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Abstract 

Background To evaluate the techniques used for the automatic digitization of cephalograms using artificial intel-
ligence algorithms, highlighting the strengths and weaknesses of each one and reviewing the percentage of success 
in localizing each cephalometric point.

Methods Lateral cephalograms were digitized and traced by three calibrated senior orthodontic residents 
with or without artificial intelligence (AI) assistance. The same radiographs of 43 patients were uploaded to AI-based 
machine learning programs MyOrthoX, Angelalign, and Digident. Image J was used to extract x- and y-coordinates 
for 32 cephalometric points: 11 soft tissue landmarks and 21 hard tissue landmarks. The mean radical errors (MRE) 
were assessed radical to the threshold of 1.0 mm,1.5 mm, and 2 mm to compare the successful detection rate (SDR). 
One-way ANOVA analysis at a significance level of P < .05 was used to compare MRE and SDR. The SPSS (IBM-vs. 27.0) 
and PRISM (GraphPad-vs.8.0.2) software were used for the data analysis.

Results Experimental results showed that three methods were able to achieve detection rates greater than 85% 
using the 2 mm precision threshold, which is the acceptable range in clinical practice. The Angelalign group even 
achieved a detection rate greater than 78.08% using the 1.0 mm threshold. A marked difference in time was found 
between the AI-assisted group and the manual group due to heterogeneity in the performance of techniques 
to detect the same landmark.

Conclusions AI assistance may increase efficiency without compromising accuracy with cephalometric tracings 
in routine clinical practice and research settings.
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Introduction
Early in 1931, Broadbent and Hofrath introduced lat-
eral cephalometric radiographs, setting a precedent for 
their application in orthodontics practice and research. 
Since then, conventional cephalometry has become a 
standardized diagnostic method for malocclusion analy-
sis and treatment planning [1]. Based on the identifica-
tion of anatomical landmarks, cephalometric analysis is 
conducted on angles and distances measurement for the 
interpretation of craniofacial structures. Cephalometric 
analysis was initially coined to manually localize land-
marks on acetate overlays over a lighted view box and 
measure the linear and angular values with a protractor, 
which is tedious, time-consuming, and subjective [2].

Defined by John McCarthy in 1956, AI now serves as a 
branch of computer science that has been receiving the 
spotlight and is now widely used in different fields, espe-
cially in biological and medical diagnostics. AI-derived 
machine-learning approaches have been developed by 
imitating biological networks through computer pro-
grams that model the way the intelligent human per-
forms [3]. Since the radiographs represent biological 
shapes, they cannot be described in terms of shifted and 
rotated patterns that could be easily recognized. Recent 
years have witnessed the advances and integration of AI 
in medicine [4, 5], which is driven by the development of 
deep learning algorithms, computing hardware advances, 
and the exponential growth of data. The application of AI 
currently gained wide attention for a plethora of medical 
purposes, especially for decision-making and recognition 
of objects.

In orthodontics, cephalometric analysis with the assis-
tance of AI is applied to the evaluation of post-treatment 
results and prediction of growth [6–8]. The evolution 
from manual cephalometric analysis to AI-assisted ceph-
alometric analysis is aimed at improving the diagnostic 
value by reducing measurement errors and saving clini-
cal time [9–11]. As multidimensional data is increasingly 
being generated in routine care, AI can support clinicians 
to reach consistency in diagnosis and treatment. Through 
the YOLOv3 method, Hwang et al. evaluated 283 lateral 
cephalometric images with 46 hard tissue and 32 soft tis-
sue landmarks and found that the mean detection error 
between AI and orthodontists was 1.46 ± 2.97  mm [12, 
13]. Similar to their results, Kim et  al. found that the 
overall automated detection error of landmarks identi-
fication using cascaded convolutional neural networks 
was 1.55 ± 2.17  mm [14]. However, some researchers 
announced that the AI-assisted cephalometric analysis 
was not reproducible due to large inter- and intra-vari-
ability errors in landmark annotation [15]. By applying 
a statistical simulation procedure, Moon et al. proposed 
that the accuracy of AI was directly proportional to the 

quantity of learning data and the number of detection 
targets. Considering the inter-examiner difference, a suf-
ficient quantity of learning data sets (approximately at 
least 2300) was necessary to develop accurate AI [16].

