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Abstract 

Background:  Laryngeal cancer (LC) is the second frequent malignant head and neck cancer around world, while LC 
patients’ prognosis is unsatisfactory. This study aims to investigate the prognostic value of tumor mutation burden 
(TMB)-related genes in LC.

Methods:  LC data was downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. TMB 
values of all samples were calculated basing on mutation data. The differentially expressed genes (DEGs) between 
LC samples with distinct TMB were subjected to univariate and LASSO Cox regression analysis to build Risk Score. 
Immune cell infiltration analysis was conducted in CIBERSORT.

Results:  Between high and low TMB LC samples, we identified 210 DEGs. Of which, six optimal genes were included 
to construct Risk Score, comprising FOXJ1, EPO, FGF5, SPOCK1, KCNF1 and PSG5. High risk LC patients had signifi-
cantly poorer overall survival than low risk patients. The nomogram model constructed basing on Risk Score and 
gender showed good performance in predicting LC patients’ survival probability.

Conclusions:  The prognostic Risk Score model, basing on six TMB-related genes (FOXJ1, EPO, FGF5, SPOCK1, KCNF1 
and PSG5), was a reliable prognostic model to separate LC patients with different prognoses.
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Background
Laryngeal cancer (LC) is the second most frequent 
head and neck cancer in the world, roughly account-
ing for one-third of all head and neck cancers [1]. It 
has been estimated that there will be 177,000 new 
cases and 95,000 LC related deaths worldwide in 
2018 [2]. Moreover, the incidence of LC has remark-
ably increased in China recently and is higher in males 
than in females (22,500 new cases in males and 2,800 
new cases in females in 2015) [3]. LC mainly originates 

from the epithelial tissue of the laryngeal mucosa and 
the majority of LC is well differentiated squamous cell 
carcinoma [4]. The main clinical manifestations of 
LC include hoarseness, foreign body sensation of the 
throat, and discomfort when swallowing, sometimes 
with irritating cough, blood in sputum and neck bump 
[5]. Many factors may lead to LC, including tobacco 
use, excessive alcohol consumption, virus infection and 
exposure to hazardous substances. Currently, surgery 
and/ or conservative treatment options (e.g., chemora-
diotherapy and target therapy) are usually applied for 
LC patients based on the individual condition [6, 7]. 
The prognosis of LC patients diagnosed at early stage 
has been improved in accordance to the development 
of treatment technology. However, owing to the high 
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rates of recurrence and tendency of developing resist-
ance to clinical therapy, the prognosis of advanced LC 
patients remains poor, with approximately 60% 5-year 
overall survival (OS) rate [8, 9]. Although many clini-
cal variables have been considered as major prognos-
tic factors, comprising nodal involvement, the site and 
volume of the primary tumor, and stages of tumor, 
their invasive procedures inevitably exert negative 
impacts on the patients [10]. As the development of 
medical laboratory techniques, several studies have 
identified some less invasive prognostic indicators, 
such as immune-related genes, inflammatory-related 
genes, and glycolysis-related genes [11], also indicating 
prognostic values for LC patients. These indicators are 
proven to be reliable prognostic biomarkers, but more 
indicators are still needed to explore more accurate 
prediction for the prognosis of cancer patients.

Mutations are of benefit to evolution as a source 
of genetic diversity, while higher than normal rates 
of mutations (genomic instability) may have serious 
consequences for some diseases, especially various 
cancers. Tumor mutational burden (TMB), as a quan-
titative biomarker, is usually defined as the number 
of mutations per coding area of genomic sequence, 
reflecting the tumor mutation quantity. These muta-
tions are processed into neoantigens, then they are 
presented to T cells, so higher TMB level may incline 
to harbor more neoantigens as targets for activated 
immune cells, which thereby increases the chances 
for T cell recognition and enhances anti-tumor effects 
[12]. On the other hand, tumors could inhibit the 
reactivity of T cells via immune checkpoints, to evade 
immune eradication. A variety of studies have shown 
that compared with the patients with lower TMB 
levels, patients with higher TMB levels have greater 
response rates after immune checkpoint inhibitor ther-
apy and experience longer survival time [13]. Results 
of prior studies have suggested that high TMB level is 
emerging as a novel predictive biomarker of sensitiv-
ity to immunotherapy in diverse cancers [14], while 
the prognostic values of TMB-related genes for LC 
patients have not been thoroughly explored yet. The 
whole exome sequencing (WES) is a golden standard 
for estimation of TMB in clinic, but the panel sequenc-
ing-based estimates of TMB has largely replaced WES-
derived TMB due to the high prices.

