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Abstract 

Background  Three-dimensional(3D) reconstruction technology is a method of transforming real goals into math-
ematical models consistent with computer logic expressions and has been widely used in dentistry, but the lack 
of review and summary leads to confusion and misinterpretation of information. The purpose of this review is to pro-
vide the first comprehensive link and scientific analysis of 3D reconstruction technology and dentistry to bridge 
the information bias between these two disciplines.

Methods  The IEEE Xplore and PubMed databases were used for rigorous searches based on specific inclusion 
and exclusion criteria, supplemented by Google Academic as a complementary tool to retrieve all literature up to Feb-
ruary 2023. We conducted a narrative review focusing on the empirical findings of the application of 3D reconstruc-
tion technology to dentistry.

Results  We classify the technologies applied to dentistry according to their principles and summarize the different 
characteristics of each category, as well as the different application scenarios determined by these characteristics 
of each technique. In addition, we indicate their development prospects and worthy research directions in the field 
of dentistry, from individual techniques to the overall discipline of 3D reconstruction technology, respectively.

Conclusions  Researchers and clinicians should make different decisions on the choice of 3D reconstruction tech-
nology based on different objectives. The main trend in the future development of 3D reconstruction technology 
is the joint application of technology.
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Background
Medical imaging is known to play a critical role in dis-
ease diagnosis and treatment in all medical fields today 
[1], especially in dentistry, the surface contours inside or 
outside the mouth are the most visual and abundant kind 
of physical information received by the physician’s or 
the patient’s visual system, and they make relevant judg-
ments based on this three-dimensional(3D) vision [2, 3]. 
Therefore, the development of dentistry is closely related 
to the trend of transitioning from two-dimensional(2D) 
images to 3D models of imaging targets in the field of 
computer vision [4].
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3D reconstruction technology, one of the most popu-
lar research fields in computer vision technology, is a 
technology that explores equipping computers with 
eyes (transmitters) and brains (algorithms) to mimic the 
human visual system, involving multiple disciplinary 
systems including image processing, stereo vision, and 
more, to carve the real scene into a mathematical model 
that conforms to the computer’s logical expression [1, 
5-13]. Its strengths lie in 3D recording, visualization, 
reproduction, and reconstruction [14]. In recent years, 
3D reconstruction technology has achieved great suc-
cess and broader application through decades of devel-
opment; both hardware and software have been greatly 
enhanced, and the imaging scale has become larger and 
with increased accuracy [15, 16].

The ability of 3D construction to acquire, reproduce, 
process, analyze, and understand static and dynamic 
images of dental procedures in real time [6] represents 
the ability to better describe or diagnose each disease 
and analyze it in further detail. When applied to imag-
ing targets related to dental treatment, the advantages 
of 3D construction are mainly reflected in the following 
aspects:

1.	 3D imaging has higher accuracy and more similarity 
to the actual shape of the scanned target [15, 17-21].

2.	 3D imaging technology compensates for the general 
planar effect of a single perspective and brings a full 
range of feelings to doctors, patients, and research-
ers. Its abundant imaging results can be measured 
and analyzed at any angle and distance [15, 22], 
including the target object structure depth and other 
spatial information that two-dimensional images do 
not provide [18].

3.	 3D imaging has strong communication utility. It can 
be manipulated by a doctor or patient to interactively 
observe the scan target from any angle. In addition, 
it makes communication more efficient and accu-
rate, based on 3D images under remote conditions  
[18, 23, 24].

4.	 Both intraoral and extraoral 3D surface imaging data 
can be used to enrich and expand dentistry research. 
For example, literature [25-27] indicates that cer-
tain diseases can also be diagnosed using 3D surface 
imaging technology.

5.	 3D imaging techniques reduce patient discomfort 
[28] and shorten the duration of the examination 
or treatment [21, 29-32], especially for patients who 
may have a vomiting reflex [33].

6.	 The time and operating steps are greatly reduced 
compared to traditional workflow [34-36], but at the 
same time, 3D imaging is easier to use [37-39].

7.	 All images can also be stored in digital form [18, 27] 
and are often paired with software programs devel-
oped to analyze 3D data accurately and reliably [40]. 
Easy access [41] greatly reduces the pressure on 
the physical storage space [35, 42, 43] and the abil-
ity to share information with other experts via the  
Internet [44].

8.	 It can avoid the deformation of the impression mate-
rial and plaster model while ensuring the authenticity 
and accuracy of the scanner [35].

Based on the above, 3D reconstruction technology has 
been widely used for 3D imaging and analysis of ortho-
dontic treatment, dental rows for restorative treatment, 
craniofacial bone, soft tissue, dental casts, surgical navi-
gation, and other areas of dentistry[45, 46]. Although the 
use of 3D reconstruction technology has disadvantages 
such as the requirement of operator experience [33], 
varying quality of different scanners [43], and high initial 
cost [40, 47], the technology has played an important role 
in dental treatment. Overall, the digital revolution has 
fundamentally changed the dental industry.

However, to date, no study has sorted out the 3D 
reconstruction technology widely used in dentistry, sum-
marized the advantages and disadvantages of the tech-
niques, and conducted a comprehensive analysis of the 
application areas of the techniques. This has led to mul-
tiple problems such as confusion in the classification 
and definition of existing techniques, lack of informa-
tion sharing between personnel in the field of dentistry 
and computer vision, duplication of technical research or 
uncertainty of research directions, and misfit of multiple 
techniques and multiple application scenarios.

The main focus of this review is to provide a compre-
hensive understanding of how 3D reconstruction and 
their subcategories can be used and developed ration-
ally in dental practice by summarizing, analyzing, and 
reviewing well-developed 3D reconstruction technol-
ogy in dentistry from various perspectives, including the 
development, technical principles and characteristics, 
and application scope of each type of technique.

