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Abstract 

A growing body of research associates the oral microbiome and oral cancer. Well-characterized clinical samples with 
outcome data are required to establish relevant associations between the microbiota and disease. The objective of 
this study was to characterize the community variations and the functional implications of the microbiome in low-
grade oral epithelial dysplasia (OED) using 16S rRNA gene sequencing from annotated archival swabs in progressing 
(P) and non-progressing (NP) OED. We characterised the microbial community in 90 OED samples — 30 swabs from 
low-grade OED that progressed to cancer (cases) and 60 swabs from low-grade OED that did not progress after a 
minimum of 5 years of follow up (matched control subjects). There were small but significant differences between P 
and NP samples in terms of alpha diversity as well as beta diversity in conjunction with other clinical factors such as 
age and smoking status for both taxa and functional predictions. Across all samples, the most abundant genus was 
Streptococcus, followed by Haemophilus, Rothia, and Neisseria. Taxa and predicted functions were identified that were 
significantly differentially abundant with progression status (all Ps and NPs), when samples were grouped broadly 
by the number of years between sampling and progression or in specific time to progression for Ps only. However, 
these differentially abundant features were typically present only at low abundances. For example, Campylobacter was 
present in slightly higher abundance in Ps (1.72%) than NPs (1.41%) and this difference was significant when Ps were 
grouped by time to progression. Furthermore, several of the significantly differentially abundant functions were linked 
to the Campylobacteraceae family in Ps and may justify further investigation. Larger cohort studies to further explore 
the microbiome as a potential biomarker of risk in OED are warranted.
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Background
Oralcancers pose a major public health challenge. In 
2020, there were > 350,000 new cases of oral cancer 
worldwide, with > 175,00 deaths [1]. In North America, 
there were 35,310 cases and 7,110 deaths, respectively 
[2]. In Canada, oral cancer represents 3.3% of overall can-
cer burden in males and 1.5% in females, ranking above 
stomach, liver, brain, testicular and cervical cancer [3]. 
The 5-year survival rate for oral cancers remains < 50% in 
much of the world [1], mainly due to late stage diagnosis 
[4, 5]. Early detection is vital to the improvement of this 
prognosis [6]. While the costs to health care systems for 
oral cancer treatments are large [7], these are decreased 
with earlier intervention [8].

Oral cancer is frequently preceded by an oral poten-
tially malignant lesion (OPML) [9]. However, even when 
an OPML is discovered early, clinical management can 
be challenging, as it is difficult to discriminate between 
indolent and aggressive disease. A histological diagno-
sis of oral epithelial dysplasia (OED) provides an indica-
tion of risk for high-grade (severe) dysplasia, however, 
it is a relatively poor prognosticator for low-grade (mild 
or moderate) dysplasia, which represents the majority of 
cases [10]. A major barrier to the clinical management 
of low-grade lesions is the inability to accurately dis-
criminate between indolent and transformative disease 
[11–15]. Treatment can bear significant morbidity, and 
given that most low-grade lesions will not progress, it is 
correspondingly important to avoid overtreatment [16]. 
Biomarkers are needed to supplement epithelial dyspla-
sia grading in order to triage low-grade OED according 
to their risk of progression [9, 17].

A growing body of research draws attention to the con-
nection between the microbiome and cancer in the oral 
cavity. Since Helicobacter pylori was first demonstrated 
to be a causative agent in gastric cancer [18], many efforts 
have been made to explore the relationship between 
bacteria and cancer in other body sites. These efforts 
uncovered additional associations, including Salmonella 
typhi with gallbladder cancer [19], Bacteroides fragilis 
with colon cancer [20], and Porphyromonas gingivalis 
and Fusobacterium nucleatum  with colorectal cancers 
[21–23]. In the context of oral cancer, there is growing 
evidence of the carcinogenicity of bacteria that have been 
found to inhibit apoptosis, activate cellular proliferation, 
promote cellular invasion and induce chronic inflamma-
tion, although these findings are primarily from in vitro 
and animal studies [24]. However, given the oral cavity 
contains more than 700 microbial species that form com-
plex and diverse communities (microbiomes), the micro-
biome-host interaction is believed to extend far beyond 
the involvement of a select few species [25]. There has 
been an increase in the number of studies exploring the 

microbiome associated with oral squamous cell car-
cinoma (OSCC) [24, 26–29]. Evidence is growing that 
polymorphic microbiomes can have an impact on cancer, 
and have recently been added as an enabling characteris-
tic to the Hallmarks of Cancer [30].

Definitive evidence that the microbiome plays a causal 
role in the development of oral cancer remains lacking. 
Shifts in the microbial populations that colonize human 
tissues have been shown to affect host biological path-
ways through the output of small molecules and metabo-
lites [31]. Although some research has investigated the 
diversity of the microbiome in the context of OPML, the 
studies are cross-sectional or have focused on differences 
in the oral microbiota associated with health and disease 
[32, 33]. Longitudinal studies that focus on the relation-
ship between the oral microbiome and the malignant 
transformation of OED are needed.

Well-characterized clinical samples with long follow-
up data are required to establish relevant associations 
between the microbiota and disease. Unlike some ana-
tomical sites, the oral cavity is easily accessible for sam-
pling using non-invasive techniques, for example brush 
swabs from OPMLs.

The objectives of this study were to characterize the 
community variations and the functional implications of 
the microbiome in low-grade OED with known outcome 
using 16S rRNA gene sequencing from annotated archi-
val brush swabs.