In this study, we aimed to identify TMB-related 
genes in LC and to explore the connection between 
these TMB-related genes and the prognosis of LC 
patients. We hope to find novel predictive biomark-
ers to assist screening of LC patients with different 
prognosis.

Material and methods
Data sources
We downloaded 120 mRNA expression profiles with cor-
responding complete clinical information and 82 whole 
exome somatic mutation profiles of LC patients from the 
Cancer Genome Atlas (TCGA, https://​tcga-​data.​nci.​nih.​
gov/​tcga/) database to construct LASSO Cox model, and 
the clinical information was shown on Table 1. We also 
downloaded GSE27020 dataset, comprised of expres-
sion profiles of 109 LC patients with complete clinical 
information, from the Gene Expression Omnibus (GEO, 
https://​www.​ncbi.​nlm.​nih.​gov/​geo/) database to verify 
the prognostic model. The patients’ expression profiles 
were obtained by Affymetrix Human Genome U133A 
Array.

TMB value calculation
TMB referred to the total number of mutated genes 
(somatic genes with coding errors, base substitutions, 
or deletion errors) per coding area of genomic sequence 
(Mb). The TMB values of LC samples were calculated 
basing on the mutation data (files), using  package of R.

Differential expression analysis
Differential expression analysis was performed based on 
the limma package of R programming software (version 
4.1.0, the same below), with the thresholds of |Log2FC|> 2 

Table 1  Clinicopathological characteristics of LC patients from 
TCGA database

Characteristics Patients (N = 120)

No. %

Gender Female 23 19.17%

Male 97 80.83%

Age  ≤ 62(Median) 65 54.17%

 > 62(Median) 55 45.83%

Stage I 3 2.50%

II 11 9.17%

III 27 22.50%

IV 75 62.50%

Not reported 4 3.33%

Survival Time Long(> 5 years) 18 15.00%

Short(< 5 years) 102 85.00%

OS status Dead 53 44.17%

Alive 67 55.83%

Alcohol NO 42 35.00%

YES 76 63.33%

Not reported 2 1.67%

Tobacco NO 7 5.83%

YES 110 91.67%

Not reported 3 2.50%

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
https://www.ncbi.nlm.nih.gov/geo/
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and multiple testing adjusted p value ≤ 0.05 to screen the 
significantly differential expression genes (DEGs). And p 
value was adjusted by the Benjamini and Hochberg (BH) 
method.

Functional enrichment analysis
Built-in functions (enrichGO and enrichKEGG) in “Clus-
terProfiler” function package of R programming soft-
ware were used to perform Gene ontology (GO) terms 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways enrichment analyses on the DEGs. To screen 
the significantly enriched GO terms and KEGG path-
way, the BH method adjusted p value < 0.05 was used as 
the threshold. The GO enrichment was conducted by the 
org.Hs.eg.db of Bioconductor (version 3.13) and KEGG 
enrichment was conducted by the Release 100.0 of KEGG 
database.

Calculation of risk score
Univariate Cox regression analysis was applied to the 120 
LC patients based on the expression values of screened 
DEGs, with the p value < 0.01 as threshold to screen genes 
significantly associated with overall survival (OS) of LC. 

To further optimize the genes, LASSO Cox regression 
analysis was performed on the TCGA dataset using the 
glmnet package in R programming software. Risk Score 
of each patient was calculated by the following formula 
using the screened TMB-related genes:

was the LASSO Cox coefficient of gene i and Xi was the 
relative expression of gene i (mRNA expression in this 
study). Survival, and two-sided log-rank test of R package 
were used to determine the values of Risk Score, and the 
patients in the GEO dataset were classified into low-risk 
and high-risk groups according to the median of the Risk 
Score.