The role is, but not limited to, enabling clinical pro-
fessionals and researchers to quickly gain a comprehen-
sive and accurate understanding of 3D reconstruction 
technology; to provide them with references from the 
perspectives of technical characteristics and the appli-
cation and research status of each technique in various 
fields when selecting the appropriate technique for spe-
cific conditions; to inspire technology researchers to find 
breakthroughs in future research; and to provide ideas 
for the future development and more application scenar-
ios of dental 3D reconstruction technology.
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Material and methods
Search strategy
The data for this review were primarily obtained from 
two academic databases: IEEE Xplore, known for its vari-
ety of research results on 3D reconstruction technology, 
and PubMed, which encompasses a vast amount of lit-
erature in all fields of medicine. Google Scholar, a pow-
erful web search engine, was used as a complementary 
tool. The searched articles have no language restrictions. 
No publication date restriction was applied and search-
ing were performed until February 2023. Literature 
search and processing were done independently by two 
researchers under strict supervision. The search strategy 
for the databases was as follows:

1.	 3D reconstruction technology [Title/Abstract] OR 
3D reconstruction technology [MeSH Terms] OR 
3D reconstruction techniques [Title/Abstract] OR 
3D reconstruction techniques [MeSH Terms] OR 3D 
imaging technology [Title/Abstract] OR 3D imaging 
technology [MeSH Terms] OR 3D surface imaging 
technology [Title/Abstract] OR 3D digital technology 
[Title/Abstract] OR Surface digitization technology 
[Title/Abstract]

2.	 For each sub-category:

1)	 Laser Imaging [Title/Abstract] OR Laser recon-
struction [Title/Abstract] OR Laser scanner 
[Title/Abstract] OR Laser 3D Imager [Title/
Abstract]

2)	 structural light [Title/Abstract] OR structured 
light [Title/Abstract]

3)	 Time-Of-Flight [Title/Abstract] OR TOF [Title/
Abstract]

4)	 confocal laser scanning microscope [Title/
Abstract] OR CLSM [Title/Abstract] OR confo-
cal microscope [Title/Abstract]

5)	 optical coherence tomography [Title/Abstract] 
OR OCT [Title/Abstract]

6)	 active wavefront sampling [Title/Abstract] OR 
active wavefront sampling [Title/Abstract] OR 
active wave array sampling [Title/Abstract]

7)	 passive vision [Title/Abstract] OR monocular 
cameras [Title/Abstract] OR binocular cameras 
[Title/Abstract] OR multiocular camera [Title/ 
Abstract]

Inclusion and exclusion criteria
Inclusion criteria: scientific papers with peer-reviewed 
articles published in journals, conferences, and symposia 
were considered. Our article reviews scientific papers on 

the 3D reconstruction of human anatomy in the field of 
dentistry, such as intraoral tissue structures, facial and 
soft tissues, and cranial bones.

The exclusion criteria were as follows: Research in 
the direction of materials science, such as cell culture 
experiments on three-dimensional biological material or 
research on the application of three-dimensional printing 
of biological material; research at the microscopic level, 
such as microscopic imaging of molecules or cells; related 
to 3D reconstruction technology focused on non-dental 
medicine areas; articles that do not study 3D reconstruc-
tion technology from the perspective of technological 
development, but only use technology as a means of 3D 
imaging and do not specify the brand of equipment used 
or the type of technology used.

Data collection and extraction process
Several electronic searches were screened independently 
and in a blinded manner by two researchers (YC and 
XH). If the content of the article can be judged to be rel-
evant to the research objectives based on the information 
in the title and/or abstract, the full text can be retrieved 
and read independently by the searcher, provided that the 
final included article meets the inclusion–exclusion crite-
ria. In addition, the date of publication, basic information 
about the journal and its field, type, and quality of the 
study and article are also important criteria for assessing 
the quality of articles. A flow diagram of the process of 
identification, inclusion, and exclusion of studies is pre-
sented in Fig. 1.

Basic information about the article (type, year of pub-
lication, affiliated journal, and its information), author 
information, study type and design quality, sample num-
ber, information about the test subjects (subject char-
acteristics of human-based studies or target types and 
commercial brands of non-human studies), study design 
(scanning method used or commercial brand of scanner, 
times and duration of scans), operation quality (environ-
ment, participants, standardization and consistency of 
the investigator’s operation), statistical methods, and the 
authors’ conclusions and disclosure of conflicts of inter-
est are data that researchers focus on. Two research-
ers recorded their independently extracted data on a 
spreadsheet and then compared the results. A third 
evaluator(WL) will be consulted if there are intractable 
differences.

Classification of 3D reconstruction technology 
and multi‑environment applications
Before being applied in the healthcare industry, 3D 
reconstruction technology has been widely used in other 
industries [48]. However, in dentistry, the application 
of this technology still encounters new challenges. The 
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complexity of different fine anatomical regions and the 
differences in principles or performance advantages and 
disadvantages of various scanners [49] have led to the 
adaptation of different 3D reconstruction technology 
for different specific medical environments [8]. There-
fore, since the introduction of [50, 51] 3D reconstruction 
technology in the 1980s, various technologies have gone 
through long and complex processes of development and 
improvement, forming their own characteristics (Fig. 2).

In this review, we have selected the categories of 3D 
reconstruction technology that are relatively commonly 
used in dental treatment and, to the best of our knowl-
edge, we have provided a comprehensive, detailed, and 
accurate classification of these 3D reconstruction tech-
nology. The classification results are presented in Table 1. 
Some researchers have also investigated the possibility 
of using fusion methods, and such developments have 
made it possible to produce better 3D reconstructions 
of objects that are precisely rich in feature details, com-
pensating for the shortcomings of individual imaging 
methods.

In the following paragraphs, this article will introduce 
each mainstream category separately.

Laser Imaging Detection and Ranging (LIDAR)
Laser imaging detection and ranging (LIDAR) uses laser 
rangefinders to perform real target measurements. Its 
main role is to measure the exact depth of a single point 
on a target object and synthesize the data. Laser imag-
ing technology uses optical principles and is essentially 
an active stereoscopic technique (Fig. 3) [8, 43, 52, 53]. A 
brief flow chart of the LIDAR is shown in Fig. 4.