Many commercially available software developed in 
cephalometry; however, the software algorithms devel-
oped did not seem accurate enough in clinical practice 
[17]. AI-assisted detection has been identified as useful 
since landmark identification is a laborious task, requir-
ing the time of experienced experts [18]. However, the 
assessment of common commercial software and the 
impact of experienced orthodontists-AI collaboration 
on the accuracy of cephalometric landmark detection 
are lacking. Among the commercial software, current 
AI-assisted programs (MyOrthoX, Angelalign, and Digi-
dent) outperformed state-of-the-art landmark identifica-
tion methods, providing process automation through a 
knowledge-based algorithm. The present study aimed to 
evaluate and compare the accuracy of manually traced 
lateral cephalograms with automatic, or AI-assisted 
programs, allowing orthodontists to make an informed 
choice of suitable software and analysis methods.

Material and methods
Trial design
All procedures performed were in accordance with the 
ethical standards of the Clinical Research Ethics Com-
mittee of Chongqing Medical University (Approval 
No.2022–077). In this study, a total of 43 samples were 
collected from ethnic groups in the southern and south-
east parts of China. The patient’s radiographs with the 
same resolution and quality were randomly collected 
from Chongqing Medical University. Patient data were 
handled according to the CONSORT (Consolidated 
Standards of Reporting Trials) Statement and Helsinki 
Declaration. The radiographs belonged to those who had 
undergone orthodontic treatment between June 2018 and 
May 2022. The following were the inclusion criteria: no 
cleft lip and palate, and no diagnosed systemic diseases 
or craniofacial syndromes. In the survey, the patients and 
their parents or guardians were informed about the aim 
of the study, the privacy policy, and their right to refuse 
to participate.

Identification of cephalometric landmarks
Thirty-two commonly used skeletal and dental cepha-
lometric points were selected including 21 hard tissue 
and 11 soft tissue landmarks (Fig.  1). Two coordinate 
fiducials were marked on the radiographs to construct a 
reference grid, and the line connecting these two points 
is the z-axis [19]. The beginning and end of the 30-mm 
virtual ruler in AI were manually aligned with the ruler 
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on radiographs to allow comparison. Each landmark’s 
definition, position, and abbreviation were described in 
Table 1.

For the manual group, all landmarks were manually 
digitized by a single observer and confirmed by other two 
observers with any discrepancies adjudicated by mutual 
agreement. Before registration, three observers, all staff 
members of the Orthodontic Department, calibrated 
with respect to the definition of the landmarks. The 33 
radiographs were coded and presented to the observers 
in random order. Landmark identification was performed 
manually using a mouse-controlled cursor.

For the automated detection group, the cephalograms 
were uploaded to three commercial software (MyOr-
thoX, Angelalign, and Digident) with no further labe-
ling or changes, and the landmarks were auto-identified 
(Fig.  2). Tracings of the manual groups and automated 
detection groups were then scanned into Image J to 
obtain the coordinates of each landmark.

For the AI-assisted group, landmarks were digitized 
with orthodontists after the automated landmark identi-
fication using the software. To prevent the recognition of 
previous landmarks, all markings were removed and the 
landmark locating was conducted after 2 weeks. Further-
more, to determine the intra-observer error, all examin-
ers conducted a second digitization of the cephalograms 
after a 2-week interval to provide the ground truth for 
evaluating the value of AI assistance.

Evaluation matrices
Two main criteria are considered to evaluate the perfor-
mance of submitted methods. The positions of the land-
marks were identified using the x- and y- coordinates. 
Distance error (DE) was defined as the Euclidean dis-
tance between the manually annotated landmark coor-
dinates and estimated landmark coordinates by AI. xi, yi 
denote the coordinates from MyOrthoX, Angelalign, and 

Fig. 1 The 32 anatomical landmarks used in this challenge. All landmarks are defined and explained in Table 1
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Digident; × 1, y1 denote coordinates from the orthodon-
tist group.

The MRE and SD for each landmark (i) were calculated 
by the equations below, where n was the number of test 
images.

