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Abstract 

Background:  This in-vitro study was conducted to assess the effect of aging on the fracture load of molar crowns 
fabricated with monolithic CAD/CAM materials.

Methods:  The crown restorations were produced from Cerasmart, Vita Enamic, and IPS e.max CAD blocks. Aging 
was applied to the 10 samples each of monolithic CAD/CAM materials (n = 10). Dual-axis chewing simulator (50 N, 
1.1 Hz, lateral movement: 1 mm, mouth opening: 2 mm, 1,200,000 cycles) and thermocycling (± 5–55 °C, 6000 cycles) 
were applied as an aging procedure. 10 samples each of monolithic CAD/CAM materials without aging (n = 10) were 
considered the control group. 6 tested groups were obtained. Then, all samples were evaluated in a universal testing 
machine to determine the fracture loading values’.

Results:  There was not a statistically significant difference between the fracture load values before and after aging 
for all samples of Cerasmart, Vita Enamic, and IPS e.max CAD (p > 0.005). In a comparison of the monolithic materials 
together, a statistically significant difference was found between the fracture load values of IPS e.max CAD and Vita 
Enamic crowns before aging (p = 0.02). Also, Vita Enamic crowns (1978,71 ± 364,05 N) were found different from the 
IPS e.max CAD (p = 0.005) and Cerasmart crowns (p = 0.041) after aging.

Conclusions:  Dynamic aging with 1.200.000 cycles was found to have no effect to fracture loading on milled Cer-
asmart, Vita Enamic, and IPS e.max CAD monolithic crowns.
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Background
Increased interest and demand for biocompatible restora-
tions that contain no metals have encouraged researchers 
to search for new materials. All of the ceramic restora-
tions became promising with the help of soft tissue bio-
compatibility [1], improved color stability, improved 
abrasion resistance as well as superior light transmit-
tance [2]. In recent years, computer-aided design (CAD) 
/computer-aided manufacturing (CAM) technologies 
have been extensive in dentistry. Standardized produc-
tion processes of CAD/CAM-produced restorations have 

enabled uniform material quality, reproducibility of res-
torations, and reduced production costs. The elimination 
of the veneer layer by using monolithic materials makes 
a more conservative preparation possible on crown res-
torations. Another advantage of using monolithic ceram-
ics is that significantly reduces the risk of cohesive failure, 
compared with conventional veneering techniques [3, 4].

Lithium disilicate glass–ceramics are usually used for 
monolithic restorations because of their high fracture 
resistance [5–7]. IPS e.max CAD-lithium disilicate blocks 
with high flexural strength of 360  MPa and modulus of 
elasticity of 95 GPa, first introduced in 2005 [8]. The 
presinterised block contains 40% of lithium meta-silicate 
crystals about 0.5 µm-crystalline sizes. Depending on the 
amount of colorant, the ceramic is blue-colored in this 
phase with its 130–150 MPa-flexural strength. After this 
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blue block is processed as a dental restoration, lithium 
meta-silicate is turned into lithium disilicate is done at 
850  °C for 25 min by the crystallization process. Glass–
ceramic contains 70% lithium disilicate by volume at this 
stage.

Recently, CAD-CAM blocks of interpenetrating 
ceramic and polymer networks (PICN) have been intro-
duced [9–11]. This dual-network provides reduced brit-
tleness and surface hardness, and elastic modulus closer 
to that of dentin, faster milling, better marginal quality, 
and easier polishing [6, 11]. Vita Enamic is one of the 
PICN materials with contains a sintered-glass ceramic 
network of 86% by weight, and by 75% by volume. With 
its 30 GPa elasticity, it is very close to natural dentin [12]. 
Cerasmart, another nanoceramic CAD/CAM blocks 
(20  µm-silica, and 300  nm-barium glass) contain fillers 
of 71% by volume and has a flexural strength of 231 MPa 
and bending strength of 7.5 GPa [13]. There is no need 
for a glazing or sintering process for Cerasmart crowns. 
Also mechanically, it is considered to be from the same 
family as PICN materials. However, inadequate data 
exist regarding the fatigue resistance of posterior hybrid 
ceramic restorations [9, 10, 14–16].