Survival analysis
Kaplan–Meier survival analysis was used to assess the OS 
rates of LC patients in GEO dataset. We used the survival 
and packages of R programming software and the sig-
nificance of OS rate difference between different groups 
was examined by the log-rank test. Multivariate Cox 

Risk Score =

n

i=1

Coefi*Xi,

Fig. 1  The flowchart of this work

(See figure on next page.)
Fig. 2  Mutated profiling in TCGA and differential expression analysis. A Landscape of mutation profiles of top 20 genes. The waterfall plot shows 
the mutation information of each gene. B Distribution graph of TMB. The horizontal axis is TMB values and the vertical axis is TMB values of log 
base 10. C Volcano plot of DEGs. The horizontal axis is Log2FC and the vertical axis is log10 (adj. p. value). The blue dots are downregulation genes 
and the red dots are upregulation genes. D Heatmap of DEGs. The horizontal and vertical axes are samples and different genes respectively. The 
red represents high expression of genes and the blue represents low expression of genes. The green is upregulation genes and the purple is 
downregulation genes
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regression model was used to test the independence of 
Risk Score in predicting the prognosis of LC from other 
clinical factors.

Construction of nomogram model
Nomograms are widely used for prognosis of many can-
cers, mainly because they can simplify statistical predic-
tive models. We used the package (http://​CRAN.R-​proje​
ct.​org/​packa​ge=​rms) of R programming software to 
construct a nomogram using the independent prognos-
tic factors identified by the multivariate Cox analysis to 
predict the OS rates of patients in 1  year, 3  years and 
5 years. A calibration curve of nomogram was drawn to 
observe the correlation between the living probability of 
LC patients and actual survival probability.

Immune cell infiltration analysis
Finally, the immune cell infiltration analysis was per-
formed in LC samples with distinct Risk Score. The 
relative proportions of various immune cells (totally 22 
types) in each LC sample were calculated using software 
CIBERSORT [15]. All estimated proportions of immune 
cells in each sample summed up to 1.

Results
The DEGs between high TMB and low TMB LC samples
To explore the prognostic value TMB-related genes in 
LC patients, the flowchart of our present study was dis-
played in Fig. 1. In the 82 LC samples with mutation data 
(from TCGA database), TP53, TTN and CSMD3 were 
the top 3 most frequently mutated genes (Fig. 2A). The 
TMB is the significant characteristic of genomic insta-
bility, and TMB level was used to define the genomic 
instability in this work. Then TMB values of these 82 LC 
patients were calculated basing on the mutation data. 
After sorting in ascending order, totally 42 patients with 
top 25% (≤ 1.765) or bottom 25% (≥ 5.495) TMB values 
were found, which were divided as low TMB (≤ 1.765) 
and high TMB (≥ 5.495) group (Fig. 2B). Eventually 41 
LC patients with mRNA expression profiles (one patient 
without expression profile was removed) were screened 
for the subsequent analysis. Compared to the low TMB 
group, there were 210 DEGs in the high TMB group, 
including 132 upregulated genes and 78 downregulated 
genes (Fig. 2C). The expression levels of these DEGs sig-
nificantly differed between the high TMB and low TMB 
groups (Fig. 2D).

Significant functional GO terms and KEGG pathways
To obtain more functional information about the DEGs 
between high and low TMB LC patients, the above 210 
DEGs were then subjected to the functional enrich-
ment analysis. Our results showed that these 210 genes 
were significantly enriched in 245 biological process 
(BP) terms (including sensory perception of taste), 21 
cellular component (CC) terms (including collagen con-
taining extracellular matrix), and 49 molecular function 
(MF) terms (including endopeptidase inhibitor activity), 
as well as 11 KEGG pathways including complement 
and coagulation cascades (The pathways were obtained 
basing on KEGG [16–18]). These 210 genes were signif-
icantly enriched in the pathways involving the tumor het-
erogeneity. The top 10 significantly enriched GO terms 
and KEGG pathways were shown in Fig.  3A-B, respec-
tively. Meanwhile, the full lists of enriched GO terms and 
KEGG pathways were shown in Table S1 and Table S2, 
separately.

