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Abstract
Background Oral lichen planus (OLP) is a local autoimmune disease induced by T-cell dysfunction that frequently 
affects middle-aged or elderly people, with a higher prevalence in women. CD8 + T cells, also known as killer T 
cells, play an important role in the progression and persistence of OLP. In order to identify different OLP subtypes 
associated with CD8 + T cell pathogenesis, consensus clustering was used.

Methods In this study, we preprocessed and downscaled the OLP single-cell dataset GSE211630 cohort downloaded 
from Gene Expression Omnibus (GEO) to finally obtain the marker genes of CD8 + T cells. Based on the expression 
of marker genes, we classified OLP patients into CMGs subtypes using unsupervised clustering analysis. The gene 
expression profiles were analyzed by WGCNA using the “WGCNA” R package based on the clinical disease traits and 
typing results, and 108 CD8 + T-cell related OLP pathogenicity-related genes were obtained from the intersection. 
Patients were once again classified into gene subtypes based on intersection gene expression using unsupervised 
clustering analysis.

Results After obtaining the intersecting genes of CD8 + T cells related to pathogenesis, OLP patients can be precisely 
classified into two different subtypes based on unsupervised clustering analysis, and subtype B has better immune 
infiltration results, providing clinicians with a reference for personalized treatment.

Conclusions Classification of OLP into different subtypes improve our current understanding of the underlying 
pathogenesis of OLP and provides new insights for future studies.

Keywords Autoimmunity, OLP, CD8 + T cells, Unsupervised hierarchical clustering, Single-cell sequencing

CD8 + T-cell marker genes reveal different 
immune subtypes of oral lichen planus 
by integrating single-cell RNA-seq and bulk 
RNA-sequencing
Jinhao Zhang1†, Gaoge Peng2†, Hao Chi2†, Jinyan Yang1, Xixi Xie1, Guobin Song1, Lisa Jia Tran3, Zhijia Xia3* and 
Gang Tian4*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12903-023-03138-0&domain=pdf&date_stamp=2023-7-5


Page 2 of 15Zhang et al. BMC Oral Health          (2023) 23:464 

      Introduction
The OLP is an autoimmune disease caused by dysfunc-
tional T cells, with lesions often found in the buccal 
mucosa, tongue, and gums [1]. The prevalence is esti-
mated to be 0.5–2.0% [2, 3], and OLP frequently affects 
middle-aged or older adults, with a higher prevalence 
in women [4, 5]. The most common forms are reticu-
lar, vesicular, papular, and plaque, while atrophic and 
maculopapular forms are less common. Clinically OLP 
may occur individually or in various combinations [6]. 
There are several common symptoms of OLP, includ-
ing burning sensations and chronic pain, but lesions of 
the reticular and papular regions usually present with-
out symptoms. However, atrophic and erosive forms of 
OLP can negatively affect patients’ quality of life, caus-
ing sensitivity, burning symptoms and discomfort [7]. A 
common feature of OLP is immune infiltration, particu-
larly CD8 + lymphocytes, as well as the expression of Th1 
and Th2 cytokines in OLP lesions and tissue secretions 
[8] The complex cytokine network is thought to play an 
essential role in the progression and persistence of OLP 
[9], so there is a speculation on the pathogenesis: infil-
trative cytotoxic CD8 + T cells promote apoptosis of oral 
mucosal basal cells, leading to autoimmunity. keratin-
forming cells replace CD8 + T cells in the major tissue, 
which is activated directly by the major histocompatibil-
ity complex (MHC)-1 on keratinocytes or indirectly by 
antigen-presenting [10]. OLP rarely regresses spontane-
ously and is classified as a potentially malignant disease 
by the World Health Organization[11]. Therefore, explor-
ing the malignant mechanism of OLP to OSCC is cru-
cial for early diagnosis of OSCC and for providing more 
effective therapeutic measures.