It is worth mentioning its principle which dictates 
that laser scanners have the ability to generate 3D point 
clouds accurately. This incurs huge costs [9, 16] and 
a large amount of data prediction [9, 54]. Calibration 
largely determines the quality of the scanned results, and 
this step requires well-trained operators [55]. Moreover, 
the point cloud of the object obtained by the laser scan-
ner is usually not sufficient for application; therefore, it 
needs to be processed in several ways. The processing of 
these post-scan data is time-consuming, which is one of 
the most prominent drawbacks of laser imaging. In addi-
tion, measuring recessed parts or parts with complex 
shapes using laser imaging may cause greater errors [56]. 
More importantly, after years of research, laser imaging is 
generally considered clinically effective [33, 57].

Fig. 1  Prisma 2020 flow diagram representing the study selection process
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The currently known advantages and disadvantages of 
laser imaging technology in dentistry are listed in Table 2.

Application development of LIDAR
Laser 3D imaging was the first ever 3D imaging tech-
nology to originate, and in the late 1960s [103, 104], it 
became the backbone of technology for providing accu-
rate 3D models of surfaces, especially in the field of 
dentistry.

Laser imaging technology pioneered the digitization 
of the human face[105-108], and its reliability was con-
firmed many times in subsequent experiments [105, 

109-112]. And its technical shortcomings were overcome 
one by one, leading to practical applications and the 
establishment of today’s position [43, 58-60, 113-115].

Main application areas of LIDAR in dentistry
Registration of cranial morphology
In recording cranial morphology, laser imaging is widely 
favored by physicians and researchers because of its 
simplicity, portability, and large amount of data, offer-
ing a wide range of possibilities for detailed and accurate 
analysis of the entire craniofacial complex and virtual 
treatment [43], which can play an important role in both 

Fig. 2  Selection schemes for 3D reconstruction technology in different application areas

Table 1  Classification of 3D reconstruction technology. Classification is based on the principle of the technique and its practical 
application in dentistry

The classification results are presented in Table 1

Data collection equipment types

Proactive Reflection-type Triangulation Laser Imaging Detection and Ranging (LIDAR)

Structured light technology

Time-of-Flight (ToF) method

Confocal laser scanning microscope (CLSM)

Active wavefront sampling

Transmission-type Cone beam CT (CBCT)

Optical coherence tomography (OCT)

Passive Monocular camera

Binocular camera

Multiocular camera



Page 6 of 21Cen et al. BMC Oral Health          (2023) 23:630 

clinical treatment and complementary research. For 
example, Xiaojun et  al. [116] combined laser scanning 
with other techniques to develop a computer simula-
tion system for mandibular movements. Terajima et  al. 
[117] combined a non-contact laser scanner to form a 
new four-dimensional analysis method for oral and jaw 
function. In the clinical application by Ivanov et al. [118], 
the laser scanner made an excellent contribution to the 
imaging of the upper jaw. Jurda et al. [119] also used laser 
imaging techniques to record cranial morphology.

Registration of human face and soft tissue
The inherent advantages of fast capture, resistance to 
interference, and high resolution, as well as the histori-
cal direction of the technology, dictate a high degree 

of suitability of laser imaging for face and soft tissue 
imaging.

A large body of literature demonstrates that laser imag-
ing is widely used in this field [120-123], and the accuracy 
of laser imaging for soft-tissue imaging has been widely 
noted and repeatedly displayed. Moreover, laser scanners 
have easy applications and can create 3D images with 
extraordinary applications.

3D capture of the human face and soft tissue morphol-
ogy is an indispensable support for treatment planning 
and performance of plastic and reconstructive surgery, 
especially cleft lip and palate (CLP). While most studies 
on soft tissues are performed by laser surface scanning, 
as expressed by Canto G. [33], the number of publica-
tions listed on PubMed on 3D imaging of CLP patients is 
steadily increasing. The main relevant scanners currently 
in the market are FastSCAN™ [8] and Solutionix [19]. It 
is worth noting that although LIDAR uses non-ionizing 
radiation for imaging, laser damage to the eyes should be 
considered when using it for 3D reconstruction of human 
face [108]. Dose limitation and optimization of protective 
measures should be further investigated.

Registration of dental casts
Data obtained from dental models are useful for the diag-
nosis and determination of treatment plans [43, 124]. 
Researchers have also used laser imaging to obtain the 
3D morphology of dental models, such as by Yousef et al. 
[125-128]. Noh et  al. [129] noted that the accuracy of 
integrating dental images from laser scans into maxillo-
facial Cone beam CT(CBCT) images could be improved 
[130]. The Minolta intraoral scanner developer [124, 131] 
is the most typical example, and the accuracy and scan-
ning speed has been increasing in a short period [124, 
132-134]. In conclusion, in the current field of intraoral 
scanning, LIDAR integrates the advantages of portability, 

Fig. 3  Diagrammatic representation of the LIDAR device. Using 
a laser light source, target object, and camera, the data can be 
converted into simple x, y, and z coordinates, and the positions of all 
the object points can be calculated in a 3D space

Fig. 4  Flow chart of Laser Imaging Detection and Ranging (LIDAR) technique
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speed, ease of operation, simplicity, and small size, and 
has also become a common technology.

Structured light technology
Structured light technology is another widely used class 
of 3D imaging technology based on the principle of opti-
cal triangulation, and consists of optical projectors, cam-
eras, and computer systems to form a structured light 3D 
vision system (Fig. 5) [16, 53]. It emits light with charac-
teristic points to an object with a smooth and featureless 
surface and extracts the depth information of the object 
based on the stereo information in the light. Different 
studies have evaluated the accuracy of various scanners 
based on structured light technology, all with better 
results [62-64].

It is considered one of the mainstream types of 3D 
reconstruction technology mainly because it can capture 

the shape of the target realistically and accurately and 
create a simulated image with a good balance of other 
properties. And in active vision-based 3D reconstruction 
technology, it has relatively strong resistance to environ-
mental interference but is still affected by ambient light 
[16, 65-73]. The advantages and disadvantages of this 
technology, as applied in dentistry, are listed in Table 2.

