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Abstract 

Background: Oral squamous cell carcinoma (OSCC) is the most frequent tumor of the head and neck. The glycolysis-
related genes and immune-related genes have been proven prognostic values in various cancers. Our study aimed to 
test the prognostic value of glycolysis-immune-related genes in OSCC.

Methods: Data of OSCC patients were obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omni-
bus (GEO) databases. Enrichment analysis was applied to the glycolysis- and immune-related genes screened by 
differential expression analysis. Univariate Cox and LASSO Cox analyses were used to filtrate the genes related to the 
prognosis of OSCC and to construct Risk Score model.

Results: A Risk Score model was constructed by six glycolysis-immune-related genes (including ALDOC, VEGFA, HRG, 
PADI3, IGSF11 and MIPOL1). High risk OSCC patients (Risk Score >−0.3075) had significantly worse overall survival than 
that of low risk patients (Risk Score <−0.3075).

Conclusions: The Risk Score model constructed basing on 6 glycolysis-immune-related genes was reliable in stratify-
ing OSCC patients with different prognosis.
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Background
Oral squamous cell carcinoma (OSCC) is the most com-
monly occurred malignancy in the oral cavity [1]. Most 
OSCCs are correlated with oral precursor lesions [2], 
and the 5-year overall survival of OSCC patients is less 
than 40% [3]. Many factors may trigger OSCC, including 
tobacco smoking, excessive alcohol drinking, chewing 
betel quid and human papillomavirus (HPV) infection 
[4]. Moreover, as the most frequent subtype of head and 
neck squamous cell carcinoma (HNSCC), the metasta-
sis rate of OSCC is high, besides resistance to traditional 
chemotherapy is usually observed in OSCC patients, 

leading to undesirable prognosis [5]. Novel biomarkers 
correlated with the prognosis of OSCC may help to strat-
ify patients with different prognosis and design individ-
ual-specific therapy, for example FKBP51 [6] is promising 
to predict the prognosis of OSCC patients. Whereas, the 
exploration of more effective and accurate prognostic 
biomarkers remains a continuous challenge for the medi-
cal industry.

Glycolysis, also called Embden-Meyerhof pathway, is 
an essential metabolic pathway and provides anaerobic 
energy for body function [7]. In aerobic conditions, pyru-
vate from glycolysis produces adenosine triphosphate 
(ATP) for cellular process through oxidative phosphoryl-
ation; and in anaerobic conditions, the pyruvate under-
goes anaerobic glycolysis [8]. In cells that are not able to 
generate adequate ATP for body function via oxidative 
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phosphorylation, anaerobic glycolysis may be a way to 
produce energy [9]. But cancer cells mainly depend on 
the aerobic glycolysis in order to rapidly provide energy 
for the tumors even in the presence of sufficient oxygen, 
which is known as Warburg effect [10]. Therefore, tumor 
cells intake more glucose to perform aerobic glycolysis. 
The increased glucose level and the overexpression of 
glucose transporter proteins (HIF-1α and GLUT-1) are 
connected with poor prognosis of OSCC [11]. Gong et al. 
have recently demonstrated that PER1 is a suppressor of 
glycolysis in OSCC, involving the regulation of cell pro-
liferation [12]. Several aerobic glycolysis related genes 
have been reported with prognostic or diagnostic values 
not only in OSCC [13] but also in some other types of 
cancers, such as breast cancer [14]. Change of ATP sup-
ply from oxidative phosphorylation to aerobic glycolysis 
is thought be the biomarker of T cell activation [15]. The 
aerobic glycolysis promotes activation of T cells via phos-
phoinositide 3-kinase (PI3K)/Akt signaling [16]. The acti-
vated T cells produce more lactate via increasing lactate 
dehydrogenase A (LDHA) to support aerobic glycolysis, 
and increased LDHA is also implicated in poor prognosis 
of cancer patients [17]. Aerobic glycolysis, a well-known 
resistance factor for anticancer therapies, is associated 
with the immunotherapy for cancer patients. Aerobic 
glycolysis can impact the tumor immunosuppression via 
a network of pathways in breast cancer [18]. The prog-
nosis of cancers are also closely related to the immune 
microenvironment and novel prognostic biomarkers 
for example MIR155HG [19] are reported to have cor-
relation with immune infiltration. However, the poten-
tial impacts of glycolysis and immune have been seldom 
studied in OSCC.