Construction and validation of prognostic Risk Score 
model
The mRNA expressions of the 210 TMB-related DEGs 
were used as continuous variable to perform univari-
ate Cox regression analysis on the 120 LC patients from 
TCGA database. Hazard ratio (HR) of each gene was 
calculated. Then p value < 0.01 was used as threshold to 
screen prognosis related genes. A total of 8 genes were 
significantly correlated with the OS of LC patients, 
including FGF5, KCNF1, SPOCK1, CDH2, EPHX3, EPO, 
PSG5, and FOXJ1 (Fig. 4A).

Those eight TMB-related genes were further optimized 
to six genes (FOXJ1, EPO, FGF5, SPOCK1, KCNF1 and 
PSG5) based on the corresponding lambda value of dif-
ferent genes from LASSO Cox analysis (Fig.  4B, the 
smallest lambda value).

Then mRNA expressions were weighted with LASSO 
Cox regression coefficient to construct prognostic Risk 
Score model as follows: Risk Score = (-0.005280855) 
* Express Value of FOXJ1 + (-0.142224223) * 
Express Value of EPO + (0.176618430) * Express 
Value of FGF5 + (0.065174944) * Express Value 
of SPOCK1 + (0.047590189) * Express Value of 
KCNF1 + (0.017885014) * Express Value of PSG5. Patients 
in the TCGA and GSE27020 datasets were assigned to 
high- and low-risk groups according the median of Risk 

Fig. 3  Results of functional enrichment analysis. A Top 10 enriched GO terms which are significantly enriched. The horizontal axis is the number of 
genes which are enriched in the term. The vertical axis is the name of the GO terms (BP: biological process; CC: cellular component; MF: molecular 
function). B Top 10 KEGG pathways. The horizontal axis is the number of genes which are enriched in the term. The vertical axis is the name of the 
KEGG pathways

(See figure on next page.)

http://CRAN.R-project.org/package=rms
http://CRAN.R-project.org/package=rms


Page 6 of 14Yang et al. BMC Oral Health          (2022) 22:510 

Fig. 3  (See legend on previous page.)



Page 7 of 14Yang et al. BMC Oral Health          (2022) 22:510 	

Scores. After integrating the correlation between the order 
of estimated Risk Score and survival time (Fig. 4C-D), we 
found that the survival time (measured by day and year) 
of the low-risk group was higher than that of the high-risk 
group and the death toll of high-risk group was higher than 
that of the low-risk group. The green and red dots repre-
sent alive and dead patients respectively. The OS of high-
risk group were proved to be significantly lower than those 
of the low-risk group in the TCGA dataset (p < 0.0001) and 
GEO validation set (p = 0.024) by Kaplan–Meier analysis 
(Fig.  4E-F). The results indicated that Risk Score, calcu-
lated by the prognostic model constructed by the 6 TMB-
related genes (FOXJ1, EPO, FGF5, SPOCK1, KCNF1 and 
PSG5), may effectively stratify LC patients with different 
prognosis.

Risk Score represents an independent prognosis signature 
of LC Patients
Seven factors, comprised of age, gender, TNM stage, race, 
alcohol history, tobacco history and Risk Score, were 
included to perform multivariate Cox regression analysis 
to test the independence in prognosis estimation of Risk 
Score. We found that Risk Score (p < 0.001) and gender 
(p < 0.001) were significantly correlated with OS, which 
indicated that they might be reliable prognostic factors 
(HR = 4.90, 95%, CI: 2.827—8.50, p < 0.001) (Fig. 5A).