Methods
Patient population and study design
This project used data and samples already collected 
from subjects enrolled in the Oral Cancer Prediction 
Longitudinal (OCPL) study, an ongoing prospective 
cohort study being conducted in British Columbia that 
has recruited over 600 patients with biopsy confirmed 
OED. Subjects were identified through a centralized pop-
ulation-based biopsy service, the BC Oral Biopsy Service 
(OBS), where community dentists and surgeons across 
British Columbia (estimated population 5.2 million, in 
2021 [34]) send biopsies for histopathological diagnosis. 
Patients with a diagnosis of low-grade OED were referred 
for follow up to OCPL oral dysplasia clinics where they 
were invited to participate in the OCPL study and were 
subsequently followed at 6-month intervals, creating an 
extensive biobank with associated demographic, clini-
cal, histological, and outcome data. Participants were 
recruited by written informed consent. Details about the 
OCPL cohort recruitment, sample collection, and par-
ticipant follow-up procedures have been published pre-
viously [13, 35]. As part of the OCPL Study, a cytology 
brush swab (Innovatek Inc.) was used to collect exfoli-
ated cells from the primary oral lesion by stroking with 
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pressure 10 times in one direction, turning the swab 
180° and stroking 10 times in the opposite direction. The 
brush tip was broken off and placed into a 2 mL vial con-
taining PreservCyt solution preservative (Hologic, Can-
ada). All samples were barcoded, labeled and stored in 
a secure biobank. Comparative biopsies were performed 
on the index lesion every 24 months or upon significant 
clinical change by a certified oral medicine specialist. 
Histopathological grading was done at the Oral Biopsy 
Service and was reviewed and confirmed by the study 
pathologist (LZ), using diagnostic criteria established by 
the WHO [36].

The present study used a nested, retrospective matched 
case–control design. Inclusion criteria included being an 
OCPL study participant with a biopsy confirmed diag-
nosis of low-grade (mild or moderate) OED [36], and a 
baseline cytological specimen available. Participants with 
a previous history of oral cancer were excluded. Demo-
graphic, risk-habit, clinical and outcome information of 
eligible participants were obtained from the study data-
base. Cases consisted of lesions that progressed to severe 
dysplasia, carcinoma in-situ  or OSCC (progressors (P)). 
Controls consisted of lesions that did not progress after 
a minimum of 5  years of follow-up (non-progressors 
(NP)). Cases and controls were matched by anatomical 
site, age (± 6  years), sex, ethnicity, smoking status, and 
alcohol consumption. A sample size of 83 (28 cases, 55 
controls) was required to detect a significant difference 
with a ratio of two controls to one case, a hypothetical 
proportion of controls with 20% exposure, and a hypo-
thetical proportion of 50% of cases with exposure, with 
a significance level of 5% and 80% power on 2-tailed 
tests in an unmatched case–control study design (Ope-
nEpi® Version 3.01 software) [37]. Thirty cases and 60 
controls were pulled to allow for a reasonable margin of 
error. A simple random sampling method of all eligible 
participants was employed. Ethics approval for the pre-
sent study was obtained from the UBC BC Cancer (H20-
00,809) and the Dalhousie University Research Ethics 
Boards (2020–5102). To ensure that the clinical charac-
teristics of the samples would not bias the observations 
of microbial taxa and associations with progression, a 
Cox proportional hazards model within the R package 
survminer [38] was utilized to determine whether time to 
progression was associated with clinical characteristics: 
alcohol consumption (drinks per week), smoking history 
(pack-years), age (years) and grade of dysplasia.

Sample preparation and 16S rRNA sequencing
Lesion cytology brush swabs from baseline visits were 
pulled from the OCPL biobank. DNA isolation was per-
formed using the DNeasy Blood & Tissue Kit (QIAGEN, 
Hilden Germany). An enzymatic lysis buffer preparation 

and incubation period was followed by the addition of 
proteinase K, followed by vortex and incubation. Extrac-
tion steps were conducted as per the manufacturer’s 
instructions. DNA was eluted using 50  µl nuclease free 
distilled water and stored at − 20  °C. Quantification and 
quality assessment were performed using a spectropho-
tometer (NanoDrop ND-100; PEQLAB Biotechnologie, 
Erlangen, Germany).

A 16S rRNA gene sequencing approach was employed 
to uncover associations between microbial taxa and 
malignant progression. A single round of PCR (25 cycles) 
was done using Platinum SuperFi II DNA Polymerase–
High-Fidelity PCR Enzyme for preamplification and 
primers targeting the V1-V3 region (27Fmod forward 
primer = AGR​GTT​TGATCMTGG​CTC​AG; 519R reverse 
primer = GWA​TTA​CCG​CGG​CKGCTG) [39] of the 16S 
rRNA gene. PCR products were verified visually by gel 
electrophoresis. Amplicon fragments were sent to the 
Integrated Microbiome Resource at Dalhousie Univer-
sity (https://​imr.​bio) and were PCR-amplified using high-
fidelity Phusion Plus® polymerase (New England Biolabs 
Inc.). Amplified DNA concentrations were then normal-
ized, pooled, and sequenced on an Illumina MiSeq using 
300 bp paired end read chemistry.

Bioinformatic analyses
Read processing
Raw forward reads were imported into QIIME2 v2022.2 
[40] for processing. Due to low reverse read quality, these 
were not used. Briefly, primers were trimmed using Cuta-
dapt [41], reads were quality filtered using the default 
parameters within the quality-filter plugin and reads 
were denoised using the DADA2 denoising algorithm 
[42] with 5 errors allowed. Taxonomy was assigned to 
the resulting Amplicon Sequence Variants (ASVs) using 
the scikit-learn [43] naïve bayes classifier trained on the 
full-length 16S rRNA gene SILVA reference database 
(version 138) [44] downloaded from the QIIME2 website 
on 4th July 2022. ASVs were removed from further analy-
sis that were: unclassified at the phylum level, classified 
as mitochondria or chloroplasts, had a maximum abun-
dance of < 10 reads per sample or present in < 3 samples. 
The resulting ASVs were subsequently classified using 
a local BLAST [45]search against the SILVA reference 
database (version 138) [44] and with the scikit-learn 
[43] naïve bayes classifier trained on the full-length 16S 
rRNA gene Human Oral Microbiome Database (HOMD; 
version 15.22) [46]. Unless otherwise stated, the taxo-
nomic classifications used are those obtained from the 
naïve bayes classifier trained on the full-length 16S rRNA 
gene HOMD (version 15.22). A phylogenetic tree was 
built using SEPP [47] with a reference phylogeny created 
using the SILVA reference database (version 128) [44]. 