Accordingly, basing on the publicly obtained data, 
the focus of our work is to discuss the prognostic value 
of glycolysis-immune-related genes for OSCC patients 
and to construct a prognostic model using glycolysis-
immune-related genes for separating OSCC patients with 
different prognosis.

Methods
Data sources
We downloaded data of 306 OSCC patients, includ-
ing mRNA expression profiles and corresponding clini-
cal information, and listed the clinical information 
in Table  1. The data were collected from the Cancer 
Genome Atlas (TCGA, https:// tcga- data. nci. nih. gov/ 
tcga/). Moreover, we downloaded datasets comprised of 
gene expression profiles and complete survival informa-
tion of 246 OSCC patients from the Gene Expression 
Omnibus (GEO, https:// www. ncbi. nlm. nih. gov/ geo/) 
database and numbered them GSE85446 (66), GSE65858 
(83) and GSE41613 (97). The data of OSCC patients were 

obtained by the Agilent-014850 Whole Human Genome 
Microarray 4×44 K G4112F, Illumina HumanHT-12 V4.0 
expression beadchip and Affymetrix Human Genome 
U133 Plus 2.0 Array. Datasets GSE85446, GSE65858, and 
GSE41613 were merged as meta-GEO dataset, using for 
subsequent validation.

Differential expression analysis
Limma package [20] in R programming software (ver-
sion 4.1.0, the same below) was applied to the data we 
collected above to identify differentially expressed genes 
(DEGs). The |Log2FC|> 0.7 and multiple testing adjusted 
p value < 0.05 were used as threshold.

Functional enrichment analysis
The Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways and Gene Ontology (GO) enrichment analyses 
were applied to the DEGs using “clusterProfiler” pack-
age [21] in R programming software. The GO terms and 
KEGG pathways at the significant level (p value < 0.05, 
adjusted by Benjamini and Hochberg method) were 
employed.

Cluster analysis and calculation of ImmuneScore
The mRNA expression profiles were subjected to cluster 
analysis based on the “K-mean” method utilizing R pro-
gramming software. The ImmuneScore of each patient 
was calculated by the “ESTIMATE” function.

LASSO Cox regression analysis
Univariate Cox analysis was applied to expression pro-
files of the OSCC patients based on the expression values 

Table 1 Clinicopathological characteristics of OSCC patients 
from TCGA database

Characteristics Patients(N = 306)

No %

Gender Female 102 33.33%

Male 204 66.67%

Age  ≤ 61(Median) 157 51.31%

 > 61(Median) 149 48.69%

Grade GX 3 0.98%

G1 49 16.01%

G2 191 62.42%

G3 62 20.26%

Unknown 1 0.33%

Survival time Long(> 5 years) 31 10.13%

Short(< 5 years) 275 89.87%

OS status Dead 143 46.73%

Alive 163 53.27%

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
https://www.ncbi.nlm.nih.gov/geo/
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of selected genes. To screen the genes which were signifi-
cantly associated with the overall survival (OS) of OSCC, 
p value < 0.01 was used as threshold. To further optimize 
the genes significantly associated with OS of OSCC, 
LASSO Cox regression analysis was performed on the 
screen DEGs using glmnet package [22] in R program-
ming software. Risk Score of each patient was calculated 
by the following formula:

Coefi was the LASSO Cox risk coefficient and Xi was 
the expression value of genes (mRNA expression in this 
research). Risk Score was tested using the survival, sur-
vminer and two-sided log-rank test in R programming 
software. Then patients were assigned into high-risk and 
low-risk groups according to the median of Risk Score.

Kaplan–Meier survival analysis
OS rates of OSCC patients were estimated using the sur-
vival and survminer packages in R programming soft-
ware. The significance of difference of OS rates between 
high- and low-risk groups was tested by the log-rank or 
breslow test. Multivariate Cox regression model was used 
to analyze the independence of the prognostic value of 
Risk Score.