The primary criterion in determining the restorative 
material used is that it has sufficient mechanical proper-
ties against chewing forces and can protect the remain-
ing tooth structure. To determine the durability of 
all-ceramic restorations similar to the oral conditions, 
loading them under similar thermal and mechanical 
conditions is beneficial. Restorations are loaded repeat-
edly in the presence of water with masticatory loads 
reaching an average of 240.000–250.000 cycles/year 
[17–22]. However, there is little information on the 
long-lasting mechanical load properties of monolithic 
CAD/CAM polymer-based resin composite materials 
[23, 24]. In a study, resin-based CAD/CAM materials 
were found to have higher fatigue resistance to occlusal 
loads than CAD/CAM ceramic materials [25]. In addi-
tion to fatigue loading, artificial aging with a thermal 
cycle is a well-established method to imitate the clini-
cal situation [26]. There are many problems with res-
toration due to temperature changes in the oral cavity 
caused by eating, drinking, and breathing [2]. Different 
thermal cycle temperatures were used and most of these 
temperatures range from + 5 °C to + 55 °C in the in vitro 
studies [27–29]. In addition, various cycles ranging 
from 1 to 1,000,000 and retention times ranging from 
4 s to 20 min have been observed [30]. Also, there is a 
need for long-term work on fatigue behavior, and frac-
ture resistance of new hybrid ceramic materials.

This in-vitro study was conducted to assess the fracture 
load of monolithic CAD/CAM molar crown restorations 
after aging. The null hypothesis of the study was that the 

fracture load values would reveal no significant difference 
before and after aging on milled crown restorations fab-
ricated with the lithium disilicate and hybrid monolithic 
CAD/CAM ceramics.

Methods
Preparation of specimens
Sixty freshly extracted and caries-free left mandibular 
first human molar teeth were collected, cleaned, and 
stored in 0.1% thymol solution [31]. The dimensions of 
the collected teeth were measured as11 ± 1  mm in the 
mesiodistal direction, 10 ± 1  mm in the labio-lingual 
direction, and 7 ± 1  mm in the cervical-occlusal direc-
tion. Then, the teeth were prepared according to the 
accepted tooth preparation principles using a chamfer 
diamond rotary instrument (879 014 10: Diatech Dental 
AG:Heerbrugg:Switzerland) by adjusting for a 1 mm cir-
cumferential chamfer margin, 1.5 mm occlusal reduction, 
1  mm axial preparation, and 6° convergence angle [32]. 
After preparation, the master casts were evaluated using 
a surveyor to detect undercuts.