In dentistry and oral pathology, OLP is one of the most 
frequently encountered mucosal diseases. OLP does 
not have a completely curative treatment available[12]. 
However, recent developments in microarray and RNA 
sequencing technologies have ushered in a new shift in 
biomedical research. In the present study, we screened 
highly variable genes through a series of analyses of sin-
gle-cell sequencing data and transcriptome data based on 
various databases to identify potential regulatory mecha-
nisms of OLP and potential biomarkers in the pathogen-
esis of OLP.

Method
Raw data collection
The single-cell data GSE211630 cohort containing 10× 
scRNA-seq data from five OLP samples and one normal 
oral mucosa sample were downloaded from the GEO 
database. For gene expression profile data, two cohorts 
GSE38616 and GSE52130 were merged and batch effects 
[13] were removed from the GEO database.

Data processing and analysis of scRNA-seq
The 10× scRNA-seq data were processed as follows: (1) 
10× scRNA-seq data were converted to Seurat objects 
using the R software “Seurat” package [14]; (2) Counts 
were quality controlled by excluding low-quality cells 
based on mitochondrial or ribosomal gene percentages 
(Quality Control(QC)); (3) Screening the first 2000 highly 
variable genes after QC using the “FindVariableFeatures” 
function; (4) Downscaling and cluster identification were 
performed using principal component analysis (PCA) 
based on 2000 genes and unified flow approximation 
and projection (Uniform Manifold Approximation and 
Projection (UMAP)) [15]; (5) Using the “Find All Mark-
ers” function, identified significant marker genes within 
different clusters by setting log2FC to 0.3 and min. pct 
to 0.25; (6) Our analysis of cluster annotation was con-
ducted using the “SingleR” package [16] in R software. 
Next, Fisher precision tests were performed to identify 
potentially significant cell types. We calculated FC val-
ues for each cell type in tumor and normal samples and 
identified cell types with FC > 4 or FC < 0.25, with P < 0.05 
as the key cell type. In addition, we performed functional 
enrichment analysis of the identified central cell types 
using the R software “ReactomeGSA” package [17]. Our 
enrichment analysis was conducted by using the “anal-
yse_sc_clusters” function and the “pathways” function 
to extract the results. The single-cell dataset was scored 
using the R software “irGSEA” package, differentiation 
trajectory inference was done using Monocle 3 and Cyto-
TRACE, and dimensionality reduction was performed 
using the “DDRTree” method [18, 19]. A statistical tech-
nique called “BEAM” was then used to calculate the con-
tribution of genes to cell development, and the top 100 
genes were then visualized.The “patchwork” package was 
used for intercellular communication analysis and net-
work visualization.

Identification of CMGs
Find differentially expressed genes using the FindAll-
Markers function, which calculated the average expres-
sion of each gene for each subpopulation and evaluated 
whether genes were differentially expressed between sub-
populations using the Wilcoxon Rank Sum test.

Weighted gene co-expression network analysis (WGCNA)
WGCNA was performed using the R package of 
“WGCNA” (version 1,70.3) [20] to identify co-expres-
sion modules). During the subsequent WGCNA analy-
sis, the top 25% of genes with the highest variance were 
used to ensure quality. Our weighted adjacency matrix 
(WAM) was constructed via a soft thresholding power 
we had recommended and then transformed into a 
topological overlap matrix (TOM). By setting a mini-
mum module size of 200, we calculated modules using 
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a TOM dissimilarity measure (1-TOM) based on hierar-
chical clustering trees. Each module was assigned a ran-
dom color. Every module’s eigengene profile represented 
global gene expression.

Module Significance (MS), a measure of the relation-
ship between modules and disease states, and Gene 
Significance (GS), a measure of the correlation between 
genes and clinical traits, were discussed.