https://imr.bio
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Rarefaction curves were visualised, and all samples were 
found to have sufficient sampling depth (mean 19,082 
reads per sample; range 7,907–48,793). To assess whether 
shifts in the oral microbiome community were associated 
with changes in community metabolism, the PICRUSt2 
tool was used to predict metabolic pathways as well as 
Enzyme Commission (EC) numbers [48]. This tool uses 
16S rRNA gene sequences and previously published 
genomic information to estimate the metabolic capa-
bilities of microbial communities. Downstream bioinfor-
matic analyses were performed using R (v4.1.2), Python 
(v3.9.12) and RStudio (v2022.02.1).

Statistical analysis
Raw count tables were normalised by rarefying to the 
lowest read depth, conversion to relative abundances 
or conversion to centered log ratios (CLR). The phylo-
genetic tree was collapsed at different taxonomic ranks 
using the R package Phyloseq [49]. Alpha diversity was 
assessed using Chao1 richness, Shannon diversity, Simp-
son’s diversity, Simpson’s evenness, and Faith’s phyloge-
netic diversity on rarefied data. Beta diversity between Ps 
and NPs was assessed using Weighted UniFrac distance 
[50] on rarefied data as well as the compositionally-aware 
Phylogenetic Isometric Log Ratio (PhILR) distance [51] 
on raw count tables and visualized using a principal coor-
dinate analysis (PCoA). Alpha and beta diversity metrics 
as well as ordinations were calculated using the Python 
package scikit-bio [52]. Mann–Whitney U tests were 
run using the Python package scipy [53] to determine 
whether there were differences in alpha diversity between 
Ps and NPs. To assess the association between microbial 
composition and progressor status, PERMANOVA tests 
were run using the Adonis function within the R package 
vegan [54] with the following metadata variables: Age, 
Sex, Ethnicity, Alcohol intake, Smoking status, Grade of 
dysplasia and Anatomical site. The matched P/NP group-
ings were given to the model using the strata option to 
constrain permutations and the tests were run separately 
with: (i) Progression grouped to Ps/NPs; (ii) Progression 
grouped to NPs or groupings of the time to progression 
(< 1, 1–2, 2–3, 3–4, 4–6 or 6 + years); or (iii) the number 
of months to progression for Ps only. PERMANOVA tests 
were run separately for Weighted UniFrac and PhILR dis-
tances (as calculated above).

To identify taxonomic features, predicted EC numbers 
or MetaCyc metabolic pathways associated with pro-
gression status, we ran MaAsLin2 [55] using the Maas-
lin2 R package. These tests were run separately with: (i) 
Progression grouped to Ps/NPs; (ii) Progression groups 
to NPs or groupings of the time to progression (< 1, 1–2, 
2–3, 3–4, 4–6 or 6 + years); or (iii) the number of months 
to progression for Ps only as fixed effects. The matched 

P/NP groupings were given to the model as random 
effects and the NP group was used as the reference. These 
tests were run with and without the inclusion of the other 
clinical variables (age, sex, ethnicity [with white used as 
the reference], alcohol intake, smoking status, grade of 
dysplasia and lesion site) as fixed effects and with both 
relative abundance and CLR-transformed data. Taxa, 
EC numbers or pathways were considered to be signifi-
cantly differentially abundant between groups if they had 
a q-value of 0.25 (the default in MaAsLin2). JarrVis [56, 
57] was used to visualise the links between taxonomy and 
the top 10 differentially abundant EC numbers. The alpha 
diversity of ASVs contributing to the top 10 differentially 
abundant EC numbers were calculated as in the FuncDiv 
R package (https://​github.​com/​gavin​mdoug​las/​FuncD​iv) 
[58].

Alpha and beta diversity analyses as well as PER-
MANOVA and differential abundance tests were run in 
the same way for taxonomic data at the ASV, species or 
genus level as well as on the PICRUSt2 output at the pre-
dicted pathway or enzyme level. All code used for analy-
sis can be found at https://​github.​com/R-​Wright-​1/​OED_​
micro​biome and https://​doi.​org/​10.​5281/​zenodo.​70936​
67. Sequences were deposited at Gene Expression Omni-
bus (GEO) with accession GSE198811.

Results
Demographic analysis of the cohort
Participants were followed to an average of 83.8 months 
(Table  1; Supp. Table S1A). The average age at diag-
nosis was 60.2 years and the ratio of males (n = 42) to 
females (n = 53) was almost equal. Participants identi-
fied as primarily white (81%), followed by Asian (11%), 
and South or East Asian (6%). The majority of partici-
pants reported having never smoked (60%) and were 
non- or light alcohol drinkers (90%). Ninety samples 
were included in the study: 30 cases (progressors; OED 
that progressed to severe dysplasia, CIS or SCC) and 60 
controls (non-progressors; OED that did not progress 
after a minimum of 5 years of follow-up). Samples were 
primarily from the lateral or ventral tongue or from the 
floor of mouth. Progressors (Ps) and non-progressors 
(NPs) were matched by clinical and demographic vari-
ables, and there were therefore no significant differ-
ences in lesion site, age, sex, smoking history or alcohol 
consumption between Ps and NPs (p > 0.05). Cohorts 
were followed for a comparable amount of time. Given 
that the oral cavity may be exposed to a variety of envi-
ronmental carcinogens, and lifestyle is a large factor 
contributing to this, we assessed the effects of various 
clinical characteristics on the progression status of our 
cohort. The age, smoking status, and alcohol intake did 
not differ significantly between P and NP sample sets 