Subsequently, the teeth were divided into three test 
groups randomly (n = 20). For each test group, full-crown 
restorations were fabricated with A2 HT- Cerasmart 
(Cerasmart: GC: Tokyo: Japan), 2M2 HT- Vita Enamic 
(Vita Enamic: Vita Zahnfabrik: Bad Sackingen: Ger-
many), and A2- IPS e.max CAD (IPS e.max CAD: Ivo-
clar Vivadent: Liechtenstein) monolithic blocks in Cerec 
System (Cerec System: Sirona: Bensheim: Germany) 
by the same laboratory technician. Prepared teeth were 
mounted to an optic reader in the Cerec System after 
application of reflectance opaque powder (Cerec Optis-
pray: Sirona: Bensheim: Germany). Design of full crowns 
of lithium disilicate and hybrid ceramics was made onto 
the scanned models. Tooth number- 36, crown type, and 
design were selected from the gallery for fabrication of 
full crown restoration. The finish line of the restoration 
was determined. 2-mm occlusal reduction was set on 
crests of cusps, 1.5-mm on the central fossa, and 1 mm on 
the cervical finish line to simulate the original tooth mor-
phology of number- 36. Data was sent to the Cerec InLab 
milling machine (Cerec InLab MCXL: Sirona: Bensheim: 
Germany) for the fabrication of full crowns. Sintering 
and glazing were applied to IPS e.max CAD crowns at 
850 °C in an inLab furnace (Cerec inLab Profire: Sirona: 
Bensheim: Germany) for 25  min. Cerasmart and Vita 
Enamic specimens were first sandblasted with 25–50 µm 
Al2O3, and then Ceramic Primer II (GC: Tokyo: Japan) 
was applied, then air-dried. After that Optiglaze Color 
(Optiglaze Color: GC: Tokyo: Japan) was applied to the 
specimens, and polymerized with LED (Elipar Deepcure-
S: 3 M Espe: St. Paul: USA) curing.
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Luting of the crowns
All the crown restorations were adhesively luted on pre-
pared molar teeth using a dual-cure composite mate-
rial (Panavia F 2.0: Kuraray Noritake Dental Inc: Tokyo: 
Japan). Equal amounts of Panavia Paste A and B (Panavia 
F 2.0: Kuraray Noritake Dental Inc: Tokyo: Japan) were 
mixed and applied to the inner surfaces of the crowns 
according to the manufacturer’s instructions. The resto-
rations were seated onto the teeth and held in place by 
the application of the same operator’s finger pressure 
[33–36]. The excess cement was removed with sponge 
pellets, and an air-blocking gel (Oxiguard II: Kuraray 
Noritake Dental Inc: Tokyo: Japan) was applied. Then 
they were cured (Elipar Deepcure-S: 3 M Espe: St. Paul: 
USA) for 20  s. The specimens were stored for 24  h at 
37 °C before being subjected to aging.

Aging
All the root surfaces of the teeth were coated with a 
1  mm-thick polyether layer (Impregum Soft: 3  M Espe: 
Seefeld: Germany) from the marginal finish line of the 
restorations to 2-mm apical direction to simulate the 
physiologic mobility of teeth [37, 38]. The teeth were 
immersed in a wax bath, which was replaced by polyether 
in a second fabrication process, as previously described. 
Later, restorations on teeth were fixed in a resin mold, 
which acts as the sample holder for the chewing simu-
lator, using a self-curing acrylic resin material (Meli-
odent: Heraeus Kulzer: Hanau: Germany). Thermal and 
aging were not applied to half of the specimens (n = 10). 
The other half of the specimens underwent thermocy-
cling (SD Mechatronik Thermocycler: SD Mechatronik 
GmbH: München: Germany) for 6,000 cycles between 5° 
and 55 °C, over a dwell time of 60 s, and a transfer time 
of 10 s (n = 10) [39, 40]. After thermocycling, the speci-
mens were subjected to a 2-body wear test in a dual-axis 
chewing simulator in distilled water solution (CS 4.2: SD 
Mechatronic GmbH: München: Germany). Steatite balls 
(Hoechst Ceram Tec.: Wunsiedel: Germany) of 6  mm 
diameter were used as the opposing occlusal surface. The 
balls were fixed to the upper sample holders of the chew-
ing simulator using a light-curing composite resin (GC 
Pattern Resin: GC: Tokyo: Japan). The chewing simu-
lation parameters used are summarized in Table  1. The 
load was transferred to the center of the central fossa of 
the mandibular first crowns by antagonistic steatite balls. 
To simulate 5-years of clinical service, a total of 1,200,000 
cycles were performed [27, 28, 41].

Fracture load test
Following the aging procedure, the specimens were 
tested on a universal testing machine (AGS-X: Shimadzu: 

Tokyo: Japan) until fracture. They were subjected to a 
compressive force at a crosshead speed of 0,5  mm/min 
with a round-shaped modified bur of 4  mm diameter. 
A metal bar was positioned parallel to the long axes of 
the crown specimens and the buccal and lingual cusps of 
the crowns were used to apply the force. The maximum 
load necessary to fracture each specimen was recorded in 
newtons (N).