Application development of structured light technology
The development of structured light technology occurred 
slightly after LIDAR, originating around the 1970s 
[74-78], but from the beginning, it has received a lot of 
attention from researchers around the world. Various 
breakthroughs in structured light technology have been 
described in detail [16], and this study focuses on the 
development of this technology in the field of dentistry.

Table 2  Advantages and disadvantages of 3D reconstruction technology for each category

The currently known advantages and disadvantages of laser imaging technology in dentistry are listed in Table 2

The advantages and disadvantages of this technology, as applied in dentistry, are listed in Table 2

The advantages and disadvantages determined by their technical principles are listed in Table 2

More details on the advantages and disadvantages of their current use in dentistry are listed in Table 2

The current advantages and disadvantages are listed in Table 2

The main advantages and disadvantages of the field and the differences between the three types of passive visual 3D imaging techniques are listed in Tables 2 and 3

Advantages Disadvantages

Laser Imaging Detection and Ranging (LIDAR) Quick Capture Speed [52, 53]
High accuracy and good repeatability of measure-
ments [16, 58-60]
Effective resistance to external disturbances [8, 43]
High resolution [43]
Good portability [8, 43]
Medium photorealistic quality [8, 19]

Algorithms requirements [16]
Longer post-scan time [18]
Expensive [16]
Safety issues with exposure to laser beams [18]
Prone to damaged transmitter [16]
Loss of laser return [61] and deficiencies in short-
range measurements [8, 43, 54]

Structured light technology High accuracy and good repeatability of measure-
ments [62-83]
Strong resistance to external disturbances [16, 
65-73], excluding light sources [61]
Rapid post-scan processing [16, 70]
Convenient [16]
High photorealistic [62-64, 79-83]
Low energy consumption [16]

Varying resolution quality [73]
Algorithms requirements [16]
Only for close range targets [73]
Prone to damaged transmitter [16]

Time-of-Flight (ToF) method Quick Capture Speed [16]
Simple algorithm [16]

Low measurement accuracy [16]
Low resolution [16]
High energy consumption [16]

Confocal laser scanning microscope (CLSM) High measurement accuracy [44, 84-89]
High image clarity [44, 84-91] and good expres-
sion of details [84-89]

Low capture speed with the use of layer-by-layer 
scanning [44, 91]
Algorithms requirements [91]
Long processing time [91]
Expensive [89, 91]
High energy consumption and complex equip-
ment structure [89, 91]

Optical coherence tomography (OCT) Very high resolution [92-96] Tomography results in a low capture speed [92-96]
Algorithms requirements [92]
Equipment space limitations [94]
Imaging depth limitation [97, 98]

3D imaging based on a passive vision No requirements for scenes [99-101]
Convenient [16]
Real-time feedback of imaging results [102]

Algorithms requirements [99]
Difficult to operate [99]
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As with laser imaging, early developments have focused 
on facial imaging [66] and made a number of significant 
breakthroughs [65-72, 79-83]. In recent years, Piedra-
Cascón et  al. [135] verified that specific dental optical 
scanners based on structured light scanning technology 
have significantly higher realism and accuracy than non-
dental structured light scanners, affirming the process 
of taming the technology by researchers in the field of 
dentistry.

The analysis of its research potential will be described 
separately in later sections according to the classification 
of technology application scenarios.

Main application areas of structured light technology 
in dentistry
Reconstruction of human face and soft tissue
As mentioned earlier, the characteristics of the technol-
ogy and the directed research have led to the excellence 
of structured light technology for 3D imaging of the face. 
This conclusion has been repeatedly confirmed in studies 
[136, 137].

It was the first technique proposed for the complete 
capture of soft facial tissue, facial skeleton, and denti-
tion (maxillofacial triad) and can be integrated on the 
basis of imaging results to construct maxillofacial models 
that can be used for surgical design and efficacy analy-
sis in orthodontic treatment [138]. Subsequent studies 
have progressively complemented its powerful ability 
to measure soft tissue thickness [139] and accurately 
assess complex areas or dynamic soft tissue profiles [140, 
141]. In the field of scientific research, the step involving 

the extraction of 3D data of the face, many researchers 
[142-153] choose to use structured light technology or 
scanners based on this technology, reflecting its wide 
acceptance in dentistry. 3dMD system is one of the clas-
sic facial imaging devices used in dentistry. The main 
imaging principle is structured light combined with 
active visual 3D imaging techniques, which is discussed 
later, and this suggests that combining two mainstream 
technologies for face imaging may be a mutually improv-
ing approach.

Fine structure of the oral cavity
Structured light technology cleverly solves the optically 
challenging defect of a smooth and featureless object 
surface that makes it difficult to image and is especially 
suitable for targets with flat surfaces, single textures, and 
insignificant color variations, such as the smooth face 
of teeth. Moreover, the technological principle is simple 
and easy to implement. As mentioned earlier, most rel-
evant research in the field of dentistry has focused on 
improving the accuracy of structured light technology, 
which can now produce precise and critical anatomical 
information and participate in various minimally inva-
sive clinical procedures [154]. Therefore, structured light 
technology can meet the requirements of microscopic 3D 
morphology for high-precision measurement, and has a 
certain potential for 3D reconstruction of fine structures 
inside the oral cavity.

The aforementioned advantages dictate its use in 
orthodontics, prosthetics, and other disciplines that 
require the acquisition of fine morphology of intraoral 
tissues. Nagata et al. [21] showed that an intraoral scan-
ner with structured light technology as the main princi-
ple could be used for imaging up to three units of implant 
prostheses, although the sample number of the study was 
its obvious limitation. Based on this study, they also sug-
gested that applying this technique to the development 
of intraoral scanning has the potential to reduce the risk 
of medically-derived infections, but further research is 
needed.

In summary, considering the combination of structured 
light technology with other techniques to improve the 
imaging results on smooth intraoral planes is also one of 
the directions worth investigating. For example, the com-
bined use of structured light technology and confocal 
microscopic imaging is currently the mainstream tech-
nology for intraoral scanners, which is also described in 
later sections.