https://github.com/gavinmdouglas/FuncDiv
https://github.com/R-Wright-1/OED_microbiome
https://github.com/R-Wright-1/OED_microbiome
https://doi.org/10.5281/zenodo.7093667
https://doi.org/10.5281/zenodo.7093667
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(Mann–Whitney U tests p > 0.384) and were not asso-
ciated with disease onset time (time to progression; 
Cox proportional hazards test p > 0.3; Fig. 1A), and the 
cohorts were followed for a comparable amount of time 
(Table  1). 53% (n = 48) of samples exhibited moderate 
OED and 47% (n = 42) demonstrated mild OED. As 
expected, grade of dysplasia was significant for risk of 
progression (coefficient 0.96, p = 0.0194), with a greater 
proportion of Ps exhibiting moderate dysplasia (70%). 

Therefore, to control for potential confounding, multi-
variable analyses were performed.

Establishing a profile of microbial taxa in progressing 
and non‑progressing OED
Diversity of oral microbial communities
Since external clinical factors did not have a signifi-
cant impact on disease onset, we investigated whether 
changes in the microenvironment may be allowing for 
the colonization of additional organisms not previously 

Table 1  Clinicopathological information of patient cohort 

* Progression = progression to severe dysplasia, carcinoma in situ, or squamous cell carcinoma; No progression = no progression to severe dysplasia, carcinoma in situ, 
or squamous cell carcinoma after a minimum of five years of follow-up
£ Column percentage reported
a Never smoker < 100 cigarettes in lifetime; Ever smoker > 100 cigarettes in lifetime
b Heavy alcohol consumption is defined as consumption of more than 14 drinks per week for females and 21 drinks per week for men. One alcoholic drink was defined 
as 8 oz of beer, 5 oz of wine or 1 oz of spirits
c High Risk = floor of mouth, soft palate, and tongue; Low Risk = all other sites

All
(%)£

No progression*

(%)£
Progression*

(%)£

Total n = 90 n = 60 n = 30

Length of follow-up Median months (range) 83.8 (12.9 to 181.4) 85.3 (18.0 to 172.5) 73.7 (12.9 ± 181.4)

Age at diagnosis
Mean (years ± SD)

60.2 ± 10.4 60.6 ± 10.2 59.3 ± 10.9

Sex
  Male 42 (47) 28 (47) 14 (47)

  Female 48 (53) 32 (53) 16 (53)

Ethnicity
  White 73 (81) 49 (82) 24 (80)

  Asian 10 (11) 6 (10) 4 (13)

  South or East Asian 5 (6) 5 (8) 0 (0)

  Other 2 (2) 0 (0) 2 (7)

Smoking historya

  Never 54 (60) 35 (58) 19 (63)

  Ever 36 (40) 25 (42) 11 (37)

Alcohol consumptionb

  Non/light 81 (90) 54 (90) 27 (90)

  Heavy 9 (10) 6 (10) 3 (10)

Lesion sitec

  Low Risk 12 (13) 8 (13) 4 (13)

  High Risk 78 (87) 52 (87) 26 (87)

Grade of dysplasia
  Mild dysplasia 42 (47) 33 (55) 9 (30)

  Moderate dysplasia 48 (53) 27 (45) 21 (70)

Time to progression category
  < 1 year - - 5 (17)

  1 – 2 years 5 (17)

  2 – 3 years 5 (17)

  3 – 4 years 6 (20)

  4 – 6 years 5 (17)

  > 6 years 4 (13)
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known to be associated with the oral cavity which may 
impact the progression of OED. ASVs were classified 
taxonomically using the HOMD version 15.22 [46] (see 
Supp. Results and Supp. Figs. S1 and S2 for the results 
obtained using different taxonomic classifiers/databases).

To assess the diversity at the species level within the 
microbial communities of P and NP OED samples (Supp. 
Table S1B), we used five different alpha-diversity metrics 
(Fig. 1B). Although Ps and NPs showed similar levels of 
species diversity according to Shannon and Simpson’s 
diversity metrics, there was a relative decrease in diver-
sity according to Chao1 richness and Faith’s PD (Mann–
Whitney U test, p = 0.006 and p = 0.014, respectively) 
and an increase in Simpson’s evenness (Mann–Whitney 
U test p = 0.029) for the Ps relative to NPs. This may indi-
cate that while there is a reasonably equal abundance of 
species within each sample set, the number of unique 
species may be lower in Ps, and they may be more closely 
related in phylogenetic space. Therefore, we observe 
lower relative diversity of microbes in the oral cavity of 
Ps.

We compared the microbial diversity of Ps and NPs 
using both PhILR (Fig.  1C) and Weighted UniFrac dis-
tance (Supp. Fig. S3) with PERMANOVA tests with 
age, sex, ethnicity, alcohol intake, smoking status, grade 
of dysplasia, lesion site and progression grouped in 
one of three ways: (i) Ps and NPs (Progression; residual 
R2 = 6.1% and 0.056, respectively); (ii) Ps grouped by 
the number of years to progression (< 1, 1–2, 2–3, 3–4, 
4–6 and 6 + ; Progression (Grouped); Residual R2 = 5.2% 
and 0.050, respectively) and NPs; (iii) Ps only with the 
number of months to progression (Progressors only; 
Residual R2 = 0 for both). Information on the match-
ing of Ps and NPs was also given to the first two mod-
els. While there was no statistical difference observed in 
any of these groupings (PERMANOVA p > 0.05; Fig.  1C 
and Supp. Fig. S3) and the Principal Coordinates Analy-
sis (PCoA) of PhILR distance showed no clustering of 