Unsupervised clustering of OLP patients
With 11 CMGs expression profiles, we used an unsu-
pervised clustering algorithm(“ConsensusClusterPlus” 
R package) [21] with 1,000 iterations to classify 14 OLP 
samples(Including samples GSM946260, GSM946261, 
GSM946262, GSM946263, GSM946264, GSM946265, 
GSM946266 of dataset GSE38616 and GSM260095, 
GSM260096, GSM260097, GSM260098, GSM260099, 
GSM260100, GSM260101 of dataset GSE52130)into 2 
clusters. According to a combination of cumulative dis-
tribution function (CDF) curves, consensus matrices, 
and consistent clustering scores (> 0.9), we evaluated the 
optimal number of clusters using the maximum number 
of subtypes k (k = 9). In the same way, we performed a 
second clustering of OLP samples with 108 genes related 
to CD8 + T cells involved in OLP pathogenesis.

Functional enrichment analysis of mechanism-associated 
genes
Gene ontology (GO) and KEGG(www.kegg.jp/kegg/
kegg1.html) [22–24] enrichment analysis of the genes 
contained in the module were carried out using the R 
package “clusterProfiler”. Significantly enriched func-
tions or pathways were identified according to the crite-
ria: adjusted P < 0.05. We used the single sample gene set 
enrichment analysis (ssGSEA) method to assess the rela-
tive abundance of infiltrating immune cells in a subpopu-
lation of OLP patients.

Construction of the CMGs score
Using PCA, we developed a CMGs scoring scheme to 
quantify the level of genetic modification in individ-
ual patients. PCA was then conducted on the expres-
sion profiles of prognostic differential expressed genes 
(DEGs), and the principal components PC 1 and PC 2 
were extracted as characteristic scores. The CMGs score 
was defined by previous studies as follows: CMGs score = 
(PC1i + PC2i), where “i” is the expression of genes associ-
ated with the involvement of CD8 + T cells in the patho-
genesis of OLP [25].

Statistical analysis
Statistical analysis was performed using R software 
v4.2.1. The correlation between genes and immune cell 
infiltration was assessed using Spearman correlation 

analysis. Both groups were compared using the Wilcox 
test to determine the proportion of infiltrating immune 
cells. Statistical significance was determined by a P < 0.05 
and a false discovery rate (FDR) < 0.05 was considered 
significant.

Result
Cell clustering and annotation of scRNA-Seq for normal 
and OLP samples
First, single-cell data were preprocessed. Supplementary 
Fig. 1A is a control chart before and after single-cell qual-
ity control. Supplementary Fig. 1B illustrates the 20 most 
highly variant genes. We used the scaledata function 
to scale the selected high-variant genes and found the 
anchor points by PCA downscaling. Then, we selected 
the data of the top 15 PCs for downscaling. (Fig.  1A-B) 
The results of different sample sets visualized using umap 
are shown in the figure (Fig.  1C), where GSM6481637 
is normal tissue and the remaining 5 are tissues from 
patients with lichen planus. Afterward, we used the find-
clusters function of the “seuret” package to divide the 
cells into 16 subpopulations and calculated the abun-
dance of these 16 subpopulations in patients and normal 
tissues (Fig. 1D). The distribution of cells in patient and 
normal tissues is shown in Fig.  1E, shows the distribu-
tion of 16 cell subpopulations. Next, we annotated the 
sample cells with SingleR and visualized them with tSNE 
and UMAP downscaling, respectively, and finally identi-
fied different clusters with a total of 11 cells, including 
B cell: Plasma_cell; NK_cell; NK_cell: CD56hiCD62L+; 
Immune cells: CD4+_central_memory; Immune cells: 
CD4+_effector_memory; Immune cells: CD8+; Immune 
cells: CD8+_Central_memory; Immune cells: CE’8+_
effector_memory; Immune cells: CD8+_effector_mem-
ory_RA; Immune cells: CD8+_naive; Immune cells: Treg: 
Naïve(Fig. 1F-G).