Proportion of immune cell infiltration
We used “CIBERSORT” [23] software to estimate the 
infiltrations of immune cells for OSCC patients. The 
“CIBERSORT” software, utilizing the deconvolution 
algorithm, was based on the gene expression matrix. And 
it characterized the composition of the immune cells by 
the predisposed 547 barcode genes. The sum of the esti-
mated proportion of the 22 immune cells was one. The 
significance of difference of immune infiltration ratios 
was tested by the wilcoxn method.

Construction of nomogram model
We used rms package in R programming software to 
construct a prognostic nomogram model by using all 
independent prognostic factors examined by multivari-
ate Cox regression model and examined the efficiency of 
the nomogram model by drawing a calibration curve of 
nomogram.

Results
Patients with different prognosis defined 
by glycolysis‑immune‑related genes
Cluster analysis was applied to the patients’ mRNA 
expression profiles utilizing the 296 glycolysis-related 
genes downloaded from the GSEA database (Additional 

Risk Score =

n

i=1

Coefi*Xi,

file  1: Table  S1). According to the sum of the square 
errors (SSE) (Fig.  1A), the patients were divided into 2 
clusters (k = 2) (Fig. 1B). The OS between cluster1 and 
cluster2 differed significantly via Kaplan–Meier survival 
analysis (Fig.  1C). The prognosis of cluster1 (low-glyco-
lysis group) was significantly better than cluster2 (high-
glycolysis group) (p = 0.018).

Then the patients were grouped into high-ImmuneS-
core group (ImmuneScore > 1001.68) and low-Immune-
Score group (ImmuneScore < 1001.68) according to the 
cutoff value (Fig.  1D). Survival analysis results showed 
that the survival probability of the low-ImmuneScore 
group was lower than that of the high-ImmuneScore 
group (Fig. 1E) (p = 0.059).

Then the patients were reassigned into low-glycolysis-
high-ImmuneScore (Low/High) group, high-glycolysis-
low-ImmuneScore (High/Low) group and Mix group 
according to the ImmuneScore and glycolysis. The prog-
nosis of Low/High was better than that of the High/
Low group while the prognosis of Mix group was in the 
middle of the two groups and the prognosis of the three 
groups differed significantly (Fig. 1F) (p = 0.015).

Screening of glycolysis‑immune‑related genes
Differential expression analysis was applied to the expres-
sion data of OSCC patients to screen the differentially 
expressed genes (DEGs). There were 2505 DEGs (Fig. 2A) 
between the low-glycolysis and high-glycolysis groups, 
6565 DEGs (Fig.  2B) between low-ImmuneScore group 
and high-ImmuneScore group and 8503 DEGs (Fig. 2C) 
between the Low/High and High/Low group. And 337 
overlap genes among the three sets of DEGs (Additional 
file 2: Table S2, Fig. 2D) were found.

Enrichment analysis was performed on the 337 overlap 
genes. The enriched GO terms and KEGG pathways were 
listed in Additional file  3: Table  S3 (the pathways were 
obtained basing on KEGG [24–26]). The significantly 
enriched GO terms and KEGG pathways were shown on 
Fig. 2E and F. The results demonstrated that the 337 over-
lap genes were significantly enriched in the secondary 
metabolic process, apical part of cell and carboxylic acid 
binding GO terms, as well as steroid hormone biosyn-
thesis and HIF-1 signaling KEGG pathways. The genes 
were significantly enriched in the pathways which were 
associated with metabolism, inflammation and cancers 
[27–30].

Construction and validation of prognostic model
In the TCGA dataset, 337 overlap genes were used as 
continuous variable to perform univariate Cox regression 
analysis. Hazard ratio (HR) of each gene was calculated 
and p < 0.01 was used as threshold to screen the genes 
which were associated with OS of OSCC (Fig. 3A). Seven 
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genes were selected and then LASSO Cox regression 
analysis was applied to the 7 genes to screen a set of genes 
which were significantly associated with the prognosis 
of OSCC. Six genes (including ALDOC, VEGFA, HRG, 
PADI3 IGSF11 and MIPOL1) were screened according to 
the lowest lambda value (Fig. 3B).