Insufficient funding
The high price has been one of the non-negligible draw-
backs that limit the use of scanners in clinical trials in 
private hospitals and private hospital dissemination. 

Fig. 5  Diagrammatic representation of the structured light device. 
The projector emits a "structured" light pattern that distorts 
and deforms when light hits the surface, generating feature points
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As proposed by Nowak et  al. [155], the development of 
scanners should focus mainly on reducing time and cost. 
Currently, structured light technology is frequently cho-
sen and applied in the research of developing low-cost 
instruments [156-158]. This hints that it may be the pre-
ferred technology in case of insufficient funding, and it 
may become the mainstream technology for developing 
low-cost scanners in the future.

Time‑of‑Flight (ToF) method
The Time-of-Flight (ToF) method is an active triangula-
tion technique. Pulsed light is emitted from the trans-
mitter to the object, reflected by the object, and stopped 
when the receiver receives the reflected light. The com-
puter determines the distance of the object based on the 
time difference between the transmission and reception 
and determines the resulting depth information. Then, 
the data of each detected point is assembled to form huge 
3D point cloud information to reflect the target’s mor-
phology. The advantages and disadvantages determined 
by their technical principles are listed in Table 2.

The characteristics of the technique, such as spatial 
limitations and low accuracy, determine its unsuitability 
as a primary technique in dentistry. It is more suitable for 
the 3D imaging of large objects. However, it can be used 
as an auxiliary technique to enhance the performance 
of other 3D reconstruction technology, which suggests 
a possible direction for its development. The Kinect 2.0 
sensor, introduced in 2014, is a prime example of the 
combination of technologies as described above, in which 
ToF plays a role in enhancing the ability to acquire depth 
information on the surface of the object.

Confocal laser scanning microscope (CLSM)
Confocal microscopic imaging is a technique used to 
acquire focused images from a selected depth. Its core 
devices include an illumination pinhole placed behind 
the light source and a probe pinhole placed in front of 
the detector. In the imaging process, the direction of the 
optical path is changed mainly by adjusting the equip-
ment, and a layer-by-layer scanning mode is used to 
obtain images of different layers at different points on the 
target surface, so it is also referred to as “optical slicing”. 
Finally, the 3D morphology of the scanned target is com-
putationally reconstructed (Fig. 6).

The most significant advantage of the technology itself 
is the superior imaging performance [90]. Besides, with 
this technique, the surface profiles of opaque speci-
mens can be reconstructed, and the internal imaging of 
non-opaque specimens can be obtained. In addition, the 
images can be viewed continuously on the screen during 
the scanning process. The user can visualize the comple-
tion of the scan to ensure that no area is missed [90, 91]. 

However, due to the use of layer-by-layer scanning tech-
nology, the speed of 3D reconstruction (including the 
speed of information acquisition during scanning and the 
speed of data post-processing) and the high requirement 
for algorithms also lead to obvious shortcomings. More 
details on the advantages and disadvantages of their cur-
rent use in dentistry are listed in Table 2.

Application development of CLSM
Despite the late origin of confocal microscopy [91] and 
the lack of extensive technical research, the technology 
itself is particularly favored in the field of three-dimen-
sional reconstruction of dentition owing to its significant 
advantages of microscopic properties and extremely high 
definition and accuracy in obtaining images. As men-
tioned earlier, most orofacial scanners on the market 
today use a three-dimensional imaging principle that 
combines CLSM and structured light technology. CLSM 
has become one of the dominant technique for intraoral 
imaging.

For example, Sirona was one of the first scanner 
developers to apply CLSM, playing an important pio-
neering role by combining the principles of optical tri-
angulation with technical innovation, dynamic imaging 

Fig. 6  Diagrammatic representation of the CLSM device. There are 
often various lenses involved in changing the optical path. Only 
the morphological data of the teeth on the focal plane are obtained
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optimization, scan speed improvement, and real-time 
enhancement of CLSM. iTero, which entered the market 
later, is one of the most widely used intraoral scanners 
in clinical use today, capturing image information with 
greatly improved clarity and scanning speed [44, 84, 85].

From the point of view of the technology itself, the 
different projection images and the corresponding data 
processing procedures are important factors that widely 
affect its application performance and are the focus of 
current and future research [84, 85, 91].

Main application areas of CLSM in dentistry
Dental 3D reconstruction
As the main technological pillar of intraoral scanners 
(IOS), CLSM, which excels in accuracy and detail por-
trayal, is widely used in clinical and scientific research 
in dentistry for various intraoral tissue 3D reconstruc-
tions, represented by applications in orthodontics and 
prosthodontics.

In a retrospective study of a large number of studies 
evaluating intraoral scanners, Jabri et  al. [57] indicated 
that the use of CLSM technology maximizes the accu-
racy of intraoral scans and is an ideal tool for converting 
dental plaster models to digital models. This allows it to 
be currently used in orthodontic treatment such as the 
precise analysis of the patient’s dental morphology and 
the development of treatment plans. It can also be used 
for almost all treatment sessions and types of restora-
tions such as resin inlays and fixed partial dentures [87] 
in prosthodontic treatment. And the scientific literature 
confirms that optical impressions are clinically similar to 
conventional impressions in terms of accuracy and fidel-
ity, which continue to improve [88, 89]. In addition, in a 
cross-sectional comparison study of multiple techniques 
[24], the scanner with CLSM as the core technology 
showed better imaging results in the transitional por-
tion of partially missing to completely missing teeth on 
the model. This suggests that it may have more applica-
tion scenarios than other intraoral scanning techniques, 
such as making precise intraoral scanning of the full arch 
possible.

In addition, CLSM is favored by researchers for obtain-
ing color 3D models [159]. The color impression of 
intraoral tissues has also been an important property of 
the newly developed intraoral scanner in recent years.

Dental microwear and micro lesions
Due to the excellent contribution of CLSM in microscopy 
and its ability to represent great details, DeSantis et  al. 
[160] in 2013 confirmed the importance of the former 
in monitoring dental microwear by comparing the accu-
racy of confocal microimaging techniques with 2D imag-
ing techniques in reproducing dental microwear images 

in herbivores. One year later, Maia et al. [161] confirmed 
that CLSM could be used to reproduce a 3D model of the 
eroded surface of tooth enamel with good results.