Followed by the format of previous accuracy reports, 
thereby making the analogous comparison, the successful 
detection ratio (SDR) for 1.0-, 1.5-, and 2.0-mm ranges 

DE =

√

(xi − x1)2 + (yi − y1)2(mm)

MREi =

n
j=1

DEi

n
(mm) SDi =

n
j=1

(DEi − MDEi)

n
(mm)

were calculated for 32 landmarks. Mathematically, SDR 
can be defined as follows:

In this equation, p means the precision ranges of 1.0, 
1.5, and 2.0 mm. N denotes the sample capacity.

Time analysis
The average time needed for each group was measured 
in seconds using a stopwatch. For the manual group, 
the analyzing time included the process of locating the 
landmarks and access to skeletal and dental anatomical 
structures, performed by three orthodontists. For the 
automated detection group, the time the programs took 
to identify the anatomical points and present the data 
sets in different analytic approaches was recorded. For 
the AI-assisted group, the analyzing time included plot-
ting the landmarks by one observer as measurements of 
angles and distances were automatically calculated by the 
AI programs.

Statistical analysis
Three automatic landmark-detection software were ana-
lyzed for each landmark. One-way ANOVA analysis was 
applied to compare the average SDR among MyOrthoX, 
Angelalign, Digident, and orthodontist groups within 1.0, 
1.5, and 2.0 mm thresholds. Paired t-test was conducted 
to compare the average time for cephalometric analy-
sis between AI-assistant groups and manual groups. All 
data were analyzed using SPSS Statistics (version 27; IBM 
Corp., Armonk, NY, USA) and PRISM (version 8.0.2; 
GraphPad Software, Inc.; San Diego, CA, USA). 95% con-
fidence intervals are given with statistical significance set 
at p < 0.05.

Results
Comparison of the three automated AI‑based landmark 
detection programs
MRE
The Angelalign dataset showed the lowest average MRE 
of 0.80 ± 0.26 mm, while Digident and MyOrthoX showed 
an average MRE of 1.11 ± 0.48  mm and 0.97 ± 0.51  mm, 
respectively (Fig.  3). Among the 32 landmarks, the gla-
bella (G) exhibited the lowest MRE (0.52 ± 0.46  mm), 
while the anterior nasal spine (ANS) exhibited the 
highest MRE (1.71 ± 1.29  mm). A detailed comparison 
between MyOrthoX, Angelalign, and Digident in terms 
of the MRE was shown in Fig. 4 and Table 2.

In the Angelalign dataset, the glabella (G) exhibited 
the lowest MRE (0.46 ± 0.54 mm), while the porion (P) 
exhibited the highest MRE (1.48 ± 1.39  mm); in the 
MyOrthoX dataset, the pogonion of soft tissue (Pog’) 

SDR =

number of sucessfully detected landmarks with respect to p

N

Table 1 List of anatomical landmarks used

Landmark 
number

Explanation Abbreviation

1 Glabella G

2 Pronasale Prn

3 Subnasale Sn

4 Labrale superius Ls

5 Labrale inferius Li

6 Mentolabial sulcus Si

7 Pogonion of soft tissue Pog ‘

8 Gnathion of soft tissue Gn ‘

9 Menton of soft tissue Me ‘

10 Cervical point C

11 Basion Ba

12 Sella S

13 Nasion N

14 Porion P

15 Orbitale Or

16 Anterior nasal spine ANS

17 Posterior nasal spine PNS

18 Pterygoid Pt

19 Pterygomaxillary fissure Ptm

20 Subspinale A

21 Upper incisor U1

22 Root apex of upper central incisor UIA

23 Lower incisor C1

24 Root apex of lower central incisor LIA

25 Supramental B

26 Pogoion Pog

27 Gnathion Gn

28 Menton Me

29 Gonion Go

30 Articular Ar

31 Posterior condyle Pcd

32 Condylion Co
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exhibited the lowest MRE (0.61 ± 0.35  mm), while the 
root apex of upper central incisor (UIA) exhibited 
the highest MRE (2.39 ± 1.05  mm); in Digident data-
set, the labrale inferius (Li) exhibited the lowest MRE 
(0.56 ± 0.29  mm), while pronasale (Prn) exhibited the 
highest MRE (2.43 ± 1.57 mm).