In order to obtain a uniform critical value, we stand-
ardized the the 6 gene expression values in the TCGA 
and three GEO datasets to a value with median 0 and 
standard deviation 1. Then the standardized expression 
values were multiplying regression coefficient to con-
struct a Risk Score model as follows: Risk Score = (0.03
9770315*ALDOC) + (0.164774576*VEGFA) + (0.208429
564*HRG) +  (0.175124998*PADI3) +  (0.065430137*IGS
F11) + (0.001152926*MIPOL1). We calculated Risk Score 
of each patient. And patients in the TCGA and meta-
GEO datasets were assigned into high-risk and low-risk 
groups according to the best cutoff value of Risk Score 
(− 0.3075). OS of patients in the high-risk group was 
lower than that in the low-risk group both in the TCGA 
and meta-GEO datasets (including GSE85446, GSE65858 
and GSE41613) from the survival analysis (Fig. 3C–D).

According to the survival time in combination with 
patients which were ranked by the Risk Score in TCGA 
and meta-GEO datasets, there were more patients in 
the high-risk group compared to the low-risk group. In 
Fig. 3E and F, the green dots and red dots represent alive 
and dead patients. And the number of dead patients in 
the high-risk group was higher than that in the low-risk 
group.

In conclusion, the results suggested that Risk Score 
model constructed by ALDOC, VEGFA, HRG, PADI3 
IGSF11 and MIPOL1 might be a reliable prognostic 
model.

Risk Score as an independent prognostic hallmark of OSCC
Multivariate Cox regression analysis was then conducted 
including totally 10 factors, comprising Risk Score, age, 
gender, Grade, tobacco history, alcohol history, tumor 
stage, TNM status, to determine the independent prog-
nostic indicators for OSCC patients (Fig. 4A) (removing 
one non-differentiated sample and 8 samples without 
stage & T status information). The results showed that 
the Risk Score, age, Grade, and Node status were 

Fig. 1 Different prognosis defined by glycolysis in combination with immunity. A The elbow figure to determine the number of clusters. The 
x-axis and y-axis are the number of cluster K and the sum of the square errors. K = 2 is determined by the slope of the curve. B Clustering sketch of 
patients. Different colors represent different clusters. C The Kaplan–Meier survival curves defined by glycolysis. The x-axis and y-axis are time and 
survival probability. The blue is cluster1 (low-glycolysis), and the red is cluster 2 (high-glycolysis). The p value is calculated by the log-rank test. D The 
best cutoff value of the two groups defined by ImmuneScore. E The Kaplan–Meier survival curves defined by ImmuneScore. The x-axis and y-axis 
are time and survival probability. The blue is high-ImmuneScore, and the red is low-ImmuneScore. F The Kaplan–Meier survival curves defined by 
glycolysis in combination with ImmuneScore. The x-axis and y-axis are time and survival probability. The blue is High/Low, the red is Low/High, and 
the green is the Mix group
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significantly correlated with the OS of OSCC (Fig.  4A). 
Patients in the low-risk group had lower death risk and 
Risk Score was a reliable prognostic factor (HR = 4.25, 
95%CI: 2.676—6.7, p < 0.001).

To further explore the prognostic values of Risk Score 
in different pathological factors such as age, gender, 
and Node status, we regrouped the patients to perform 
Kaplan–Meier survival analysis. Our data suggested that 
high risk OSCC patients in various subgroups all had 
inferior survival compared to the patients in low-risk 
group, including female patients (Fig. 4B), male patients 
(Fig. 4C), younger patients (≤ 61-year old) (Fig. 4D), older 
patients (>  61-year old) (Fig.  4E), and N0, N1, N2-N3 
patients (Fig. 4F-H). Above results indicated that the Risk 
Score was an independent prognostic indicator for strati-
fying the OSCC patients with different prognosis.

