of OSCC in TCGA. A Flow diagram of the study. B Waterfall diagram of the top 20 genes 
with the highest mutation rate of OSCC in TCGA. C The distribution graph of TMB value. The horizontal coordinate is TMB value and the vertical 
coordinate is TMB value log base 10. D The volcano diagram of TMB-related genes. The horizontal axis is differentially expressed multiple  (Log2FC) 
and the vertical axis is − log10 (adjusted P value). The blue dots and the red dots represent up-regulation genes and down-regulation genes. E 
Heatmap of TMB-related genes, the horizontal axis and the vertical axis are the patients and different genes. Red and blue represent high expression 
and low expression of genes and green and purple represent up-regulated and down-regulated genes

(See figure on next page.)
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sum of the two points was located on the “Total Points” 
axis. Then a line was drawn down from the “Total Points” 
axis to the 1-year, 3-year and 5-year OS axes to predict 
the survival probability of OSCC patients. The 1-year 
and 3-year calibrated curves in adjusted diagram were 
close to the ideal curve (a 45 degree line through the ori-
gin of the coordinate axis with slope 1), which suggested 
that the predicted probabilities of the model at 1  year, 
3  years and 5  years agreed well with the actual results 
(Fig. 5B–D).

Immune infiltration of OSCC patients between the high‑ 
and low‑risk groups
CIBERSORT algorithms was used, in combination with 
LM22 eigenmatrix, to estimate the differences of immune 
infiltration of the 22 types of immune cells in high- and 
low-risk OSCC groups. After summarizing immune cell 
infiltration results of 306 OSCC patients (Fig.  6A), the 
variations of the proportion of tumor infiltrating immune 
cells in different patients may present the intrinsic char-
acteristics of each individual. Infiltrating proportions of 
immune cells differed in the high- and low-risk groups 
(Fig.  6B). There were significant differences in the infil-
trating proportions of 7 immune cells, such as B cells 

naive, NK cells activated and so on (Fig.  6C). The infil-
tration proportions of the native B cells (p = 1.2e−05), M2 
macrophage (p = 0.00052), resting mast cells (p = 0.0026) 
and CD4 memory resting T cells (p = 0.014) were higher 
in low-risk group compared to the high-risk group, while 
the infiltration proportions of eosinophils (p = 2.5e−06), 
activated NK cells (p = 0.005) and follicular helper T cells 
(p = 0.0069) were lower in low-risk group compared to 
the high-risk group. Eosinophils are granulocytic cells 
which are connected with tumour regulation and tumor 
progression via inflammatory symptoms caused by 
degranulation [40], and increased count of eosinophils 
was observed in invasive OSCC in comparison with the 
noninvasive one [41]. The Risk Score had positive corre-
lation with follicular helper T cell (r = 0.23, p = 6.39e−05), 
eosinophils (r = 0.22, p = 9.59e−05), activated NK cells 
(r = 0.20, p = 3.7e−04), activated mast cells (r = 0.15, 
p = 0.007), CD8 T cells (r = 0.13, p = 0.025) and regula-
tory T cells (r = 0.11, p = 0.049) (Fig.  6D–I). There were 
negative correlation between the Risk Score and CD4 
memory resting T cells (r =  − 0.24, p = 2.4e−05), neutro-
phils (r =  − 0.16, p = 0.005), M2 macrophages (r =  − 0.15, 
p = 0.009)  (Fig.  6J–L). By clustering according to the 7 
immune cells which were significantly expressed, patients 

Fig. 2 Functional enrichment analysis results. A GO enrichment analysis of TMB-related DEGs of, including biological process (BP), cellular 
component (CC) and molecular function (MF). The x axis is the number of genes and the y axis is the GO terms. B Functional enrichment analysis of 
TMB-related DEGs in KEGG Pathways. The x axis is the number of genes and the y axis is the KEGG pathways

Fig. 3 Construction of the prognostic model for OSCC. A Univariate analysis forest plot of 8 genes significantly associated with prognosis of OSCC. 
B A graph of LASSO regression model to determining the tuning parameter lambda. The horizontal axis and the vertical axis are log (lambda) and 
partial likelihood Deviance. The lambda value corresponding to the minimum value is the best which means the best Lambda value after Log is 
taken below the dotted line and the number of variables is corresponding to the upper part. C Kaplan–Meier survival curve in TCGA dataset. The 
horizontal axis and the vertical axis are time and survival rates. Different color represents different groups. P value is based on the log-rank test. D 
Kaplan–Meier survival curve in GEO dataset. The horizontal axis and the vertical axis are time and survival rates. Different color represents different 
groups. P value is based on the log-rank test. E Time-dependent ROC curve in TCGA dataset. The horizontal axis is specificity (rate of false alarm; 
1-Specificity) and the vertical axis is sensitivity. The area under the ROC curve (AUC) value is used to assess the accuracy of prediction

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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could be divided into two categories by principal compo-
nent analysis (PCA) (Fig. 6M).