SDR
In the Angelalign dataset, the detection of gnathion 
(Gn) exhibited the highest SDR, while the pterygoid 
(Pt) exhibited the lowest SDR. In the MyOrthoX data-
set, the subnasale (Sn) exhibited the highest SDR, while 
the root apex of the upper central incisor (UIA) exhib-
ited the lowest SDR. In the Digident dataset, pronasale 

(Prn) exhibited the highest SDR, and pogoion (Pog) 
exhibited the lowest SDR (Table 3).

As for each individual, the Angelalign group had the 
highest average SDR, followed by the MyOrthoX and 
Digident groups (Fig.  5). Within 1.0, 1.5, and 2.0  mm 
threshold, the Angelalign group achieved average SDRs 
of 78.08%, 89.29%, and 93.09%, respectively, while the 
MyOrthoX group exhibited average SDRs of 67.02%, 
82.80%, 89.99%, and the Digident group of 59.13%, 
78.72%, 87.53%, respectively (Table 4).

Average time needed for cephalometric analysis
The average time and standard deviation of the time 
needed for each procedure of traditional cephalomet-
ric analysis were reported in seconds (Table  5). The 

Fig. 2 Cephalometric tracing of anatomical structures in three AI-assisted programs. Sample lateral cephalometric radiograph with a 30-mm ruler 
uploaded to the MyOrthoX, Angelalign, and Digident programs

Fig. 3 Mean radical error (MRE) for each landmark measured by three AI-assisted programs
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AI-assisted group of commercial cephalometric analy-
sis software needed less time than the manual group to 
perform cephalometric tracing and landmark location. 
The standard deviation of the mean time needed for trac-
ing in the manual group was more than the AI-assisted 
group and the automated detection group (Fig. 6), indi-
cating the wider range of individual variation in land-
mark tracing.

Impact of AI‑assisted cephalometric landmarks detection 
on two aspects
Landmarks located on hard tissue
For common reference planes, the sella-nasion (SN) 
plane and cranial base (X-axis) were evaluated. Data in 
the Table 2 did not show a significant difference in MREs 
of nasion, orbitale (Or) and sella (S) among automated 
detection groups. As for landmarks located on soft tissue, 
the palatal plane was considered. The MRE of PNS also 
did not differ significantly among groups. However, the 
MRE of ANS in the Angelalign group exhibited the low-
est, which denoted a more precise location of the palatal 
plane.

For the location of maxilla, pterygomaxillary fissure 
(Ptm) was evaluated. No significant difference was identi-
fied among the three groups, displaying an average MRE 
of 0.80 ± 0.95  mm and an average SDR of 93%. For the 
location of mandibular, landmarks involving condyle (Ar, 
Pcd, Co) and mentum (Pog, Gn, Me) were evaluated. In 
the digident group, the Ar and Pcd had the highest SDR 
(93% and 100%, respectively), while the Co exhibited the 
lowest SDR (86%). The Digident group achieved SDRs of 
100% in landmarks associated with mentum within the 
2 mm threshold.

Regarding the dentition, the incisal edge, and root apex 
were evaluated. In the Angelalign group, the U1and UIA 
exhibited the highest SDR within the 2 mm threshold (98% 
and 95%, respectively), while in the digident group, the 
lower incisor index C1 and LIA exhibited the highest SDR 
within the 2 mm threshold (98% and 95%, respectively).

Landmarks located on soft tissue
As for landmarks located on soft tissue, the verti-
cal reference line and nasolabial line were evalu-
ated in this study, as well as the soft-tissue facial 
plane, esthetic line, T-line, and H-line. For the soft-
tissue facial plane, MREs and SDRs related to pogo-
nion of soft tissue (Pog’) and glabella (G) displayed 
no significance among groups, for an average MRE 
0.52 ± 0.46  mm and 0.60 ± 0.51, respectively. For the 
esthetic line, the SDR of pronasale (Prn) was signifi-
cantly higher in MyOrthoX and Angelalign groups 
than in the Digident group (47%). For the index of 
facial profile, the T-line consists of subnasale (Sn) and 
Pog’ while the H-line contains labrale superius (Ls) 
and Pog’. As shown in Table 2, no statistically signifi-
cant differences in MREs were found among groups. 
For landmarks around mentum, Pog’ and gnathion of 
soft tissue (Gn’) did not differ significantly, however, 
menton of soft tissue (Me’) in the MyOrthoX group 
exhibited the highest MRE (0.79 ± 0.62  mm) among 
the automated detection groups,