Nomogram model predicts the survival probability 
of OSCC patients with good performance
Subsequently, the independent prognostic factors, Risk 
Score, age, Grade, and Node status, were used to con-
struct the nomogram model (Fig. 5A) to predict the sur-
vival probability of OSCC patients in 1 year, 3 years and 
5 years. In the calibration graph, the adjusted curves were 
close to the ideal curve (a line through the origin with the 
slop 1 and 45 degree). These indicated that the estimated 
survival probability agreed well with the actually living 
probability (Fig. 5B–D) in 1 year, 3 years and 5 years.

The immunosuppressive cells of OSCC patients were 
significantly infiltrated in the low‑risk group
After organizing the immune infiltrations of 306 OSCC 
patients (Fig. 6A), we could find that the proportions of 
the immune infiltration between the high- and low-risk 
groups differed significantly (Fig.  6B). The infiltration 
ratios of B cells naive, T cells CD8, T cells CD4 memory 
activated, T cells follicular helper, T cells regulatory, 
monocytes, macrophages M0, macrophages M1, mac-
rophages M2, dendritic cells activated, mast cells testing 
and mast cells activated differed significantly (Fig.  6C). 
The infiltration ratios of B cells naive, T cells CD8, T cells 
CD4 memory activated, T cells follicular helper, T cells 
regulatory, monocytes, macrophages M1, macrophages 
M2 and mast cells testing were higher in the low-risk 
group, while the infiltration ratios of macrophages M0, 
dendritic cells activated and mast cells activated were 
higher in the high-risk group. The correlation of differ-
ent immune cells was relatively weak, which might imply 
the weak interactions among immune cells in OSCC 
(Fig. 6D).

We analyzed the correlation between the Risk Score 
and the immune checkpoints (CTLA4, PDL1, LAG3, 
TIGIT, IDO1 and TDO2), and the results showed 
that the Risk Score related to 6 immune checkpoints 
(Fig.  6E). The expressions of LAG3 (p = 9.9*e−5), TIGIT 
(p = 0.0033) and IDO1 (p = 0.0027) were significantly 
higher in the low-risk group compared to the high-risk 

Fig. 2 Results of differential analysis and enrichment analysis. A–C The volcano plot of DEGs in different groups. The x-axis and y-axis are the 
multiple of differential expression  (log2FC) and −  log10(adj. p. val). The blue and orange represent downregulation and upregulation genes. D The 
figure containing all DEGs. E The significantly enriched GO terms. The x-axis is the number of enriched genes and y-axis is the names of the GO 
terms. F The significantly enriched KEGG pathways. The x-axis is the number of enriched genes and y-axis is the names of the KEGG pathways
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group (Fig.  6F). Moreover, higher PDL1 expression was 
observed in low-risk OSCC patients, and similar PDL1 
expression tendency had also been documented in previ-
ous reports [31, 32].

Discussion
OSCC has been widely considered the most frequent 
malignancy of the head and neck, novel prognostic bio-
markers for OSCC are helpful for stratifying patients 
with different prognosis [33]. In this study, basing on 
the public OSCC data, glycolysis-immune related genes 
were employed to build predictive prognostic model 

for OSCC. Our Risk Score, based on ALDOC, VEGFA, 
HRG, PADI3, IGSF11 and MIPOL1, was a promising 
prognostic indicator for OSCC.

Firstly, we downloaded data of OSCC patients from 
public databases to perform differential expression 
analysis and functional enrichment analysis. There were 
337 overlap DEGs among the groups defined by glyco-
lysis and ImmuneScore, and these genes were enriched 
in 99 GO terms and 9 KEGG pathways. We noticed 
that several metabolism related terms were significantly 
enriched, including secondary metabolic process, apical 
part of cell and carboxylic acid binding GO terms and 