To further investigate whether the prognostic value of 
Risk Score in LC patients was independent from other 
clinical factors, the stratification analysis was conducted 
based on the age, gender, and alcohol history. The results 
showed that the survival probability of the high-risk LC 
patients was significantly lower than that of the low-
risk patients in both the female (p = 0.024) and male 
(p < 0.0001) subgroups (Fig. 5B-C). The same results was 
found in the younger (≤ 62  years old) (p = 0.012), older 
(> 62 years old) (p = 2 * 10–6) subgroups (Fig. 5D-E), and 
with and without alcohol history LC patients (Fig. 5F-G). 
These indicated that Risk Score could be used as an inde-
pendent prognostic indicator for LC patients.

Nomogram model to predict the prognosis of LC patients
Two independent prognostic factors (Risk Score and 
gender) were used to construct the nomogram model 

(Fig. 6A). To get the points of Risk Score and gender, two 
lines were drawn in the nomogram and the sum of the 
two points was located on the “Total Points” axis. The 
1-year, 3-year and 5-year OSs were obtained by drawing 
a line from the “Total Points” axis. The adjusted curves 
were close to the ideal curve (a 45 degree line with the 
slop 1 through the origin), which indicated that the nom-
ogram constructed by Risk Score and gender was in good 
performance in predicting the OSs in 1 year, 3 years and 
5 years (Fig. 6B-D).

The infiltration ratios of immunosuppressive cells are 
higher in the high‑risk group
After summarizing immune infiltration results of 120 
LC patients (Fig. 7A), the variation of infiltration ratio of 
different patients represented the intrinsic characteris-
tic of individual difference. There were differences in the 
infiltrating proportion of the immune cells between the 
high- and low-risk groups (Fig. 7B). And significant dif-
ferences were observed in the plasma cells, T cells folli-
cular helper, T cells regulatory and macrophage M0. The 
infiltration ratios of plasma cells, T cells follicular helper 
and T cells regulatory were higher in the low-risk group, 
while the infiltration ratio of macrophage M0 was higher 
in the high-risk group (Fig. 7C). The correlation between 
the infiltration ratio of different immune cells was weak 
(Fig.  7D). The 120 LC patients were subjected to clus-
tering analysis based on the infiltration ratio of the four 
significantly different immune cells. Then the patients 
were divided into two groups by principal component 
analysis (PCA), suggesting that the result of infiltration 
of the immune cells was in accordance with the result 
of Risk Score (PCA) (Fig. 7E). Moreover, we found that 
Risk Score was significantly associated with expressions 
of all of key immune checkpoints (CTLA4, PDL1, LAG3, 
TIGIT IDO1 and TDO2) (Fig.  8A). Notably, PDL1 
showed significantly higher expression in high risk LC 
patients compared with low risk patients (Fig. 8B).

Discussion
LC, as the most frequent head and neck cancer in the 
world, represents a significant source of morbidity and 
mortality. Although surgery has been the main choice 

(See figure on next page.)
Fig. 4  Construction of prognostic model for LC. A Forrest plot of univariate Cox regression analysis showing 8 genes identified as prognostic factors 
for LC. HR is short for Hazard ratio and 95%CI is 95% confidence interval. B The graph of the LASSO Cox regression analysis to determine the tuning 
parameter lambda. The horizontal axis is the log(lambda) and the vertical axis is partial likelihood Deviance the lowest value of which is the best 
Lambda. C Risk Score map. The vertical dotted line is the median of Risk Score. The red dots represent high-risk patients and the blue dots represent 
low-risk patients. D Risk Score map in GEO dataset. The vertical dotted line is the median of Risk Score. The red dots represent high-risk patients 
and the blue dots represent low-risk patients. E Kaplan–Meier survival curve in TCGA dataset. The horizontal and vertical axes are time and survival 
probability. Different colors represent different groups. p value is determined by the log-rank test. F Kaplan–Meier survival curve in GEO dataset. The 
horizontal and vertical axes are time and survival probability. Different colors represent different groups. p value is determined by the log-rank test
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for localized cancer, nonsurgical procedures like radia-
tion and chemotherapy have emerged as an option. In 
spite of the tremendous improvement in treatment 
methods over the past few years, LC still is a tumor with 
poor prognosis when detected at the advanced stage. 
In order to separate patients with different prognosis, 
increasing number of studies have shown that the con-
struction of prognostic models based on public data-
bases provides more comprehensive prognostic value. 
Prognostic models based on TMB-related genes are 
becoming a research hot topic for predicting prognosis 
in different cancers.