P and NP samples – indicating that diversity was not 
affected by progression status alone – there were some 
significant (p ≤ 0.05) differences with some other clinical 
variables (sex, ethnicity and smoking status) and interac-
tions between progression and the other clinical variables 
(Fig. 1C and Supp. Fig. S3). Of note, for PhILR distance 
there were significant interactions between (i) progres-
sion and age, sex and alcohol intake (R2 = 1.9%, p = 0.027) 
or sex and grade of dysplasia (R2 = 3.3%, p = 0.017) (ii) 
progression (grouped) and age (R2 = 8.6%, p = 0.025) 
or smoking status (R2 = 6%, p = 0.004). The results were 
similar for Weighted UniFrac distance (Supp. Fig. S3), 
with diversity not being significantly affected by progres-
sion status alone, with significant interactions between (i) 
progression and sex (R2 = 2.4%, p = 0.011), age, sex and 
alcohol intake (R2 = 1.5%, p = 0.043) or sex and ethnic-
ity (R2 = 0.7%, p = 0.049) and (ii) progression (grouped) 
and either age (R2 = 8.2%, p = 0.036) or smoking status 
(R2 = 6.3%, p = 0.001). While there were no significant 
differences found with any of the variables for (iii) Ps 
only, the lesion site was contributing to large (non-signif-
icant) differences in beta diversity (R2 = 19.2% or 20.5% 
for PhILR or Weighted UniFrac distance, respectively).

Phylum‑ and genus‑level shifts in microbial communities
When taxa in Ps and NPs were compared, small differ-
ences in abundance were observable up to the phylum 
level of classification (Supp. Fig. S4). We have examined 
the abundance of taxa using both relative abundance, 
as this is what the majority of studies to date have used, 
and CLR abundance, as this accounts for the composi-
tionality of microbiome data [59]. For the relative abun-
dances, higher values indicate that more sequences 
belonging to a particular taxon are present. For the CLR 
abundance, a zero value indicates that the abundance of 
a taxon is equal to the mean log2 abundance of all taxa, 
with positive or negative values indicating higher or 
lower abundances than the mean log2 relative abundance, 

(See figure on next page.)
Fig. 1  Clinical summary and sample diversity at the species level. A Age, alcohol intake, smoking status, and follow-up time were similar between 
groups. B Species diversity within the microbial communities of 30 progressing (P) and 60 non-progressing (NP) oral epithelial dysplasia (OED) 
samples using five different alpha-diversity metrics: Chao1 richness, Shannon diversity, Simpson’s diversity, Simpson’s evenness, and Faith’s 
phylogenetic diversity. U and p-values in A and B were determined by Mann–Whitney U tests and lines indicate matched Ps and NPs. For age, 
alcohol intake and smoking history, Cox proportional hazard test coefficients (C) and p-values are shown in addition to the Mann–Whitney U test 
statistics. Lines between points indicate matched Ps/NPs and boxes show the median, upper and lower quartiles while whiskers show the range of 
the data (1.5 times the interquartile range). C Principal Coordinates Analysis (PCoA) and PERMANOVA tests using Phylogenetic Isometric Log Ratio 
(PhILR) distance at the species level (Supp. Table S1C). Ellipses show the confidence interval (3 standard deviations) for each group and the values 
shown on each axis label indicate the proportion of sample variation accounted for by that axis. The heatmap in C shows PERMANOVA R2 values 
for all separate variables (shown with abbreviations in the first instance) that were added to the models as well as all interactions between variables 
with an R2 ≥ 5% and/or with p ≤ 0.05 (denoted with an asterisk). All PERMANOVA R2 and p values are shown in Supp. Table S1C. The columns show 
PERMANOVA tests for Progression (P/NP), Progression (grouped; NP and P grouped to < 1, 1–2, 2–3, 3–4, 4–6 or 6 + years for time to progression) 
and Progressors only with the specific follow-up time. The equivalent of C for Weighted UniFrac distance is shown in Supp. Fig. S3
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respectively. In both sample groups, the dominant phyla 
were Firmicutes, Proteobacteria, Actinobacteria, Bacte-
roidetes, and Fusobacteria; a slight decrease in Firmicutes 
and a slight increase in Proteobacteria in Ps was observed 
for both relative and CLR abundance (Supp. Fig. S4A). At 
the genus-level, Streptococcus was the most abundant, 
with Haemophilus, Neisseria, and Rothia also making 
up high abundances for both relative and CLR abudance 
(Fig. 2; Supp. Fig. S4E). The relative abundances of these 
genera between NPs and Ps appear quite similar, other 
than an apparent decrease in Streptococcus in Ps.

Known oral cavity colonizers did not correlate 
with progression status
Most of the more abundant taxa identified in this study 
are known to be associated with human oral health [60, 
61]. However, Streptococcus spp., Haemophilus, and 
Fusobacteriumhave been correlated with oral cancer 
and epithelial precursor lesions [26, 27, 33, 60, 62, 63]. 
Furthermore, some of the less abundant taxa identified, 
including Campylobacter, Prevotella, Pseudomonas, and 
Rothia, have been shown to be differentially enriched in 
studies that have investigated OSCC or OPML by swab 
or biopsy [26, 27, 33, 64]. We therefore carried out dif-
ferential abundance testing between Ps and NPs using 
MaAsLin2 [55] – which allows the inclusion of the 
matched P/NP grouping as well as other metadata – at 
the genus and species levels in order to see whether there 
was any indication that these taxa are significantly associ-
ated (q ≤ 0.25, the default cut-off in MaAsLin2) with pro-
gression status. We ran these tests both with and without 
the other clinical variables (age, sex, ethnicity, alcohol 
intake, smoking status, grade of dysplasia and lesion site) 
as well as with relative abundance or CLR-transformed 
count tables. There were no genera that were significantly 
differentially abundant with progression status or time to 
progression with the relative abundance data, however, 
there were some with the CLR abundance data. For the 
CLR abundance, no genera were significantly differen-
tially abundant between Ps and NPs, however, when Ps 
were grouped to the time to progression (< 1, 1–2, 2–3, 
3–4, 4–6 or 6 + years), one genus was significant in the 