Discussion
The present study aimed to investigate which kind of 
the latest AI-assisted landmark detection programs 
would produce the most accurate results compared with 

Fig. 4 Mean radical error (MRE) for all Landmarks measured by three AI-assisted programs. One-way ANOVA analysis was applied to compare 
the MRE among the groups
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experienced orthodontists. We selected three widely-
used programs using machine learning methods to 
evaluate the strengths and weaknesses and reviewed the 
percentage of success in localizing each point. The MRE 
of the MyOrthoX, Angelalign, and Digident groups com-
pared with the orthodontist group were 1.11 ± 0.48 mm, 
0.80 ± 0.26  mm, and 0.97 ± 0.51  mm, respectively. Addi-
tionally, the SDR of MyOrthoX, Angelalign, and Digi-
dent within 2 mm of accuracy was 89.99%, 93.09%, and 
87.53%, which is considered clinically acceptable. We 
tentatively proposed that the AI-assisted program can be 
considered a viable option for the repetitive and arduous 

task of landmark detection. The results of our study are 
consistent with the existing literature in terms of AI accu-
racy when identifying cephalometric landmarks within 
2 mm [11, 20, 21].

The automated landmark detection task is a mix of 
structure detection, recognition, and estimation, includ-
ing retrieving the relevant lines and exact shapes. The 
first attempt toward the automated landmark location 
on radiographs was made by Levy-Mandel. In their algo-
rithm, the process was divided into transforming the line 
enhancement, line extraction, and landmark location [20, 
22]. Rapidly evolving algorithms and increasing computa-
tional capabilities provide improved accuracy, reliability, 
and efficiency. Currently, methods of automatic cepha-
lometric landmark detection are mainly separated into 
two major categories: bottom-up methods and learning-
based methods [23]. Significant progress has been made 
in automatic landmark detection in cephalometry by 
using supervised machine-learning approaches. Zeng 
et  al. developed a tree model to characterize the spatial 
layout patterns of facial landmarks for capturing facial 
structure information [24]. Ghesu et al. proposed a new 
paradigm by reformulating the detection problem and 
improving the detection speed of the reference methods 
by 2-3 orders of magnitude [25].

Although the automated detection program has 
achieved significant performance, there is still room for 
improvement in future work. Errors in cephalometric 
analysis include tracing, landmark identification, and 
measurement errors [26]. As for automated landmark 
identification, variations on individual skeletal struc-
tures, blurry images caused by device-specific projection 
magnifications, and image complexity due to overlapping 
contralateral structures remain to be solved [27]. Even a 
slight error can potentially cause misclassification that 
can lead to misdiagnosis, thus in our studies, we analyze 
the landmarks that are difficult to identify and prone to 
errors.

Among the hard tissue landmarks, MREs for few land-
marks, including landmark 17 (posterior nasal spine), 
23 (lower incisor), 30 (articular), 19 (pterygomaxillary 
fissure), and 21 (upper incisor), are especially high even 
for the best performing method [28]. These landmarks 
are difficult to identify precisely due to image complex-
ity caused by the difference in X-ray projection between 
the left and right sides of the head structure [29]. As for 
the index of upper and lower incisors, open root apexes 
and malocclusion with dental crowding occasionally 
exist in patients with malocclusion, thus diminishing 
the accuracy of AI detection. The results of the stud-
ies conducted by Duran et  al. using another automatic 
cephalometric analysis software (OrthoDx™ and Web-
Ceph) also support these data [30]. When considering 

Table 2 Mean relative error (MRE) and standard derivation (SD) 
for the 32 Landmarks measured by each software

Landmark MRE ± SD (mm)