In this study, we performed GO and KEGG enrich-
ment analyses on the DEGs associated with TMB which 
were screened by differential analysis. The DEGs were 
significantly enriched in pathways, such as neuroactive 
ligand receptor interaction, PI3K-Akt signaling pathway 
and chemical carcinogenesis receptor activation. DEGs 
in tongue squamous cell carcinoma also enriched in the 
PI3K-Akt signaling pathway of KEGG pathways analysis 
[19]. Previous studies have demonstrated that the tumo-
rigenesis of prostate cancer, including apoptosis and 
proliferation of cancer cells as well as tumor metasta-
sis and invasion, is correlated with PI3K-Akt signaling 
pathway. It also showed that the activation of PI3K-Akt 
mammalian target of rapamycin (PI3K-Akt-mTOR) 
pathway is of significant importance among abnormal 
upregulation of leukemogenesis in human acute mye-
loid leukemia [20]. Therefore targeting key components 
of PI3K-Akt-mTOR signaling pathway may be an effec-
tive therapy method of acute myeloid leukemia. These 
researches agree with our results of enrichment analy-
sis, suggesting that the DEGs we screened were closely 
related to cancers.

Six TMB-related genes were screened using univari-
ate Cox and LASSO Cox regression analyses and a Risk 
Score prognostic model was constructed using the 
6 TMB-related genes (FOXJ1, EPO, FGF5, SPOCK1, 
KCNF1 and PSG5) by multiplying expression of the 
genes and coefficient from the LASSO Cox analysis. 
The upregulation genes were FOXJ1 and EPO while the 
downregulation genes were FGF5, SPOCK1, KCNF1 
and PSG5. Overexpression of FOXJ1 enhanced the pro-
liferation and progression of cancer cells of prostate 
cancer and colorectal cancer [21]. Biomarkers includ-
ing FOXJ1, CCL22, ABCA3 and IL1RN may be good 

prognostic factors in breast cancer [22]. EPO gene 
encodes a secreted glycoprotein hormone. It stimulates 
growth and prevent apoptosis. Increased expression of 
EPO has effect on delaying tumor growth could reduce 
tumor hypoxia and ameliorate the deleterious effects 
of hypoxia on tumor growth, metastasis and treatment 
resistance. Previous studies have shown that SPOCK1 
may facilitate cancer metastasis in gastric cancer [23]. 
Knockdown of SPOCK1 expression inhibits the invasion 
and metastasis of various cancer cells [24]. These stud-
ied agree with our results, indicating that the abnormal 
expression of genes may correlate with the LC. Prognos-
tic models constructed using these genes have shown 
prognostic values in many types of cancers. Our results 
showed that the OS of patients in the low-risk group 
was higher than that in the high-risk group and the 
death toll of the high-risk group was higher that of the 
low-risk group. Additionally, although there were much 
more male LC patients than female cases in TCGA, 
probably owing to tobacco use habit, our Risk Score still 
exhibited independent prognostic value in LC patients. 
Collectively, the Risk Score model we constructed bas-
ing on FOXJ1, EPO, FGF5, SPOCK1, KCNF1 and PSG5 
displayed more stability, and was a reliable prognostic 
signature for LC.

The immune infiltration results showed that the infil-
tration ratios of plasma cells, T cells follicular helper 
and T cells regulatory were higher in the low-risk group. 
Plasma cells can secrete antibodies to protect against 
pathogens. And they showed anti-tumor effect in can-
cers and had a positive prognostic effect [25]. T cells fol-
licular helper, characterized by the expression of CXC 
chemokine receptor 5 (CXCR5), are positively con-
nected with survival of cancer patients by the immu-
noprotective functions of CXCL13 which is correlated 
with CXCR5 in germinal center [26]. Regulatory T cells 
play an important role in suppressing inflammation and 
anti-tumor immune response [27]. Infiltration of large 
number of regulatory T cells is often associated with 
poor prognosis [28]. These researches are in accord with 
our immune infiltration results. Our results of immune 
cell infiltration is in keeping with Risk Score models, 
indicating that the Risk Score model is a reliable prog-
nostic model for LC. Furthermore, immune checkpoint 
expression has become a biomarker for selective immu-
notherapy in LC patients. The Risk Score herein was 