Cell developmental trajectory and cell communication 
analysis
In order to analyze the trajectories and pseudotimes 
of the four important cell types, we used the “mono-
cle” package. We observed that plasma cells and NK 
cells both correspond to states 3, 4, 6, and 7, while 
CD4 + central memory T cells appeared in the entire 
state (Fig.  2A-C). To visualize the top 100 genes dur-
ing cell development, we calculated the contribution of 
genes during cell differentiation (Supplementary Fig. 3B). 
The intercompartmental communication network was 
investigated by calculating communication probabilities 
(Supplementary Fig. 3A). We then used CytoTRACE for 
cellular assessment of cell subpopulation differentiation 
potential (Fig. 2D-E) and found that CD4 + central mem-
ory T cells had the highest CytoTRAC score, followed by 
CD8 + effector memory T cells, from which we inferred 

http://www.kegg.jp/kegg/kegg1.html
http://www.kegg.jp/kegg/kegg1.html
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that the proposed temporal direction should be from 
CD4 + central memory T cells to CD8 + effector memory 
T cells, and then to plasma cells and NK cells.

Additionally, ligand-receptor networks and specific 
pathways were used to infer cell-cell communication 

networks. According to our study, MHC-I was crucial 
to the communication network, which also validated the 
importance of CD8 + T cells as our target cell population. 
(Fig. 2F-G).

Fig. 1 Single-cell data preprocessing. (A) PCA downscaling analysis. (B) Cell distribution maps of six tissue samples. (C-E) Distribution of normal group 
disease group and subpopulation distribution of cells. (F-G) Single-cell annotation results
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Functional pathway enrichment of each cell subpopulation
ReactomeGSA functional enrichment analysis showed 
that three pathways, MGMT-mediated DNA damage 
reversal, events associated with phagocytic activity in 
PMN cells, and high sodium-permeable postsynaptic 
acetylcholine nicotinic receptors, were highly expressed 
in most cell types (Fig.  3A). Using the “irGSEA” pack-
age, we performed single-sample gene set enrichment 

analysis (ssGSEA). The heat map of differentially upregu-
lated or differentially downregulated gene sets in the ssG-
SEA enrichment analysis (Fig.  3B) with the bars to the 
left of the upset plot demonstrates the number of gene 
sets with statistically significant differences for each cell 
subpopulation in the comprehensive assessment, and the 
bars above the upset plot represent the differential gene 
sets with intersections The bars above the upset plot 

Fig. 2 Analysis of cellular communication and cell trajectories. (A-C) Cell trajectory and pseudo-time analysis. (D-E) CytoTRACE was used to assess the 
differentiation potential of individual cell subpopulations. (F-G) Cellular communication networks identify MHC-I as playing a key role in the communica-
tion network
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represent the number of differential gene sets with inter-
sections, and multiple dotted lines represent multiple 
cell subpopulations taking intersections (Fig.  3D). The 
density scatter plot combines the enrichment fraction 

of gene sets and the projection of cell subpopulations in 
low-dimensional space to demonstrate the spatial expres-
sion level of a specific gene set. Among them, the more 
yellow color represents a higher enrichment fraction, 

Fig. 3 Functional enrichment. (A) Functional enrichment analysis for the identified hub cell types using the “ReactomeGSA” package. (B-E) Functional 
enrichment analysis for the identified hub cell types using the “irGSEA” package
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where naive CD8 + T cells, CD4 + central memory T cells, 
and CD8 + effector memory T cells have a higher enrich-
ment fraction (Fig.  3C). Stacked bar graphs specifically 
show the number of up-regulated, down-regulated, and 
no statistically different gene sets in each cell subpopu-
lation in four gene set enrichment analysis methods 
(AUcell, Ucell, singersore, ssgsea); the upper bars repre-
sent the number of genes differing in different methods 
in each subpopulation, with red representing up-regu-
lated differential gene sets and blue representing down-
regulated differential gene sets; the middle bar represents 
the proportion of up-regulated, down-regulated and no 
statistically significant gene sets in different methods in 
each subpopulation (Fig. 3E).