MyOrthoX Angelalign Digident Average

G 0.65 ± 0.42 0.46 ± 0.54 0.45 ± 0.37 0.52 ± 0.46

Prn 0.84 ± 0.43 0.70 ± 1.21 2.43 ± 1.57 1.32 ± 1.41

Sn 0.55 ± 0.32 0.63 ± 0.71 0.71 ± 0.39 0.63 ± 0.51

Ls 0.89 ± 0.66 0.69 ± 0.83 0.57 ± 0.33 0.71 ± 0.66

Li 0.90 ± 0.49 0.60 ± 0.63 0.56 ± 0.29 0.69 ± 0.52

Si 1.26 ± 0.68 0.73 ± 0.68 1.10 ± 0.65 1.03 ± 0.71

Pog’ 0.61 ± 0.35 0.58 ± 0.72 0.60 ± 0.37 0.60 ± 0.51

Gn’ 0.68 ± 0.39 0.57 ± 0.62 0.60 ± 0.47 0.61 ± 0.50

Me’ 0.78 ± 0.83 0.63 ± 0.56 0.64 ± 0.57 0.69 ± 0.67

C 0.93 ± 0.45 0.87 ± 0.76 0.82 ± 0.92 0.87 ± 0.74

Ba 0.81 ± 0.84 0.96 ± 0.97 0.82 ± 0.67 0.86 ± 0.84

S 0.73 ± 0.45 0.48 ± 0.34 0.67 ± 0.42 0.63 ± 0.42

N’ 1.11 ± 0.70 0.80 ± 0.69 1.12 ± 0.63 1.01 ± 0.69

P 0.92 ± 0.59 1.48 ± 1.39 0.97 ± 0.67 1.12 ± 0.98

Or 1.05 ± 0.77 0.70 ± 0.48 0.99 ± 0.65 0.91 ± 0.66

ANS 2.06 ± 1.32 0.90 ± 0.99 2.16 ± 1.15 1.71 ± 1.29

PNS 0.65 ± 0.36 0.67 ± 0.52 0.66 ± 0.47 0.66 ± 0.46

Pt 1.42 ± 1.03 1.49 ± 1.24 1.15 ± 1.27 1.35 ± 1.19

Ptm 0.91 ± 0.86 0.64 ± 0.43 0.85 ± 1.32 0.80 ± 0.95

A 1.70 ± 0.93 1.06 ± 0.72 1.30 ± 0.59 1.35 ± 0.81

U1 0.82 ± 0.58 0.50 ± 0.70 1.00 ± 0.66 0.77 ± 0.68

UIA 2.39 ± 1.05 0.80 ± 0.48 1.31 ± 0.82 1.50 ± 1.05

C1 1.17 ± 0.67 0.74 ± 0.79 0.61 ± 0.41 0.84 ± 0.69

LIA 1.60 ± 0.81 0.85 ± 0.94 0.73 ± 0.53 1.06 ± 0.87

B 1.34 ± 0.65 0.70 ± 0.68 0.96 ± 0.54 1.00 ± 0.68

Pog 0.81 ± 0.47 0.57 ± 0.56 0.50 ± 0.28 0.63 ± 0.44

Gn 0.80 ± 0.74 0.50 ± 0.60 0.43 ± 0.29 0.57 ± 0.60

Me 0.79 ± 0.62 0.62 ± 0.56 0.47 ± 0.28 0.63 ± 0.53

Go 1.87 ± 1.38 1.20 ± 0.96 1.04 ± 1.71 1.37 ± 1.43

Ar 0.95 ± 0.63 1.19 ± 0.87 0.86 ± 0.54 1.00 ± 0.71

Pcd 1.04 ± 0.91 1.09 ± 0.93 0.97 ± 0.45 1.03 ± 0.80

Co 1.18 ± 0.80 1.10 ± 0.67 1.38 ± 0.74 1.22 ± 0.75

Average 1.11 ± 0.48 0.80 ± 0.26 0.97 ± 0.51 /
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the reason that, condyle, gonion, and articular could be 
marked on two mandibular angle contours due to the 
limitation of the 2D lateral cephalogram. The identifica-
tion of gonion-related angle and dentoalveolar height 
indicative of facial divergence in teenagers can help 
improve the capacity of clinicians to diagnose and treat 
participants. However, confusion can come from the fact 
that gonion is usually regarded as an average between 
two mandibular angle contours. Basion and orbitale 
are generally considered hard to detect and unreliable 
points in the cephalometric analysis [31]. The porion is 
also hard to locate because many similar radiolucencies 

resemble the radiolucency of the internal auditory mea-
tus that exist in the search region. However, in our study, 
the average MREs of Basion, orbitale, and porion were 
0.86 ± 0.84  mm, 0.91 ± 0.66  mm, and 1.12 ± 0.98  mm, 
which is considered clinically acceptable.