Since then, CLSM has been considered an effective 
tool for imaging dental microwear and micro lesions. 
For example, Austin et  al. [162] used it for the study of 
enamel erosion and remineralization properties, and 
Hara et  al. [163] used CLSM to test enamel 3D surface 
texture outcomes to study the pathological alterations of 
erosive tooth wear. With the aid of CLSM, Mullan et al. 
[164] also proposed a method to accurately measure the 
surface texture of human natural teeth.

Active wavefront sampling
The active wavefront sampling device consists of an emit-
ter, lens imaging system, and sensor. The beam emitter 
projects light onto the scanned object, and the image 
reflected by the target passes through the lens imag-
ing system and is selectively filtered using a rotating 
eccentric-aperture device. The light filtering effect of this 
device can well prevent the images of different areas of 
the tooth surface from overlapping, thus improving the 
spatial resolution of the images. The reflected light is 
projected onto the sensor to form an out-of-focus image 
of a circular trajectory, and the spatial position of each 
measurement point is calculated in combination with the 
known information of the optical path to obtain the 3D 
information of the scanned target (Fig. 7) [165, 166].

The large amount of data and the high speed of infor-
mation acquisition are the most significant advantages 
of active wavefront sampling. Twenty 3D datasets can 
be captured per second,embodying over 10,000 data 
points in each scan [167]. However, it does not show 
significant superiority in this respect compared to other 
technologies [38]. The most prominent drawback is that 
when using a scanner with active wavefront sampling 
as the core technology, the particular powder needs to 
be sprayed on the tooth surface to form a homogene-
ous layer after the mouth rinsing and air drying. This 
requirement makes the use of active wavefront sampling 
significantly less convenient and less comfortable for the 
patient, and the powder itself can affect the accuracy of 
imaging. Moreover, it has high equipment requirements 
and is difficult to make major breakthroughs or correct 
shortcomings at the technical level due to the limitations 
of its principles.

Combined with the above factors, this technique is 
relatively unpopular in dentistry-related research. Nev-
ertheless, there are still mainstream intraoral scanners 
that primarily choose to use this type of technology, rep-
resented by the Lava COS and True Definition Scanner 
[38, 167, 168]. According to studies on the application of 
these scanners, active wavefront sampling have shown 
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weak competition for applications in recent years and 
have been used only for intraoral scanning.

Overall, the applications and research related to den-
tistry, with active wavefront sampling as the main tech-
nology, are at a disadvantage and have not shown a 
significant trend of becoming popular. The research 
significance and development prospects are relatively 
pessimistic. But it can be considered to develop new 
technologies and application models that combine with 
other technologies in some application scenarios that 
need to improve imaging accuracy and data content.

Cone beam CT (CBCT)
CBCT acquires serial X-ray images through rotational 
scanning and generates 3D images using a 3D recon-
struction algorithm. The 3D reconstruction process is 
illustrated in Fig. 8.

The vast majority of diagnostic and therapeutic appli-
cations in the field of dentistry require the use of this 
technology, which is primarily used for pathological 
examination of tooth roots, such as periapical [169] and 
root resorption [170], pathological imaging of the den-
tal pulp, such as root canal therapy, imaging of bones in 
cranial segments, such as the mandible [92, 93], and soft 
tissue evaluation, such as the gingiva [94]. It is worth not-
ing that radiation exposure is its most significant feature 
compared to other techniques. The radiation protection 
principles of justification and optimisation are empha-
sized by International Commission on Radiological Pro-
tection. However, there are significant differences in 
radiation dose levels between even the same equipment 

model, which leads to instability in protection [95]. 
Reducing the harmful effects of ionizing radiation by 
means such as optimisation of imaging parameters and 
equipment is one of the priorities for future research in 
CBCT.

Optical coherence tomography
Optical coherence chromatography (OCT) is a non-
invasive, high-resolution optical imaging technique that 
generates cross-sectional images of objects in real-time 
based on the interference between the signal from the 
object under study and a local reference signal [96]. OCT 
has a very high resolution that is almost hundred times 
higher than that of confocal microscopy [96, 171]. There-
fore, OCT is a new diagnostic imaging technique with 
many potential dental applications [172].

According to the published literature, the main devel-
opment period of OCT application in dentistry started 
five years ago, but it has already shown a considerable 3D 
imaging effect and has a desirable developmental pros-
pect. In recent years, there have also been developers of 
mouth scanners that use OCT technology as the main 
3D imaging principle, or add OCT as a secondary tech-
nology. These mouth scanners have performed well in 
several tests [173, 174]. The current advantages and dis-
advantages are listed in Table 2.

Main application areas of OCT in dentistry
Scanning of dental hard tissues and restorations
Due to its non-invasive, cellular level resolution and 
tomographic properties, OCT technology has excellent 
prospects for application in the field of 3D imaging of 
dental hard tissues and restorations [175].

The earliest use cases [176] where OCT was intro-
duced into dentistry were when Otis et al. [177] and de 

Fig. 7  Diagrammatic representation of an active wavefront 
sampling. The calculation of the focus and defocus depth is based 
on the measurement of the main optical system

Fig. 8  Flow chart of the CBCT 3D reconstruction
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Melo et al. [178] used it to image tooth composition such 
as enamel, dentin, and restorations. Subsequent experi-
ments have repeatedly confirmed that OCT can be used 
for 3D structural imaging and functional diagnosis of 
human teeth [179], due to the ability to generate high-
resolution images of microdamage [180-182].