Extraction of marker genes for target cell subpopulations
To further investigate the immune characteristics of OLP, 
we extracted immune cells from all samples for further 
analysis. We selected the first 8 PCs to downscale the data 
(Fig. 4A-B). Next, we used SingleR to annotate immune 
cell subpopulations after tSNE and UMAP downscal-
ing, and a total of 11 cell subpopulations were identi-
fied, including B cell: Plasma_cell; NK_cell; NK_cell: 
CD56hiCD62L+; Immune cells: CD4+_central_memory; 
Immune cells: CD4+_effector_memory; Immune cells: 
CD8+; Immune cells: CD8+_Central_memory; Immune 
cells: CE’8+_effector_memory; Immune cells: CD8+_
effector_memory_RA; Immune cells: CD8+_naive; 
Immune cells: Treg: Naïve (Fig. 4C-D). We identified 11 
marker genes subgroups using the findallmarkers func-
tion and extracted the top 5 differentially expressed 
genes for display, with a logFC threshold of 0.3 (logFC 
threshold = 0.3 is considered differentially expressed and 
greater than this threshold) and min. pct selected to be 
0.25 (when a gene is in two clusters (only when a gene 
is expressed in more than 25% of cells in one or both 
clusters (Fig.  4E), differential analysis was included). 
The expression of immune cell: CD8 + marker genes in 
immune cell subpopulations was subsequently visualized 
with tSNE. The results showed that PLEK, SLAMF7, F2R, 
and ITGAL were highly expressed in the immune cell: 
CD8 + subpopulation, while ITGAL was also expressed in 
the corresponding immune cell: CD4+_effector_memory 
(Fig. 4F).

Identification of cellular subtypes
We could get the position of 11 marker genes on the 
chromosome from Fig. 5A. Our next step was to examine 
the relationship between marker genes and the prognosis 
of patients with different subtypes of OLP patients using 
the “ConsensionClusterPlus” R package for consensus 
clustering analysis based on the expression levels of the 
marker genes. A consensus matrix, we believe, is a better 
visualization tool that can help assess cluster composition 

and size. When k = 2, the color-coded heat map of the 
consensus matrix showed high intra-group correlation 
and low inter-group correlation, which strongly suggests 
that it is very appropriate to classify OLP patients into 
two subtypes (Fig. 5B). The increasing trend of the CDF 
values with respect to the consensus index indicates the 
existence of an appropriate classification, and according 
to the CDF curve and the Delta area, when the cluster 
index “k” increases from 2 to 9, k = 2 proves to be the best 
point to obtain the maximum difference between clus-
ters, so we divided the OLP patients into two subgroups 
(Fig. 5C-D).

Next, we further explored the metabolic differences 
between marker genes in clusters A (low risk cluster) and 
B(high risk cluster). Both box line plots and heatmaps 
clearly showed that the vast majority of marker genes had 
higher expression in cluster B(Fig. 5E-F).

The distribution of risk in different populations is 
often visualized by PCA. Patients in cluster A and clus-
ter B had significant differences when compared to each 
other. (Fig. 5G). In this cohort, immunotherapy played an 
important role in treatment, so it is important to under-
stand the distribution and correlation of the 23 infiltrat-
ing immune cells. We calculated the level of immune cell 
infiltration in both clusters by the ssGSEA algorithm. It 
was found that the infiltration level of most immune cells 
was higher in cluster B compared to cluster A (Fig. 5H). 
In order to investigate the potential mechanism of 11 
marker genes affecting immune infiltration, we drew a 
heat map of marker genes-immune cell correlation and 
analyzed the infiltration levels of 11 marker genes in two 
clusters, and the heat map results showed that PLEK, 
ITGAL, SLC43A3, HLA-DQA2 showed the most sig-
nificant positive correlation with immune cells (Fig.  5I 
), PLEK, ITGAL, SLC43A3, and HLA-DQA2 showed 
higher levels of immune infiltration in cluster B (Fig. 5J), 
and the immune infiltration levels of the remaining genes 
were released as shown in Supplementary Fig. 4.