Among the soft tissue landmarks, landmark 2 (pro-
nasale), 3 (subnasale), and 7 (pogonion of soft tissue) 
showed low SDRs due to higher darkness or lower 
brightness in these regions than the others [29, 32]. 
Problems with image quality influenced the ability of 
orthodontists who lacked experience in cephalometric 
landmark detection [33].

Table 3 Landmark detection results in terms of successful detection rate (SDR) within 1.0, 1. and 1.5 mm for each software of 
cephalometric analysis

Landmark SDR

MyOrthoX Angelalign Digident

 < 1.0 mm  < 1.5 mm  < 2.0 mm  < 1.0 mm  < 1.5 mm  < 2.0 mm  < 1.0 mm  < 1.5 mm  < 2.0 mm

G 0.84 0.95 1.00 0.95 0.95 0.95 0.93 1.00 0.98

Prn 0.60 0.95 0.98 0.95 0.95 0.95 0.19 0.37 0.47

Sn 0.91 0.98 1.00 0.88 0.98 0.98 0.86 0.93 0.98

Ls 0.70 0.88 0.98 0.84 0.98 0.98 0.91 0.98 1.00

Li 0.60 0.88 0.95 0.88 0.95 0.98 0.93 1.00 1.00

Si 0.42 0.63 0.88 0.81 0.95 0.98 0.53 0.74 0.91

Pog’ 0.88 1.00 1.00 0.95 0.98 0.98 0.84 0.95 1.00

Gn’ 0.74 1.00 1.00 0.95 0.95 0.98 0.88 0.98 0.98

Me’ 0.84 0.95 0.98 0.91 0.98 0.98 0.84 0.93 0.98

C 0.56 0.93 0.98 0.67 0.91 0.93 0.81 0.91 0.93

Ba 0.72 0.84 0.95 0.72 0.81 0.91 0.67 0.86 0.91

S 0.79 0.93 1.00 0.95 0.98 0.98 0.77 0.98 1.00

N’ 0.53 0.79 0.91 0.74 0.88 0.95 0.47 0.81 0.88

P 0.60 0.88 0.93 0.47 0.72 0.79 0.58 0.77 0.95

Or 0.63 0.81 0.88 0.86 0.91 0.95 0.65 0.88 0.93

ANS 0.28 0.35 0.49 0.72 0.84 0.91 0.21 0.26 0.35

PNS 0.84 0.98 1.00 0.79 0.91 0.93 0.77 0.93 1.00

Pt 0.47 0.63 0.81 0.40 0.67 0.79 0.56 0.81 0.86

Ptm 0.77 0.88 0.91 0.88 0.93 0.98 0.86 0.95 0.95

A 0.21 0.47 0.65 0.49 0.81 0.91 0.37 0.63 0.84

U1 0.58 0.93 0.98 0.93 0.95 0.98 0.51 0.84 0.95

UIA 0.05 0.26 0.35 0.70 0.93 0.95 0.42 0.65 0.74

C1 0.47 0.70 0.84 0.88 0.95 0.95 0.84 0.95 0.98

LIA 0.26 0.42 0.65 0.72 0.86 0.91 0.77 0.88 0.95

B 0.30 0.67 0.86 0.88 0.95 0.95 0.47 0.81 0.98

Pog 0.67 0.95 1.00 0.93 0.98 0.98 0.95 1.00 1.00

Gn 0.81 0.98 0.98 0.98 0.98 0.98 0.93 1.00 1.00

Me 0.79 0.93 0.95 0.84 0.98 0.98 0.95 0.98 1.00

Go 0.37 0.47 0.63 0.56 0.67 0.81 0.74 0.88 0.93

Ar 0.58 0.86 0.95 0.53 0.74 0.84 0.72 0.88 0.93

Pcd 0.67 0.74 0.88 0.63 0.77 0.86 0.60 0.84 1.00

Co 0.47 0.74 0.88 0.58 0.81 0.88 0.35 0.63 0.86
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The time required to identify and trace the anatomical 
structures was also measured in our study. The ortho-
dontist spends on average 15  min per analysis which is 
related to the quality of the cephalogram, the experience, 
and the number of points. A fully automated software 
would detect landmarks with fewer errors due to expert 
subjectivity, thus reducing the time required for analy-
sis. As shown in Table  5, it takes two-fold less time in 
AI-assisted landmark detection than in manual groups. 
Once the landmarks are chosen on the digital images and 
identified, the data processing can be executed and com-
pleted immediately [34]. No significant difference in time 
consumption was observed among MyOrthoX, Ange-
lalign, and Digident groups. There was no unequivocal 
trend that one modality in the benefit of saving time was 
always the best. However, the time required to make the 
digital measurements was substantially shorter than for 
the manual method, which is in line with the findings of 
other investigators.