CLR-transformed data, without or with the inclusion 
of the other clinical variables: Campylobacter, which 
was typically more abundant in Ps than NPs, although 
the magnitude and direction of this difference varied 
depending on the time to progression (Fig. 2, Supp. Fig. 
S5 and Supp. Table S2). There were 124 genera that were 
significantly differentially abundant with follow-up time 
in the Ps only (without the inclusion of the other clini-
cal variables), nine of which were among the top 25 most 
abundant genera; Actinomyces, Aggregatibacter, Allo-
prevotella, Campylobacter, Lautropia, Prevotella, Ralsto-
nia, Schaalia and Selenomonas. However, none of these 
were significantly differentially abundant when the other 
clinical variables were also included (Fig.  2 and Supp. 
Table S2).

At the species level there were – as for the genus level 
– no taxa that were significantly differentially abundant 
with either progression status or time to progression 
with the relative abundance data, but there were with the 
CLR abundance. There were 271 species that were signifi-
cantly differentially abundant between Ps and NPs (five 
when the other clinical variables were also included) the 
majority of which were present in only very low abun-
dances (Supp. Table S3). Of these 271 species, only five 
were present within the top 40 most abundant species 
(Fig. 3 and Supp. Table S3): two of these were higher in 
abundance in Ps than NPs (Bergeyella sp. HMT 322 and 
Lautropia mirabilis), two were lower in abundance in Ps 
than NPs (unclassified Veillonella and Ralstonia picket-
tii) and one was very similar in abundance between Ps 
and NPs, with slightly higher CLR abundance in NPs and 
higher relative abundance in Ps (unclassified Prevotella). 
None of these were also significantly differentially abun-
dant with the inclusion of the clinical variables. Three 
species were significantly differentially abundant when 
Ps were grouped to the time to progression (< 1, 1–2, 
2–3, 3–4, 4–6 or 6 + years), two of which were detected 
without (Gemella morbillorum and Neisseria elongata) 
and one with the inclusion of the other clinical variables 
(Prevotella pallens), although none of these were within 
the 40 most abundant species (Fig. 3 and Supp. Table S3). 

Fig. 2  Prevalence, abundance and differential abundance of the top 25 most abundant genera in progressor and non-progressor samples. 
Phylogenetic tree showing the class of each genus and a heatmap showing mean prevalence (blue scale; left). Heatmaps showing mean 
abundance of genera in progressor (P) or non-progressor (NP) samples (left) or differential abundance (centre) are shown alongside boxplots 
showing abundance in all samples (right) for each of relative abundance and CLR abundance. In the boxplots, each sample is shown as an 
individual point and boxes show the median, upper and lower quartiles while whiskers show the range of the data (1.5 times the interquartile 
range). MaAsLin2 tests for differential abundance were run with (+ M) and without the other clinical variables (metadata, M; age, sex, ethnicity, 
alcohol intake, smoking status, grade of dysplasia and lesion site). As above for PERMANOVA tests, progression was grouped in one of three ways: 
(i) Ps and NPs (P vs NP); (ii) Ps grouped by the number of years to progression (< 1, 1–2, 2–3, 3–4, 4–6 and 6 + ; P vs NP); and (iii) Ps only with the 
number of months to progression (P only). For (i) and (ii) the matched P/NP grouping was given to the model so only matched controls were used. 
Genera were determined to be differentially abundant and are shown in black in the heatmap if they had q ≤ 0.25 (the default in MaAsLin2). White 
denotes that they were not significantly differentially abundant

(See figure on next page.)
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No species were significantly differentially abundant with 
time to progression for Ps only.

Metabolic impact of oral microbiome changes associated 
with progression
Colonizing bacteria are known to interact with their 
hosts through both direct and indirect mechanisms, 
including receptor interactions and the release of nutri-
ents or metabolic products into the microenvironment. 
Therefore, we next examined the involvement of spe-
cific EC numbers or metabolic pathways in NPs and Ps 
using PICRUSt2 to generate predicted metagenomes for 
all samples based on the taxa present (Supp. Tables S1D 
and S1E). The alpha and beta diversity of profiles gener-
ated by PICRUSt2 for functions at the level of both genes 
for EC numbers and MetaCyc metabolic pathways were 
similar to that of the taxa (Fig. 1 and Supp. Figs. S6 and 
S7). Ps have significantly lower Chao1 richness and sig-
nificantly higher Simpson’s evenness than NPs (Mann–
Whitney U test p < 0.05) and while progression status did 
not have a significant effect on Bray–Curtis beta diversity 
on its own, it did have a significant interaction with sev-
eral of the other clinical variables (e.g., sex, smoking sta-
tus, lesion site and grade of dysplasia; Supp. Figs. S6 and 
S7 and Table S1C).