WGCNA analysis identifies and characterizes modules 
associated with clinical features
Based on the WGCNA analysis, to explore the key gene 
clusters associated with the clinical traits of OLP, we 
first clustered the combined samples of GSE52130 and 
GSE28616 according to the clinical disease traits (normal 
samples, OLP samples) by using the spearman correla-
tion coefficient method to obtain the sample clustering 
tree (Fig.  6A). Then a hierarchical clustering analysis 
was performed using the “WGCNA” R package to con-
struct a gene co-expression network (Fig.  6B) with a 
soft threshold of 19 (R2 = 0.9) (Supplementary Fig.  2A) 
to obtain a scale-free network, and eight modules were 
identified after dynamic cropping. Each module has a 
different color, where the genes in the gray module are 
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meaningless. The green module with the strongest and 
most significant correlation with clinical traits could be 
selected for subsequent analysis (Fig. 6C). Also based on 
WGCNA, we explored the gene clusters associated with 
OLP patient typing (A, B) and obtained a sample clus-
tering tree after clustering the OLP samples (Fig.  6E) 
with a soft threshold set to 18 (R2 = 0.9) (Supplementary 
Fig.  2B). The gene co-expression network was obtained 

after further hierarchical clustering, nine modules related 
to typing were identified after dynamic cropping, and 
the brown module with the strongest and most sig-
nificant correlation with typing was finally selected for 
subsequent analysis (Fig. 6F-G). To further examine the 
antagonism of genes between modules, we plotted the 
identified modules in the two TOMs in a heat map, in 
which genes with low overlap were shown in light color, 

Fig. 4 Extraction of target cell subsets. (A) Principal component analysis of immune cell subpopulations with highly variable genes. (B) Sorting of down-
scaled anchor points. (C-D) Distribution of results after annotation of immune cell subpopulations. (E) Expression of immune cell subpopulation Top5 
Marker genes in different subpopulations. (F) Expression of marker genes in CD8 + T cells in immune cells

 



Page 9 of 15Zhang et al. BMC Oral Health          (2023) 23:464 

while genes with high overlap will appear in dark red. 
Based on the results, we found that the genes in the 2 
TOMs were relatively independent of each other (Fig. 6D, 
H).

Enrichment analysis of genes related to the involvement of 
CD8 + cells in the pathogenesis of OLP
The number of intersecting genes between 504 genes in 
Cluster WGCNAH and 194 genes in disease WGCNA 
was 108 (Fig. 7A). The threshold FDR < 0.05 and P < 0.05 
were used to select the significantly enriched items. 
Biochemical processes (BP) are mainly involved in 

Fig. 5 Consensus clustering identifies the molecular subtypes of marker genes. (A) Chromosomal circle diagram of 11 marker genes. (B) Consensus 
matrix for k = 2. (C) Consensus clustering CDF for k = 2 to 9. (D) Relative change in area under the cumulative CDF curve for k = 2 to 9. (E) Expression levels 
of marker genes in clusters A and B. (F) Heatmaps of marker gene expression. (G) PCA analysis. (H) Immune cell fraction between clusters A and B. (I) Cor-
relation analysis of marker genes and immune cells. (J) Immune cell fraction of four marker genes between clusters A and B
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ATP synthesis and electron transport, RNA splicing via 
esterification reactions, and rRNA metabolism. Cel-
lular components (CC) mainly include mitochondrial 
inner membrane protein complexes and oxidoreductase 

complexes. There are two main types of molecular 
functions (MF): redox-driven active transmembrane 
transporters and proton transmembrane transporters 
(Fig. 7B). GO analysis results proved that this crossover 