Fig. 3 Construction of OSCC prognostic model. A The forest plot of seven genes significantly associated with the prognosis of OSCC by univariate 
Cox regression analysis. HR is short for Hazard ratio and 95%CI is 95% of the confidence interval. B The graph to determine the best lambda by 
LASSO Cox model. The x-axis is the log (lambda) and y-axis is the partial likelihood deviance whose smallest value is the best lambda value. C The 
Kaplan–Meier survival curve in TCGA dataset. The x-axis is time and y-axis is the survival probability. The red is the low-risk group and the blue is the 
high-risk group. p value is calculated by the log-rank test. D The Kaplan–Meier survival curve in meta-GEO dataset. The x-axis is time and y-axis is the 
survival probability. The red is the low-risk group and the blue is the high-risk group. p value is calculated by the log-rank test. E and F The estimated 
Risk Score of each patient is ranked from small to big. The vertical dotted line is the median of Risk Score

(See figure on next page.)
Fig. 4 Risk Score is an independent prognostic biomarker for OSCC. A Forest plot of multiple Cox regression analysis. Compared to the reference, 
patients with Hazard ratio > 1 were considered higher death risk, and patients with Hazard ratio < 1 were considered lower death risk. B, C Kaplan–
Meier survival curves in female and male subgroups, separately. D–E Kaplan–Meier survival curves of ≤ 61-year old and > 61-year old subgroups, 
separately. F–H Kaplan–Meier survival curves of patients in N0, N1, N2-N3 subgroups, separately
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Fig. 4 (See legend on previous page.)
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the steroid hormone biosynthesis pathway. The carbox-
ylic acid is an important substance in the generation and 
progress of cancers [34]. Besides, the biosynthesis of ster-
oid hormone, a process requiring multiple enzymes to 
coordinate [35], is also found to be related to the forma-
tion and growth of prostate cancer [36]. Whereas, their 
roles in OSCC have remained largely unclear. Addition-
ally, the HIF-1 signaling pathway was also significantly 
enriched. Hypoxia is a common feature of many tumors. 
Under hypoxia environment, HIF-1 is able to bind to 
the hypoxia response elements (HREs) of target genes, 
and the target genes included the genes encoding glyco-
lytic receptors and enzymes [37]. Thus, HIF-1 signaling 
pathway might imply the indirect correlation between 
hypoxia and our Risk Score, whose details deserve fur-
ther investigation.

Then we optimized the DEGs using univariate Cox 
and LASSO Cox regression analysis and 6 genes were 
selected, including ALDOC, VEGFA, HRG, PADI3, 
IGSF11 and MIPOL1. Previous studies have shown that 

the ALDOC is a member of the aldolase family and has 
been identified as an independent prognostic hallmark 
for cancers [38]. Besides, ALDOC has been evidenced 
to inhibit the migration of OSCC and serve as a prog-
nosis marker [39], which was in line with our data. The 
VEGFA is responsible for the formation of new blood 
vessels, which is important for the progression of cancers 
[40]. VEGFA has also been reported as single gene prog-
nosis marker in OSCC [41], while we firstly included it 
in the glycolysis-immune related prognostic Risk Score. 
The HRG expression is connected with prognosis of 
colorectal cancer [42]. The HRG has been used as prog-
nostic biomarker for many kinds of cancers such as pros-
tate cancer [43]. However, few HRG related studies were 
found in OSCC. The PADI3 has anticancer effect through 
the arresting of cell cycle in colon cancer, and it regu-
lates the glycolysis in multiple cancer cell types [44]. The 
MIPOL1 may induce tumor suppression in nasopharyn-
geal carcinoma resulting anticancer effect [45]. Although 
two genes (HRG and PADI3) have been seldom studied 

Fig. 5 Nomogram model to predict the prognosis of OSCC patients. A Nomogram to the living probability of OSCC patients in 1 year, 3 years and 
5 years. B–D The calibration curve of nomogram for OSCC patients in 1 year, 3 years and 5 years, respectively. The x-axis is the survival probability 
estimated by nomogram and y-axis is the actual survival probability
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in OSCC or HNSCC, their roles in other tumors could be 
found, indicating that more related exploration should be 
done in OSCC. The above evidence indicated that these 
genes, which were associated with glycolysis and immu-
nity, are related to progression of cancers, which suggest-
ing that the glycolysis-immune-related genes might be 
reliable prognostic biomarkers for OSCC patients.