Although OCT is an emerging technique, it has been 
widely used. The most widespread application is the use 
of OCT to detect secondary caries, such as Schneider 
et al. [183-186] There are also many studies using OCT 
to observe the tomographic morphology of restorations 
[185, 187], such as internal gaps [188], in order to evalu-
ate the various properties of restorative materials or to 
use the 3D images acquired by OCT as a basis for related 
studies such as material curing scheme selection [189]. 
Furthermore, the imaging of the dental tissue itself is also 
one of its extremely valuable application scenarios. Imai 
et  al. [190] used the capability of OCT to clearly image 
enamel crack and whole-thickness enamel crack to con-
firm the extension of enamel cracks beyond the dentinoe-
namel junction. What’s more, it can be used to propose 
new guidelines for dental-wear assessment [179].

Overall, the frequency of choosing OCT for imaging 
dental hard tissues and restorations has shown a signifi-
cant upward trend in recent years, showing optimistic 
research implications and development prospects. How-
ever, different restoration materials result in different 
degrees of signal attenuation, which causes differences in 
imaging results [176]. This has been the focus of recent 
studies related to the application of OCT for restorative 
imaging [191].

Replace or improve X‑ray radiography
Notably, one of the most remarkable features of OCT 
is the ability to produce cross-sectional images of tis-
sue structures. According to Shimada et  al. [185] pro-
posed that OCT has higher sensitivity and earlier image 
changes than dental X-rays in caries detection, which 
means that OCT is a reliable and accurate method and a 
safe alternative to radiography.

Erdelyi et al. [97] clearly suggested through high qual-
ity radiological studies and analysis of experimental data 
that OCT is more suitable than plain x-rays for assess-
ing dental problems and applying them in the treatment 
process, except for bone-related investigations and peri-
odontitis. In addition, OCT is free of ionizing radiation 
and can achieve imaging levels comparable to destructive 
high-resolution microscopy. Therefore, it has been shown 
to provide qualitative images in  situations where X-rays 
are not appropriate, such as in patients with developmen-
tal disorders [192]. These studies demonstrate the poten-
tial of OCT to replace X-rays in the future.

As a proven depth-resolution imaging technique, many 
research teams have also explored the feasibility of using 
OCT to improve X-ray techniques. Erdelyi et  al. [193] 
claimed that the combined use of X-ray and OCT tech-
niques has no drawbacks and can significantly improve 
resolution. This is one of the directions worth studying 
in the future.

Periodontal tissue and oral environment monitoring
OCT has promising applications in the diagnosis and 
monitoring of soft-tissue conditions in the oral cavity. 
This includes an assessment of mucosal [194, 195] status, 
plaque, and gingival aspects [196]. As early as 2009, Baek 
et  al. [98] used OCT to measure changes in the peri-
odontal ligament and confirmed its accuracy. Subsequent 
studies have also demonstrated that OCT can produce 
high-resolution images of periodontal structures [61], 
including tissue contour, dental calculus, and connective 
tissue attachment, which can be used for periodontal tis-
sue and oral environment monitoring and early detection 
of active periodontal etiology.

In addition, researchers have claimed that improve-
ments in imaging depth [61, 192] and the development 
of intraoral sensors are likely to make OCT a useful tech-
nique for periodontal applications, suggesting a direction 
in which future OCT research should focus.

In conclusion, OCT, as a newly emerged 3D recon-
struction technique, has demonstrated good potential 
but remains to be explored.

3D imaging based on the passive vision
Compared with the other principles of three-dimen-
sional imaging technology introduced previously, this 
technology is more widely used, the development of 
which is exceptionally rapid despite its relatively late  
adoption [99].

Passive visual 3D imaging technology imitates humans 
using cameras instead of eyes to perceive 3D structures. 
It involves the acquisition of image sequences by visual 
sensors (one or more cameras), which generally means 
acquiring two or more images from different viewpoints. 
Based on this, the difference between the two viewpoints 
is calculated using triangulation to perceive the depth 
information and reconstruct the 3D structure or depth 
information of the target object. Useful information 
from the acquired images is extracted, reverse engineer-
ing modeling is performed, and a 3D model is created. 
A noninvasive, non-contact technique with no radiation 
exposure is used [102].

Since passive visual 3D imaging technology have the 
significant and important advantage of being virtually 
immune to environmental interference compared to the 
active vision technology mentioned above, much effort 
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has been devoted to the research of this technique in 
recent years. In addition, it has the advantages of lower 
price and higher real-time performance, and the need 
for algorithms and the difficulty of operation are prob-
ably their overall weaknesses. But according to the num-
ber of cameras, passive visual 3D imaging techniques can 
be classified into monocular vision [197-202], binocular 
vision, and multiocular vision. The different classifica-
tions have some differences in performance in terms of 
environmental restrictions, reconstruction results, ease 
of operation, cost and reconstruction speed. In general, 
with an increase in the number of cameras, the imaging 
effect is gradually optimized and the application scenar-
ios is wider, but the cost increases significantly, and it is 
increasingly difficult to operate. Therefore, in develop-
ing this technology, the key to research is an improve-
ment based on a good balance between all aspects of its  
performance [16, 99].

The main advantages and disadvantages of the field and 
the differences between the three types of passive visual 
3D imaging techniques are listed in Tables 2 and 3. The 
general flowchart is shown in Fig. 9.

Monocular vision imaging technology
Monocular vision is a 3D reconstruction method 
that uses only one camera [197-199]. Over the years, 
researchers [200-204] have conducted research on its 
dynamic imaging, imaging quality, and more. Simple 
calibration and compact computational efficiency are sig-
nificant advantages. However, their lack of depth infor-
mation, the large number of blind areas in the extraction 
of object appearance data, and the size limitation of the 
imaging area are shortcomings that still exist [202, 203]. 
In general, a single camera cannot obtain information 
for multi-angle observation of the target, and in the case 
of the 3D imaging needs of dentistry, both extraoral and 
intraoral tissues have complex morphological structures; 
therefore, the performance drawbacks described earlier 
due to the principle of the technology dictate that the 
technology is currently hardly used in dentistry. Future 
research on this technology should focus on algorithm 

improvements and its application in combination with 
other technologies [205, 206].