The limitations of this study were the lack of evalu-
ation of the consistency between orthodontists. It is 
noteworthy that even for experienced surgeons, sig-
nificant variability exists when measuring radiographic 
parameters in patients. In a previous study that evalu-
ated errors in cephalometric images, the researchers 
reported that inter-observer measurements showed a 
high correlation for both manual and digital measure-
ments. The automated landmark detection software 
provides a process of automation through a knowl-
edge-based machine learning algorithm. Machine 
learning algorithms learned directly from raw data 

Fig. 5 Comparison among the three AI-assisted groups in terms of the successful detection rate (SDR). One-way ANOVA analysis was applied 
to compare the average SDR among the groups within 1.0, 1.5, and 2.0 mm thresholds. Statistical significance was set at a p-value < 0.05

Table 4 Successful detection rate (SDR) for each software of 
cephalometric analysis according to an independent individual

AI group Classification SDR ± SD (%)

MyOrthoX MRE < 1.0 mm 67.02 ± 10.23

MRE < 1.5 mm 82.80 ± 7.36

MRE < 2.0 mm 89.99 ± 5.17

Angelalign MRE < 1.0 mm 78.08 ± 14.23

MRE < 1.5 mm 89.29 ± 14.02

MRE < 2.0 mm 93.09 ± 13.64

Digident MRE < 1.0 mm 59.13 ± 10.36

MRE < 1.5 mm 78.72 ± 5.97

MRE < 2.0 mm 87.53 ± 4.84

Table 5 Mean time needed for each software of cephalometric 
analysis

Group Mean time ± SD (s)

Manual group 153.47 ± 14.83

AI group

 MyOrthoX 1.08 ± 0.12

 Angelalign 5.18 ± 0.19

 Digident 5.60 ± 0.20

AI-assisted group

 MyOrthoX-assisted 74.72 ± 7.31

 Angelalign-assisted 74.98 ± 6.80

 Digident-assisted 75.93 ± 6.91
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without manual guidance, benefiting the discovery of 
the latent relationship. It has been reported that the 
presence of bias is one key challenge in the classifica-
tions and predictions of knowledge-based machine 
learning. In the literature reviews, it was seen that the 
bias of machine learning can be introduced to the deci-
sion-making process, including the human factor, poor 
quality of training data, model performance mismatch, 
and the infrastructure itself. Considering the variety of 
algorithms and landmark identification methods with 
the aid of artificial intelligence, more extensive further 
studies are needed.

To deploy AI responsibly, it is critical that algo-
rithms used for prediction and diagnosis should be 
accurate and not lead to increased risk to patients. 
Our study determines whether automated land-
mark identification may perform better than ortho-
dontic clinicians, and proposes that the latest 
cephalometry programs are capable to perform the 
analysis. Accepted ethical principles used to guide 
clinical research, must be prioritized and, in some 
cases, augmented [35]. Caution is necessary for the 
protection of personal data from ethical and legal 
viewpoints. In our retrospective study, the AI-assisted 
software used is free of charge on the websites and all 
methods were carried out by relevant guidelines and 
regulations. Clearly, there is still a need to integrate 
ethics into the development of AI algorithms, and 
more work is required to bridge the gap between AI in 
clinical diagnosis and treatment.

Conclusion
The assistance of the AI in the assessment and reten-
tion of orthodontic treatment is an emerging area and 
the accuracy of the three commercially automatic land-
mark localizers (MyOrthoX, Angelalign, and Digident) 
was within acceptable ranges, which were capable of 
matching the reliability of experienced orthodontists. 
Additionally, AI-assisted software was of high effi-
ciency and could potentially aid in clinical workflow 
and reduce research workload.
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