SEM
To characterize the surface wear patterns, one speci-
men of each monolithic CAD-CAM crown group was 
evaluated by a scanning electron microscopy (SEM-JEOL 
JSM–7001F: Jeol Ltd.: Tokyo: Japan) after the fracture 
loading test, for which the sample surfaces were initially 
coated (Quorum SC7620: Quorum Tech Ltd.: Newhaven: 
UK) with a thin layer of 18 kt-gold (15.9 g / ml). The sur-
faces were then examined at a magnification of 10 × at 
25 keV.

Statistical analysis
Statistical analysis was performed using SPSS 20.0 (IBM 
SPSS Statistics 20: IBM Co: Somers: NY: USA) for Win-
dows. Having assessed that, all the obtained results were 
normally distributed and the differences in the measures 
in terms of groups were evaluated using repeated meas-
ures of Variance analysis. The results are expressed as 
mean ± standard deviation and the level of significance is 
set at 5% (p < 0.05).

Results
None of the samples fractured during aging. A two-
way ANOVA test was used for the comparison between 
fracture values of each material before and after aging 
within itself groups of Cerasmart, Vita Enamic, and IPS 
e.max CAD. The mean and standard deviation of the 
Fracture Load values are shown in Table 2. Mean values 
and standard deviations (SD) for Fracture Load of the 

Table 1  Configuration of parameters set for aging

Parameter Data

Number of cycles 1.200.000

Force 49 N

Height 2 mm

Lateral movement 1 mm

Descendent speed 55 mm/s

Lifting speed 55 mm/s

Feed speed 50 mm/s

Return speed 50 mm/s

Frequency 1.1 Hz
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Ceramart crowns before aging was 2731.81 ± 488.51  N, 
and after aging was 2578.99 ± 575.9  N, and there 
was no statistically significant difference compared 
to between of them (p > 0.05). Mean values and SD 
for Fracture Load of the Vita Enamic crowns before 
aging was 2195.46 ± 387.83  N, and after aging was 
1978.71 ± 364.05 N, and there was no statistically signifi-
cant difference compared between them (p > 0.05). Mean 
values and SD for Fracture Load of the IPS e.max CAD 
crowns before aging was 3098.4 ± 667.09  N, and after 
aging was 2781.51 ± 559.45 N, and there was no statisti-
cally significant difference compared to between them 
(p > 0.05).

Comparison of the monolithic materials together with 
the two-way ANOVA showed statistically significant dif-
ferences regarding the fracture load values of IPS e.max 
CAD, Cerasmart, and Vita Enamic crowns after 1,200,000 
chewing cycles were analyzed (p < 0.05). While the load 
value for the highest fracture was observed in IPS e.max 
CAD ( 3098,4 ± 667,09  N) crowns that aging was not 
applied, the lowest fracture load value was observed 
in aging applied-Vita Enamic ( 1978,71 ± 364,05  N) 
crowns. Multiple comparisons for Fracture Load val-
ues of specimens that aging was not applied are shown 
in Table 3. There was not a statistically significant differ-
ence between the fracture load values of specimens of 

IPS e.max CAD and Cerasmart crowns that aging was 
not applied (p = 0.395). Likewise, there was not a statisti-
cally significant difference between the fracture load val-
ues of specimens of Cerasmart and Vita Enamic crowns 
to which aging was not applied (p = 0.093). However, it 
was found that there existed a statistically significant dif-
ference between the fracture load values of specimens of 
IPS e.max CAD and Vita Enamic crowns to which aging 
was not applied (p = 0.02). Multiple comparisons for 
Fracture Load values of specimens that aging was applied 
are shown in Table 4. According to the fracture load val-
ues after the aging process, there was not a statistically 
significant difference between the fracture load values of 
IPS e.max CAD crowns ( 2781,51 ± 559,45  N) and Cer-
asmart (2578,99 ± 575,9  N) crowns to which aging was 
applied (p = 1). The fracture load values of Vita Enamic 
crowns (1978,71 ± 364,05  N) were statistically signifi-
cantly different from both the fracture load values of IPS 
e.max CAD (p = 0.005) and Cerasmart crowns (p = 0.041) 
to which aging was applied.