Binocular vision imaging technology
Binocular vision works using two cameras to mimic 
human eyes, capturing images of different perspectives 
of the same target, and then using the principle of tri-
angulation to reconstruct the surface of the target in 3D 
[207]. The advantage of this system is the ability to obtain 
a larger range of views and to perform more accurate 3D 
reconstructions under conditions that match the calcula-
tions of more complex algorithms [207]. Because of the 

Table 3  Characteristic comparison of the three passive visual 3D reconstruction technology

The main advantages and disadvantages of the field and the differences between the three types of passive visual 3D imaging techniques are listed in Tables 2 and 3

Classification Applied range Reconstruction results Ease of operation Cost Reconstruction speed

Monocular vision Wide range of applications Poor accuracy of depth infor-
mation

Better control Cheap price Short processing time

Binocular vision Wider range of applications Consistent and good results Bad control High cost Large volume of operations

Multiocular vision Suitable for all kinds 
of scenes with a large field 
of view

Better reconstruction, more 
accurate, high recognition 
accuracy

More difficult 
to manipulate 
and control

More expensive Large volume of operations 
and long reconstruction 
time

Fig. 9  Flow chart of 3D reconstruction based on passive vision
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balance and compliance of each performance, this class 
of techniques is the focal part of 3D reconstruction tech-
nology with great potential [16] and has been fully devel-
oped in favor of its application in dentistry [208, 209]. 
Currently, 3dMD system, a 3D imager that has an impor-
tant role in the field of facial imaging in dentistry, uses 
binocular vision-based 3D reconstruction technology as 
its main principle.

However, it still has the significant shortcoming that 
the triangular relationship between the two cameras and 
the imaging target is difficult to adjust precisely, which 
leads to practical difficulties [210, 211]. If the angle 
between the two camera views and the target is too large, 
more false matches are generated, which requires more 
complex algorithms. And if the parallax is too small, it 
reduces the imaging range and the quality of data extrac-
tion. This is the focus of the current breakthrough needed 
for this technology.

Multiocular vision imaging technology
Its advantages in terms of application scenario limita-
tions and imaging results are apparent, but due to its late 
development, the technology has not yet been adapted 
to the requirements of dentistry. In recent years, the 
research of this technology in terms of device hardware 
has gradually become a hot topic [212], but it is still in its 
initial stage.

Main application areas of passive visual 3D imaging 
in dentistry
Facial imaging and soft tissue assessment
Passive visual 3D imaging is widely used in dentistry in 
combination with various other techniques and has a 
wide range of applications; however, the classic use is 
facial imaging and soft tissue assessment [213, 214], espe-
cially for binocular vision imaging technology. The most 
prevalent is the 3dMD system [27, 100, 210, 211, 215], 
which combines passive and active stereo-photogram-
metry [100], where the underlying motion of the facial 
expression and respiration can be ignored because of 
the very short photo capture time of 1–2  ms [216]. For 
example, Lau et al. [217] used 3dMD to assess the degree 
of facial swelling in patients after third molar extraction 
and Kaba et  al. [218] used data generated by 3dMD to 
assess the effectiveness of medications in reducing swell-
ing. And studies have shown that its precision and accu-
racy are the highest of almost all facial scanners [210]. 
In addition, it has great potential for extended use. For 
example, Xin et  al. [216] proposed the use of CT tech-
nology in combination with 3dMD, with ease of use and 
high reliability. From the perspective of research trends, 
researchers who focus on techniques for acquiring facial 

features also prefer such techniques as their main research  
direction [219].

The superiority of passive stereoscopic imaging for 
facial imaging applications has made it the first choice 
for orthognathic surgery [220] or the treatment of vari-
ous other craniofacial anomalies [211, 221]. This tech-
nology allows the surgeon to quickly obtain and save the 
soft tissue morphology of the patient’s face at any time of 
treatment, and to easily perform precise linear measure-
ments and angular calculations of any marker point on 
the resulting 3D image of the face [222]. On this basis, 
in the wide range of applications it has received [101, 
210, 222-224], the patient’s condition can be accurately 
analyzed and diagnosed before surgery and the surgical 
plan can be improved, and the soft tissue changes after 
orthognathic surgery can be accurately and efficiently 
evaluated and the efficacy demonstrated, providing key 
reference information for determining the success or fail-
ure of treatment.

Intraoral scan
Although the suitability of choosing 3D imaging based on 
the passive vision for intraoral imaging is not as good as 
the other techniques described above for the same pur-
pose, it has also been shown to be used for intraoral scan-
ning when, for example, only such equipment is available 
or when a particular situation is considered that leads to 
severe light interference in the application scenario.

In a study by Tohme et  al. [225], such techniques 
reported the highest accuracy in terms of fidelity and 
precision of intraoral scanned bodies for all evaluation 
techniques. Furthermore, this literature mentions the 
need for future studies to evaluate different types of pho-
togrammetric systems and implant angles, connections, 
and volumes. However, in the study by Ortensi et  al. 
[226] it was found that the height and width data of the 
teeth were accurate in the scans obtained by the 3dmd 
system, but the mesial-distal dimension imaging results 
of the teeth were prone to distortion.

In conclusion, passive visual 3D imaging techniques 
have some utility and potential for intraoral implant 
scanning, but is not a preferred option.

Conclusion
In conclusion, 3D reconstruction technology have made 
an undeniable contribution to the digitization of the sur-
face morphology of human tissues involved in dentistry. 
However, to date, none of these technologies apply to 
all areas of dentistry. Researchers and physicians need 
to select the most appropriate instruments correspond-
ing to the 3D reconstruction technology according to the 
research or clinical situation involved to maximize the 
convenience and accuracy of 3D imaging. Manufacturers 
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and researchers must target a certain technology cat-
egory as the main technology pillar for future develop-
ment and upgrades of the products in specific application 
areas. Finally, from the point of view of technological 
development and existing research, the integration of 
different technologies is the most promising way to over-
come their respective limitations, which can lead to more 
application scenarios and better performance of 3D 
reconstruction technology.

In addition, the reference to English literature only 
is one of the limitations of this review. Studies in many 
other languages, such as Indonesian, are also authentic 
and reliable, so the deficiencies in references selection 
may result in information bias [227].
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