We carried out differential abundance testing using 
MaAsLin2 [55] at both the enzyme and the pathway level, 
with both relative and CLR abundance and both with 
and without the other clinical variables (age, sex, ethnic-
ity, alcohol intake, smoking status, grade of dysplasia and 
lesion site). We initially examined the pathway level, and, 
as with the taxa, there were no significant differences 
between Ps and NPs for the relative abundance data, but 
there were five pathways that were significantly differen-
tially abundant between Ps and NPs for the CLR abun-
dance data without the other clinical variables, with one 
of these pathways (PWY0-1533; generally higher in abun-
dance in NPs than Ps) still being differentially abundant 
with the inclusion of the other clinical variables (Supp. 
Table S4 and Supp. Fig. S8). When Ps were grouped 
to the time to progression (< 1, 1–2, 2–3, 3–4, 4–6 or 
6 + years), there were 21 pathways that were significantly 

differentially abundant between one or more groups and 
the NPs without the other clinical variables, six of which 
were also significant with the inclusion of the other clini-
cal variables (P164-PWY, P562-PWY, PWY-5265, PWY-
6608 and RHAMCAT-PWY; along with one additional 
pathway; Supp. Fig. S8). For progressors only, there was 
only one pathway that was significantly differentially 
abundant (for the CLR abundance with the other clinical 
variables); P221-PWY (Supp. Table S4 and Supp. Fig. S8).

When we examined the enzymes, there were again very 
few that were significantly differentially abundant with 
progression status for the relative abundance, but there 
were a large amount that were for the CLR abundance 
(Supp. Table S5). We therefore focus only on the enzymes 
that were identified both with and without the inclusion 
of the other clinical variables: six for Ps vs NPs and nine 
for Ps grouped to the time to progression vs NPs (Supp. 
Fig. S9; no enzymes were significantly differentially abun-
dant with time to progression for progressors only). In 
order to explore the links between taxonomy and func-
tion, we examined the ASVs that were contributing to 
these 15 EC numbers and found that the alpha diversity 
tended to be higher as the abundance of the EC number 
increased (Supp. Fig. S10). We used JarrVis to collapse 
the ASVs contributing to these EC numbers at the family 
level and visualise those families/EC numbers with > 100 
gene copies on average within a sample grouping (after 
rarefying; Fig. 4). Two of the EC numbers were removed 
by this filtering due to low abundance. This revealed 
that some families were the only abundant contributors 
to some enzymes and that these contributions could 
come from only a single sample group, i.e., the contri-
bution of Campylobacteraceae to enzymes EC:2.3.1.203, 
EC:2.4.1.290, EC:2.4.1.291, EC:2.6.1.34, EC:2.7.8.36, 
EC:3.2.2.30 and EC:4.2.1.135 from the 2–3  year time to 
progression group. There were also a few families for 
which there were only abundant contributions from 
one sample grouping (e.g., Propionibacteriaceae, NP; 
Corynebacteriaceae, Bacillaceae, unclassified Proteo-
bacteria and unclassified Rhizobiales, 6 + years; Aceto-
bacteraceae, 3–4  years; Actinomycetaceae, 1–2  years; 
unclassified Bacteria, 2–3 years; Neisseriaceae, 4–6 years 

(See figure on next page.)
Fig. 3  Prevalence, abundance and differential abundance of the top 40 most abundant species in progressor and non-progressor samples. 
Phylogenetic tree showing the class of each species and a heatmap showing mean prevalence (blue scale; left). Heatmaps showing mean 
abundance of species in progressor (P) or non-progressor (NP) samples (left) or differential abundance (centre) are shown alongside boxplots 
showing abundance in all samples (right) for each of relative abundance and CLR abundance. In the boxplots, each sample is shown as an 
individual point and boxes show the median, upper and lower quartiles while whiskers show the range of the data (1.5 times the interquartile 
range). MaAsLin2 tests for differential abundance were run with (+ M) and without the other clinical variables (metadata, M; age, sex, ethnicity, 
alcohol intake, smoking status, grade of dysplasia and lesion site). As above for PERMANOVA tests, progression was grouped in one of three ways: 
(i) Ps and NPs (P vs NP); (ii) Ps grouped by the number of years to progression (< 1, 1–2, 2–3, 3–4, 4–6 and 6 + ; P vs NP); and (iii) Ps only with the 
number of months to progression (P only). For (i) and (ii) the matched P/NP grouping was given to the model so only matched controls were used. 
Species were determined to be differentially abundant and are shown in black in the heatmap if they had q ≤ 0.25 (the default in MaAsLin2). White 
denotes that they were not significantly differentially abundant
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Fig. 3  (See legend on previous page.)
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Fig. 4  JarrVis sankey plot showing the links between samples grouped by years to progression (left), microbial families (middle) and predicted EC 
numbers (right). Microbial families from different classes have differently coloured nodes. The sizes of nodes and connecting lines correspond to 
mean abundance values (rarefied gene copy numbers) for the contribution to microbial families and predicted EC numbers within each sample 
grouping. Only families/EC numbers with a mean abundance of > 100 copies are shown
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and Comomonadaceae, 2–3  years), and some that only 
had abundant contributions from either NPs or those 
groups with a longer time to progression (e.g., Burkholde-
riaceae, unclassified Actinobacteria and Rhizobiaceae). 
This also shows that in those that progressed soon after 
sampling (i.e., the < 1  year group), there was only one 
family (Micrococcaceae) abundant enough to be visual-
ised, and this family only contributed to one EC number 
(EC:1.2.1.8 Betaine-aldehyde dehydrogenase).