Representative SEM images of × 10 magnifications of 
the surface patterns of Cerasmart, Vita Enamic, and IPS 
e.max CAD crowns’ before and after aging are shown in 
Figs. 1, 2 and 3 (a,b).

Discussion
To overcome the chipping behavior of the newly devel-
oped esthetic ceramics, the use of monolithic materials 
has become widespread. In this study, the fracture load 
of monolithic molar crown restorations fabricated with 
lithium disilicate reinforced glass–ceramic and hybrid 
ceramic blocks after aging was investigated in  vitro 
conditions. In the light of the results of this study, 
although a decrease was observed in the mean frac-
ture load values of all samples with aging compared to 
those without aging, this decrease was not significant 
for all materials. For this reason, the null hypothesis 
of the study—the fracture load values would reveal no 

Table 2  Mean values and standard deviations (SD) for Fracture 
Load (N) of the specimens

* Different letters indicate a statistically significant difference between groups 
(p < 0.05)
* a,b intra-group comparisons
** x,y between-group comparisons

Material Without aging With aging

IPS e.max CAD 3098.4 ± 667.09 (a,x) 2781.51 ± 559.45 (a,x)

Cerasmart 2731.81 ± 488.51 (ab,x) 2578.99 ± 575.9 (a,x)

Vita Enamic 2195.46 ± 387.83 (b,x) 1978.71 ± 364.05 (b,x)

Table 3  Multiple comparisons for Fracture Load values of specimens that aging was not applied

a 0.05 level of significance
** Bonferroni correction for multiple comparison

(I) Material (J) Material Average difference
(I-J)

SD p** 95% confidence interval for 
the difference

Lower limit Upper limit

Aging was not applied IPS e.max Cerasmart 366.590 235.806 .395 -235.296 968.476

Enamic 902.941a .002 301.055 1504.827

Cerasmart IPS e.max -366.590 .395 -968.476 235.296

Enamic 536.351 .093 -65.535 1138.237

Enamic IPS e.max -902.941a .002 -1504.827 -301.055

Cerasmart -536.351 .093 -1138.237 65.535
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Table 4  Multiple comparisons for Fracture Load values of specimens that aging was applied

a 0.05 level of significance
** Bonferroni correction for multiple comparisons

(I) Material (J) Material Average 
difference (I-J)

SD p** 95% confidence interval for 
the difference

Lower limit Upper limit

Aging was applied IPS e.max Cerasmart 202.519 227.624 1.000 -378.481 783.519

Enamic 802.798a .005 221.798 1383.798

Cerasmart IPS e.max -202.519 1.000 -783.519 378.481

Enamic 600.279a .041 19.279 1181.279

Enamic IPS e.max -802.798a .005 -1383.798 -221.798

Cerasmart -600.279a .041 -1181.279 -19.279

Fig. 1  a SEM images of the non-aged IPS e.max CAD specimen’s. b SEM images of the aged IPS e.max CAD specimen’s
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significant difference before and after aging on milled 
crown restorations fabricated with the lithium disili-
cate and hybrid monolithic CAD/CAM ceramics—was 
accepted. In the present study, thermal cycling applica-
tions were performed with water temperatures of 5  °C 
and 55  °C over a dwell time of 60  s, a transfer time of 
10 s, and a cycle number of 6000 cycles [39]. According 
to the literature, an average of 250,000 chewing cycles 
in a chewing simulator corresponds to use in a one-year 
clinical setting [42]. For this reason, 1,200,000 cycles 
were conducted in this study for the chewing function 
to correspond to five years [20, 21]. The chewing force 
50  N at a frequency of 1–1.6  Hz has been commonly 
applied to simulate intraoral conditions in in-vitro 
studies [21, 22, 26, 32, 37].