Fig. 5  Risk Score is an independent prognostic biomarker for LC patients. A Forrest plot of multivariate Cox regression analysis. Compared to 
patients in the reference groups, patients with Hazard ratio > 1 have higher death risk and patients with Hazard ratio < 1 have lower death risk. 
B-C Kaplan–Meier survival curve of the female and male subgroups. D-E Kaplan–Meier survival curve of the ≤ 62 and > 62 years old subgroups. 
F-G Kaplan–Meier survival curve of with and without alcohol history

(See figure on next page.)
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associated with the expression of key immune check-
points, meanwhile PDL1 showed significantly higher 
expression in high risk LC patients. Upregulation of 
PDL1 was connected with poor prognosis characteris-
tics, for example metastasis, large tumor size and high 
proliferation rate and PDL1 mRNA expression may rep-
resent an independent prognostic feature in breast can-
cer. Overexpression of PDL1 was also related to worse 
outcome of glioblastoma and may be an important 
indicator for immunotherapy for glioblastoma patients. 
These agreed with our results that higher expression of 

PDL1 in the high-risk group indicated poor prognosis of 
LC patients.

There are some limitations to the present study to be 
noted. Firstly, the datasets in this study were not large 
enough to verify the validity of the prognostic Risk Score 
model and our findings need to be verified in a larger 
population. Secondly, a multi-center and validation 
cohort are warranted before exploring clinical signifi-
cance. And the prognostic signature was developed by six 
genes, and further experiments are needed to validate its 
functions in LC.

Fig. 6  Nomogram to predict the survival status of LC patients. A Nomogram based on the Risk Score and gender for 1-, 3- and 5-year OS prediction. 
B-D Calibration curves of nomogram in 1-, 3- and 5-year. The x axis is the predicted probability of nomogram and the y axis is the actual survival 
probability

Fig. 7  Infiltration ratios of immune cells between the high- and low-risk groups. A Estimated proportion of all patients. B Box plots of immune 
cells between high- and low-risk groups. The horizontal axis is the types of 22 immune cells and the vertical is the infiltration ratio of immune cells. 
p value was calculated by the Wilcoxon rank sum test method. p > 0.05, *: p <  = 0.05, **: p <  = 0.01, ***: p <  = 0.001, ****: p <  = 0.0001. C: Box plots 
of immune cells between high- and low-risk groups. The horizontal axis is the types of 22 immune cells and the vertical is the infiltration ratio of 
immune cells. p value was calculated by the Wilcoxon rank sum test method. D Correlation matrix of the proportion of 22 immune cells. The red and 
blue represent positive and negative correlation. The darker the color, the greater the correlation. E The 3-dimensional clustering diagram of PCA. 
Different colors represent different types of samples

(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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Conclusion
The six TMB-related genes were connected with the 
prognosis of LC. The Risk Score model constructed by 
six TMB-related genes (FOXJ1, EPO, FGF5, SPOCK1, 
KCNF1 and PSG5) was a reliable and independent 
prognostic model for separating LC patients with dif-
ferent prognosis.
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Fig. 8  Correlation between immune checkpoints and Risk Score. A Chord diagram of Risk Score and 5 immune checkpoints. It was comprised of 
nodes and lines. The nodes in diagram were Risk Score, TIGIT, CTLA4, TDO2, IDO1, PDL1 and LAG3. Each color represented one node. The width of 
lines represented the strength of connection between two nodes. B Box plots of significantly different expressed immune checkpoints between 
high- and low-risk groups. The yellow represents the low-risk group and the blue represent high-risk group. The vertical axis is the expression value. 
P value is calculated by the Wilcoxon rank sum test method
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