Discussion
This is the first study to use archival lesion swabs for the 
characterization of bacteria within OED. It is also the first 
to compare the diversity between progressing and non-
progressing OED in a longitudinal design and to report 
on the functional potential of the bacteriome associated 
with risk of progression in OED. Our study has revealed 
that the bacterial make-up of the OED niche is similar to 
what has previously been described in the normal oral 
cavity, OPML and OSCC at the phylum and genus lev-
els [29, 60, 65–67]. We also found that although partici-
pant factors such as age or smoking status have an overall 
larger impact on the oral microbiome than progression 
status, once these are controlled for there are also small 
differences in the microbiome that can be attributed to 
progression status (Fig. 1). In cross-sectional studies, dif-
ferential relative abundance of certain genera, such as 
Streptococcus, Prevotella, Campylobacter, Pseudomonas, 
and Fusobacterium,is often seen between normal and 
diseased states [26, 27, 33, 64]. While there were slight 
differences in relative abundances of these genera, only 
Campylobacter showed significant differences in CLR-
transformed abundance while controlling for clinical 
variables. Campylobacterhas indeed been shown to be 
associated with OSCC tissue and is often higher in abun-
dance in tumour tissue than in normal tissue [27, 68–72]. 
Furthermore, Campylobacter spp. has shown increased 
abundance in oral leukoplakia compared to contra-lateral 
controls [33]. However, taxonomic features at the species 
level that were determined to be significantly associated 
with either Ps or NPs were low abundance, and therefore 
are not likely to be large contributors to the niche. To 
determine whether these slight changes in abundances 
are significant at either genera or species level resolu-
tions, it will likely take substantially larger sample sizes.

More recently, the literature has pointed to the role of 
the microbial metabolome and how the sum of the com-
munity as a whole may play a larger role in influencing the 
tissue microenvironment than any species alone [73, 74]. 
The concept of functional redundancy may explain how 
compositional variations of the microbiome associated 
with OPML and OSCC may collectively be contribut-
ing to a dysbiotic community. Our functional prediction 

analysis identified 15 enzymes (EC numbers) that were 
significantly differentially abundant with the time to 
progression in Ps (Supp. Figs. S9 and S10). In particular, 
seven of the identified enzymes were linked to the abun-
dance of the Campylobacteraceae family in 2–3 year Ps. 
Several of these (EC:2.4.1.290, EC:2.4.1.291, EC:2.6.1.34) 
are related to the N-linked glycosylation, which was first 
described for the bacterial species Campylobacter jejuni, 
which belongs to this family [75], as well as protein gly-
cosylation in general (EC:2.3.1.203). In particular, N,N– 
bacillosamine, a substrate and intermediate of these 
processes, may contribute to the pathogenicity of the 
bacteria and play a role as a virulence factor [76]. Amino 
sugar and nucleotide sugar metabolism were also associ-
ated with multiple enzymes (EC:2.3.1.203, EC:2.6.1.34, 
EC:4.2.1.135) and nucleotide sugar metabolism may 
provide glycosyl donors for glycosylation [77, 78]. While 
the specifc mechanisms by which glycoproteins affect 
pathogencity and virulence are not well-known, they 
may either be expressed on the surface of bacteria, where 
they are important for adhesion to host cells and thus the 
initiation of infection, or secreted by the bacteria, which 
may allow for the evasion of the host’s immune system 
[79]. The repeated appearance of enzymes involved in 
glycosylation may indicate that those bacteria which are 
inhabiting the oral cavity in pre-malignant lesions that 
progress behave more pathogenically. However, it is 
uncertain as to which Campylobacter species are particu-
larly abundant and whether they are pathogenic or com-
mensal in more aggressive disease.

Given that our study design compared samples taken at 
an early stage of disease (mild /moderate OED), the lack 
of significant differences between P and NPs may indi-
cate that changes in overall diversity as well as taxonomic 
shifts occur at later stages in progression, or perhaps 
detectable only after OSCC has been established. Fur-
ther to this, a study looking at OSCC, normal, and OPML 
found that while OSCC samples clustered based on beta-
diversity, pre-cancer and normal samples were mixed, 
indicating that there was not a great difference in the 
diversity between these groups [65]. This may support 
the notion that microbial changes in diversity change at 
a later stage. Larger studies that investigate the full spec-
trum of expertly graded OED are necessary.

A potential limitation of this work is that the samples 
were stored at ultra-low temperatures for a consid-
erable period of time from date of collection to DNA 
extraction (mean 15.7 years, range 8.9 – 24.3 years). It 
is unknown how long-term storage may have affected 
such small samples with a potentially small biomass. 
However, this should also be viewed as strength, as 
older samples have longer follow-up and as a result, 
more robust outcome data. Alpha-diversity differed 
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between Ps and NPs; however, beta diversity did not 
differ significantly among these groups alone (although 
it did in conjunction with other participant metadata). 
One of the reasons for this lack of significance in beta 
diversity may be due to a relatively small sample size. It 
is possible that the study suffered from a type II error 
due to lack of statistical power. However, prior to mov-
ing forward with a full-scale study, a pilot study of these 
small and invaluable samples was necessary. A sig-
nificant strength is that this study examined patients 
with known outcomes, who had samples taken prior 
to developing disease. However, a limitation is that no 
longitudinal sampling points have been evaluated. A 
comparison between longitudinal samples can provide 
insightful results on the temporal changes. Future stud-
ies that employ repeated sampling are warranted. A 
caveat to this work is that 16S rRNA sequencing is not 
always capable of providing a high enough resolution 
to differentiate between closely related genera. In addi-
tion, functional profiles were established via prediction 
analysis (PICRUSt2) [48]. A metagenome sequencing 
approach may yield more comprehensive data for taxo-
nomic assignment to the species level and provide more 
direct information on metabolic pathways for func-
tional profiling based on pathway component genes.

Conclusions
In conclusion, for the first time, we have characterized 
the microbiome of low-grade OED with known out-
come using 16S rRNA gene sequencing from annotated 
archival swabs. At the genus level, known oral cav-
ity colonizers did not correlate with progression. The 
collective metabolic impact of the bacteriome trends 
toward a depletion of several enzymes that have been 
previously linked to cancer in progressing oral lesions 
but requires a larger sample size to show this more 
clearly. Having shown that quality NGS data can be 
obtained from archival oral swabs, larger prospective 
cohort studies to further explore the taxa and the func-
tion of the microbiome as a potential biomarker of risk 
in OED are warranted.
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