Güngör and Nemli [22] have investigated the effect 
of aging on fracture resistance of monolithic ceramics 
and veneered zirconia crowns. The Vita Enamic crowns 

were catastrophically broken during the aging process. 
The highest fracture resistance values were found in the 
monolithic zirconia crowns, followed by IPS e.max CAD 
crowns, which were monolithic lithium disilicate. In this 
study, it is important to note that the application of aging 
with a force of 100 N, and the only polishing application 
instead of glazing on the specimens exhibit the fracture 
load values of tested ceramic blocks. This study is the first 
one advocating the use of resin ceramics as a veneer on 
the core. Contrary to this work, aging and deterioration 
can occur without visible catastrophic failures. In these 
cases, the next static fracture test can help detect weak 
spots. For this purpose, no fracture was observed in the 
present study during the dynamic loading with the chew-
ing simulator. All surviving samples were placed in a uni-
versal test machine for static loading so that the fracture 
load values could be determined. Fracture load data can-
not be directly related to clinical survival but may provide 

Fig. 2  a SEM images of the non-aged Cerasmart specimen’s. b SEM images of the aged Cerasmart specimen’s
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information on the suitability of new ceramics for the 
requirements of clinically proven systems.

In another study, the fracture resistances of six differ-
ent restoration materials produced by CAD/CAM were 
compared [7]. Cerasmart, Lava Ultimate, and Paradigm 
MZ100 were found to be significantly more successful 
than the new hybrid blocks. Ceramic materials are less 
flexible and more fragile than blocks containing resin. 
This difference in the elastic property is caused by the 
resin component which helps to reduce the fragility. 
Materials that perform well in flexural testing should be 
investigated for other properties, such as cyclic fatigue, 
color stability, and material and antagonist wear. Yet, the 
materials which were used in these tests do not show the 
clinical setting [43]. For this reason, it is aimed to com-
pare the effect of aging processes applied with using full-
crown restorations on fracture load in the present study.

Aboushelib et  al. [11], investigated the effect of cyclic 
fatigue on resin infiltrated ceramics and reinforced glass–
ceramic blocks and reported that dynamic fatigue sig-
nificantly reduced initial fracture strength. Among the 
resin-infiltrated ceramics, Lava Ultimate and Vita Enamic 
were less affected by fatigue and fracture strength while 
the incidence of fracture during fatigue was highest in 
resin-infiltrated ceramics. According to the results of the 
present study, it was found that there was not a signifi-
cant difference between the mean fracture load values of 
the samples before and after aging. However, the reduc-
tion in the fracture strength of the lithium disilicate-rein-
forced ceramic samples was observed more than in the 
resin-containing ceramics similar to the study of Aboush-
elib et al. [11].

In the present study, fracture load revealed for all 
the crown retorations have a consistent crack pattern. 

Fig. 3  a SEM images of the non-aged Vita Enamic specimen’s. b SEM images of the aged Vita Enamic specimen’s



Page 8 of 9Güleç and Sarıkaya ﻿BMC Oral Health          (2022) 22:516 

Although there was no chipping, the milled mono-
lithic crowns were massively (catastrophically) broken 
up to the surface of the prepared tooth. One limitation 
of this study is that the ceramic material does not have 
a uniform thickness. One of the reasons for the non-
uniform thickness of the crown is the production of ana-
tomically contoured crowns on standard preparations. 
Another limiting factor of this study may be the use of 
steatite antagonists instead of human tooth antago-
nists for dynamic loading. Further studies may be done 
for the fracture load of monolithic crowns opposing the 
human tooth antagonist with more cycles on the chewing 
simulator.

Conclusions
In the light of the data obtained from the study that 
contributed to the literature by aging milled mono-
lithic crowns in the posterior region, it was observed 
a decrease in the mean fracture load values of all sam-
ples with aging compared to those without aging, 
this decrease was not significant for all tested hybrid 
ceramic and lithium disilicate ceramic materials. None 
of the samples fractured during the aging of 1,200,000 
cycles chewing simulator to simulate 5  years of clini-
cal service. But the long-term mechanical behaviors of 
these monolithic CAD/CAM materials should be con-
firmed by future in-vitro and in-vivo investigations.
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