Our prognostic Risk Score was constructed basing on 
the 6 core genes to separate patients with different prog-
nosis, and patients in the TCGA and GEO databases 
were assigned to high- and low-risk groups according 
to the best cutoff of Risk Score. The Kaplan–Meier sur-
vival demonstrated that patients in the high-risk group 
had lower survival rates than those in the low-risk group, 
indicating the relatively reliable performance of the 
Risk Score. The Risk Score models constructed by glyc-
olysis-related genes have been proven prognostic values 

in pancreatic ductal adenocarcinoma [46]. Prognostic 
models basing on immune-related genes have also been 
identified in renal papillary cell carcinoma [47]. The prog-
nostic models constructed by glycolysis-related genes or 
immune-related genes have been proven reliable in many 
types of cancers, which are in accord with our results. 
Additionally, between high and low risk OSCC patients, 
12 types of immune cells were significantly differentially 
infiltrated, indicating the different immune microenvi-
ronment between the patients with different prognosis. 
Herein, relatively higher abundance of multiple immune 
cells were observed in low risk patients, including Treg 
and Macrophages M2 cells. Tregs have been reported 
to inhibit the antigen-presenting cells and thereby pro-
mote the proliferation of tumor cells, meanwhile Tregs 
are also related to undesirable prognosis [48]. However, 
more recently, it has been indicated that the infiltration, 

Fig. 6 Immune infiltration between the high- and low-risk groups. A The relative infiltration ratio of immune cells in all OSCC patients. B The violin 
diagram of immune cells of the difference between the high- and low-risk groups. The x-axis is the 21 immune cells and the y-axis is the infiltration 
ration of immune cells. We used the wilcoxn method to calculate the p value. (ns: p > 0.05, *: p <  = 0.05, **: p <  = 0.01, ***: p <  = 0.001, ****: 
p <  = 0.0001). C The box graph of differentially expressed immune cells between the high- and low-risk groups. The x-axis is the high- and low-risk 
groups. The y-axis is the infiltration ratio of immune cells and p value is calculated by the wilcoxn method. D The correlation matrix of 22 immune 
cells. The orange is positive correlation and the blue represents negative correlation. The greatness of the correlation is positively related to the 
darkness of the color. E The chord diagram of Risk Score and 5 immune checkpoints. The width of the connecting lines represent the strength of 
the correlation. F The violin diagram of the difference of expression of the checkpoints between the high- and low-risk groups. The red is high-risk 
group and the blue is low-risk group. The y-axis is the expression of the checkpoints, and p value is calculated by the wilcoxn method
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activation, and survival of Tregs involve in complicated 
multiple processes in TME, which differ among distinct 
tumor types [48]. Moreover, complicated factors, includ-
ing the composition and activity of infiltrated immune 
cells in tumor immune microenvironment and the cell 
surface expression of immune checkpoints, together 
determine the immune response states in tumor micro-
environment [49, 50] Several key immune checkpoints 
also showed distinct expression between high and low 
risk OSCC patients. To the best of our knowledge, this 
is the first study assessing the prognostic value of glyc-
olysis-immune-related genes for OSCC patients, known 
to be implicated in stratifying patients with different 
prognosis.

Nevertheless, some limitations of our study were 
needed to be further improved in the near future. 
Although we have validated our prognostic Risk Score 
in TCGA and meta-GEO datasets, more validation in 
the expanded sample size might further elevate the con-
fidence of the Risk Score. Additionally, more underlying 
functional details about the 6 core genes of Risk Score in 
OSCC should be investigated in our future work.

Conclusions
In this work, we have firstly revealed a reliable glycoly-
sis-immune related prognostic Risk Score for OSCC 
patients, basing on multiple OSCC public datasets. The 
prognostic Risk Score was based on 6 core genes, com-
prising ALDOC, VEGFA, HRG, PADI3, IGSF11 and 
MIPOL1. Our prognostic Risk Score model might be 
helpful in separating OSCC patients with different prog-
nosis, shedding new light on the future management 
choosing of OSCC patients.
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