Fig. 6 WGCNA analysis identifies and characterizes modules associated with clinical features. (A) Clustering dendrogram of GSE52130 and GSE38616. (B) 
Clustering dendrogram of genes, various colors represent different modules. (C) The relationship of clinical features and eight modules. (D) heatmap plot 
of Visualization of the WGCNA network. (E) Clustering dendrogram. (F) Clustering dendrogram of genes. (G) The relationship of OLP patient staging with 
nine modules. (H) heatmap plot of Visualization of the WGCNA network
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gene was mainly enriched in brain morphogenesis, and 
diencephalon development, (Fig.  7C ~ D). The kegg, on 
the other hand, proved that this crossover gene histi-
dine metabolism, glycerolipid metabolism, in metabolic 
effects were significantly enriched (Fig. 7E ~ F).

Construction of CMGs score
The optimal number of subtypes in OLP samples was 
determined as two using the “ConsensionClusterPlus” R 
package based on the expression of 108 genes (Fig.  8A-
D). The differential gene expression in the two gene 
subtypes was indicated by this heatmaps (Fig.  8E). And 
the level of immune cell infiltration was analyzed by 
single sample gene set enrichment analysis (ssGSEA). 

Fig. 7 Intersecting genes were subjected to KEGG(www.kegg.jp/kegg/kegg1.html) enrichment analysis and GO functional analysis to assess their biolog-
ical functions. (A) Cluster WGCNA intersected with disease WGCNA core genes. (B-D) GO analysis shows that many immune-related biological processes 
are enriched. (E-F) KEGG analysis shows that many immune-related pathways and pathogenesis-related mechanisms are enriched
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Fig. 8 Consensus clustering identifies the molecular subtypes of intersecting genes. (A) Consensus matrix for k = 2. (B) Consensus clustering CDF for k = 2 
to 9. (C) Relative change in area under the cumulative CDF curve for k = 2 to 9. (D) Tracking plot showing the number of consensus clusters for samples 
in each k. (E) Heatmaps of intersecting gene expression. (F) Immune cell fraction between cluster A and cluster B. (G) Immune cell fraction of tagged 
genes between gene clusters. (H) Immune cell fraction between CMGs clusters. (I) Sankey diagram of CMGs scores versus CMGs scores and gene scores. 
(J) Differences in CMGs scores by CMGs score type. (K) Differences in CMGs scores by gene score type
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The results revealed that the infiltration levels of most 
immune cells were higher in cluster B compared with 
cluster A, such as activated_B_cell, activated_CD4_T_
cell, activated_CD8_T_cell, activated_dendritic_cell, 
MDSC macrophage, mast_cell, monocyte, and natural_
killer_cell (Fig. 8F). Most marker genes were more highly 
expressed in the B isoform than in the A isoform in both 
genes cluster and CMGs cluster (Fig. 8G-H). The optimal 
number of subtypes in OLP samples was determined as 
two using the “ConsensionClusterPlus” R package based 
on the expression of 108 genes (Fig. 8I ~ K).

Discussion
OLP is considered an inflammatory disease of the oral 
cavity mediated by immunity. However, it has been 
shown that 1.63% of OLP evolves into OSCC within 7 
years and is therefore classified as a potentially malignant 
disease by WHO [26, 27].