Immune checkpoint expression has become a bio-
marker for selective immunotherapy in OSCC patients. 
The correlation between Risk Score of OSCC patients 
and key immune checkpoints (CTLA4, PDL1, LAG3, 
TIGIT IDO1 and TDO2) was analyzed and Risk Score 
was found to be associated with all of them (Fig.  7A). 
Meanwhile the expression of CTLA4, TIGIT and TDO2 
differed significantly between the high- and low-risk 
groups (Fig. 7B–D) and they were higher in the low-risk 
group than in the high-risk group. CTLA4 was used in 
immune-related genes prognostic models for OSCC 
patients [14, 42].

Discussion
OSCC is one of the most common cancers in the world. 
It poses a great challenge to the medical industry because 
of the high death rate,. In this research, we constructed a 
prognostic model for OSCC patients based on the TMB-
related genes to predict the prognosis.

In this study, functional enrichment analysis was per-
formed on the TMB-related DEGs. The focal adhesion 
was listed on the top 20 KEGG pathways. Focal adhesion 
kinase (FAK) is a non-receptor tyrosine kinase which is 
associated with poor prognosis and can promotes breast 
cancer cell migration and metastasis [43, 44]. Over-
expression and phosphorylation of FAK also correlate 
with invasion and metastasis therefore affect the prog-
nosis [45, 46]. FAK-mediated signaling and functions are 
involved in the development and progress of tumor [47]. 
Applying of the FAK inhibitor can effectively reduce the 
invasion and metastasis of tumor tissue [48]. These are in 
keeping with the our results, which indicating prognosis 
of OSCC is associated with the TMB-related DEGs we 
screened.

Seven TMB-related genes (CTSG, COL6A5, GRIA3, 
CCL21, ZNF662, TDRD5 and GSDMB) were selected 
via differential analysis, univariate Cox analysis and 
LASSO Cox analysis. Among the 7 genes, CTSG is con-
firmed as a potential biomarker in OSCC and NSCLC, 
and expression of CTSG is highest in adenocarcinoma 
[49, 50]. The expression of CCL21 is related to the poor 
clinical outcomes in OSCC patients via CCL21/CCR7 
axis by activating the JAK2/STAT3 signaling pathway 
[51, 52]. ZNF662 gene caused by epigenetic changes 

through DNA methylation is also related to the pro-
gression of OSCC [53]. Moreover, a risk signature con-
structed by using COL6A5 performed well in stratifying 
OSCC patients with different prognosis and could dis-
tinguish survival status of OSCC patients [54]. GRIA3, 
as glutamate receptor, is involved in the process of tumor 
progression in pancreatic cancer [55]. The TDRD5 is 
involved in the DNA methylation and has prognostic 
value for patients with hepatocellular carcinoma [56]. 
The GSDMB is highly expressed in cancer tissues and is 
connected with poor prognosis by relapse-free survival, 
and therefore has been used as a potential novel prog-
nostic marker [57]. These indicate that the TMB-related 
genes we screened may relate to the prognosis of can-
cer patients. The results agree with the researches that 
TMB-related genes have been identified in many types 
of cancers to help us understand progression of cancers 
and may assist clinical doctors to predict the prognosis 
of many types of cancers [58–60], which is in accord with 
our results.

Patients were then assigned to high- and low-risk 
groups according to the median of Risk Score. The results 
showed that patients in the high-risk group had lower OS 
than those in the low-risk group. The Risk Score model 
might be a reliable prognostic indicator for the OSCC 
patients. Even when taking into account other clinical 
variables, the Risk Score model had independent prog-
nostic value. Head and neck squamous cell carcinoma 
patients with high TMB level have worse prognosis than 
those with low TMB [34]. And TMB-related genes have 
been described as a powerful prognostic biomarker for 
patients with bladder cancer [61]. TMB-related genes 
may also serve as a potential biomarker with clinical ben-
efit in patients with NSCLC [62]. There are also many 
prognostic model characterizing TMB-related genes 
expression levels in other cancer like hepatocellular car-
cinoma, osteosarcoma and colon cancer [63–65]. Our 
results are consistent with these previous researches. 
It indicates that the Risk Score model constructed by 7 
TMB-related genes may be helpful for the prediction of 
OSCC with different prognosis. Previous study has iden-
tified a 13-gene signature to predict survival of patients 
with OSCC [66], and the model in our study was simpli-
fied to 7 TMB-related genes. Nomogram model, built by 
using degree of differentiation and Risk Score, was also 
able to be reliable in predicting the OS of OSCC patients 

(See figure on next page.)
Fig. 4 Risk Score as an independent prognostic marker for OSCC. A Forest plots of multivariate Cox analysis. Compared to the reference, Hazard 
ratio > 1 is considered to be a higher death risk while Hazard ratio < 1 is considered to be a lower death risk. B, C Kaplan–Meier survival curves of 
female and male subgroups. D, E Kaplan–Meier survival curves of ≤ 61 and > 61 subgroups. F–H Kaplan–Meier survival curves of G1, G2, G3 degree 
of differentiation subgroups
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at 1 year, 3 years and 5 years, which makes the prognostic 
value of Risk Score model more reliable.

The immune cell infiltration results showed that the 
infiltration proportions of the native B cells, M2 mac-
rophage, resting mast cells and CD4 memory resting 
T cells were higher in low-risk group compared to the 
high-risk group, while the infiltration proportions of 
eosinophils, activated NK cells and follicular helper 
T cells were lower in low-risk group compared to the 
high-risk group. The M2 macrophage is reported to 
promote cancer progress and to be connected with 

poor outcome in certain cancer types [67]. The acti-
vated NK cells may serve as anti-tumor therapy by 
secreting IFN-γ and TNF-α to suppress tumor cell cycle 
[68]. These articles are in line with our results, sug-
gesting the Risk Score model was reliable to stratify 
patients by survival time.

However, there are some limitations of our study. 
Firstly, the main sources of our data were from public 
database and it was driven by statistics of retrospective 
data, so the best cutoff value is needed to be determined 
before clinical application. Secondly, the establishment 

Fig. 5 Nomogram to predict the OS of OSCC patients. A Nomogram to predict the OS at 1 year, 3 years and 5 years of OSCC patients. B–D The 
calibration plots for predicting the overall survival at 1 year, 3 years and 5 years of OSCC patients. X and y axes are the survival rates estimated by 
nomogram and the actual survival rates

(See figure on next page.)
Fig. 6 Immune infiltration between high- and low-risk groups. A The relative proportion of immune infiltrates in all patients. B Box plots of 
immune cell differences between high- and low-risk groups. The horizontal axis is the immune cells and the vertical axis is the relative infiltration 
proportion of immune cells. P value was calculated by wilcoxon method. (P > 0.05, *: P ≤ 0.05, **: P ≤ 0.01, ***: P ≤ 0.001, ****: P ≤ 0.0001). C Box 
plots of significantly different immune cells in the high- and low-risk groups. The horizontal axis and the vertical axis are the groups and the relative 
infiltration proportion of immune cells. P value was calculated by wilcoxon method. D–L The correlation diagrams of 9 immune cell and Risk Score. 
P value was calculated by t test and r value was calculated by the pearson correlation coefficient. M PCA three-dimensional clustering diagram, 
points of different colors represent different types of samples



Page 12 of 15Wu et al. BMC Oral Health          (2022) 22:152 

Fig. 6 (See legend on previous page.)



Page 13 of 15Wu et al. BMC Oral Health          (2022) 22:152  

and verification of the signature were based on the TCGA 
and GEO datasets. And the HPV status of the TCGA 
cohort was unknown, which makes the prognosis of the 
OSCC patients less reliable because the HPV status is an 
important risk factor affecting the prognosis of patients 
with head and neck cancer [69]. Thirdly, the inhomoge-
neity of data in the public databases also makes the Risk 
Score model less reliable regarding to the prognosis of 
cancer patients. Therefore, robustness of the signature 
will be necessary to be verified using larger external data-
sets in the future.

In conclusion, the prognostic signature reliably pre-
dicted the survival of patients with OSCC. Potential clini-
cal use of the signature are driven by its strong prognostic 

performance, but the performance of the signature is still 
required to be verified in larger clinical samples.

Conclusion
Our study suggests that the 7 TMB-related genes are 
associated with the prognosis of OSCC and Risk Score 
model constructed using TMB-related genes (CTSG, 
COL6A5, GRIA3, CCL21, ZNF662, TDRD5 and GSDMB) 
might be a reliable biomarker for predicting the prognosis 
of OSCC patients. The prognostic signature may be help-
ful in designing the individualized treatment management 
and in making of medical decisions in the future but the 

Fig. 7 Correlation between several important immune checkpoint and Risk Score. A Correlation chord diagram of Risk Score and five immune 
checkpoints. B–D Box plots of CTLA4, TDO2 and TIGIT. Red and blue represent the high- and low-risk groups. The vertical axis is the expression of 
immune points. P value was calculated by wilcoxon method
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implement of prognostic stratification of OSCC patients 
is still required to be verified in more clinical settings.
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