The diagnosis of OLP is usually based on characteris-
tic clinical features, It is usually easy to diagnose reticular 
OLP due to its specific clinical characteristics, including 
bilateral symmetrical transverse hyperkeratosis and low 
malignant potential [28]. However, other types of OLP 
such as atrophic, maculopapular, and erosive require his-
topathological diagnosis in most cases to clarify the clini-
cal diagnosis and determine Whether there is abnormal 
cell proliferation, heterogeneity, and other signs associ-
ated with malignancy [29]. There is an urgent need for a 
non-invasive diagnostic method that can replace biopsy 
and help physicians accurately assess the patient’s condi-
tion. Numerous studies have shown that OLP is the result 
of the involvement and interaction of multiple immune 
cells, such as various subtypes of T cells, NK cells, mast 
cells, macrophages, etc. [30]. High-throughput sequenc-
ing excels at describing the overall disease picture and 
can demonstrate and identify at a very high level the dis-
ease/normal tissue gene expression differences [31]. but 
unfortunately, the role of different cell subpopulations in 
diseased tissues, the proportion of different cellular com-
ponents within tissues, and cellular interactions are diffi-
cult to determine using bulk sequencing techniques [32]. 
single-cell technologies show great advantages in analyz-
ing the cellular composition and cellular communication 
in diseased tissues [33]. in addition to this, the analysis 
of individual cells was temporally sequenced, thereby 
reconstructing pseudo-time-series and mimicking the 
real time-varying trajectory as closely as possible [34]. It 
is exciting to be able to reveal cell composition at differ-
ent time cross-sections based on this approach and pro-
vide new perspectives for the exploration of mechanisms 
involved in disease progression. As a result of single-cell 
sequencing, we identified CD8 + T cells as the core cells 
of OLP.

It has now been shown that antigen presentation by 
basal keratin-forming cells and the killing of antigen-
specific keratin-forming cells by CD8 + T cells are key 
aspects of OLP [35]. In addition, it has been found that 
T cells are major immune contributors to OLP and that 
activated CD8 + T cells are primarily found in the epithe-
lium and near damaged basal keratin-forming cells [36]. 
In addition, CD8 + T cells secrete tumor necrosis factor-α 
and granzyme B, and CD95L on the cell surface binds to 
CD95 on the surface of keratin-forming cells, thus trig-
gering apoptosis of keratin-forming cells and destruction 
of the epithelial basement membrane [37, 38]. In parallel, 
CD8 + T cells can release chemokines that attract other 
lymphocytes and immune cells to the lesion site, thereby 
promoting the development of OLP and the formation of 
an inflammatory environment [39, 40]. Overall, CD8 + T 
cells play a central role in the development of OLP and 
are extensively involved.

In order to classify patients into types A and B, we per-
formed a clustering analysis using CD8 + T cell maker 
genes. As a result, there was a substantial difference in 
immune cell infiltration between the A and B types, with 
A types infiltrating significantly fewer immune cells than 
B types. It has been shown that in OLP, CD4 + helper T 
cells are the major cells of the lamina propria and are 
activated due to an increase in Langerhans cells and 
secretion of large amounts of IL-12. In the subepithelium 
and lamina propria, CD4 + T cells are the predominant 
lymphocyte population, whereas in the intra-epithelial 
lesions of OLP, activated CD8 + lymphocytes consti-
tute the majority of infiltrating lymphocytes. It has been 
shown that mast cells in the OLP increase in number, 
degranulate, and secrete large amounts of inflammatory 
mediators thereby promoting lymphocyte exudation and 
adhesion [40–43].

To further investigate the linkage and mechanism of 
action between CD8 + T-cell marker genes and OLP, 
WGCNA screening of core genes was performed 
between AB subtypes and between diseased and nor-
mal groups, respectively, and then the results were 
intersected. Finally, 108 genes that were both CD8 + T 
cell-associated signature genes and OLP core genes 
were selected, an expression matrix was constructed and 
patients were classified into A and B types. The immune 
infiltration profile was found to be similar to the for-
mer while providing good discrimination between OLP 
patients, which is beneficial for dentists to accurately 
diagnose and manage OLP patients.

Undeniably this study has some limitations. Since the 
results were based on the analysis of public databases, 
there is still potential bias in this study, which may lead to 
inconsistency between the predicted and actual results. 
More clinical single-cell data from OLP patients and 
high-throughput sequencing data need to be collected in 
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the future. The study should also be validated by prospec-
tive studies and basic experiments to improve the accu-
racy in practice.
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