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Abstract 

Background To provide a reference for clinical selection of collagen membranes by analyzing the properties of three 
kinds of collagen membranes widely used in clinics: Bio-Gide membrane from porcine dermis (PD), Heal-All mem-
brane from bovine dermis (BD), and Lyoplant membrane from bovine pericardium (BP).

Methods The barrier function of three kinds of collagen membranes were evaluated by testing the surface morphol-
ogy, mechanical properties, hydrophilicity, and degradation rate of collagen membranes in collagenase and artificial 
saliva. In addition, the bioactivity of each collagen membrane as well as the proliferation and osteogenesis of MC3T3-
E1 cells were evaluated. Mass spectrometry was also used to analyze the degradation products.

Results The BP membrane had the highest tensile strength and Young’s modulus as well as the largest water contact 
angle. The PD membrane exhibited the highest elongation at break, the smallest water contact angle, and the lowest 
degradation weight loss. The BD membrane had the highest degradation weight loss, the highest number of proteins 
in its degradation product, the strongest effect on the proliferation of MC3T3-E1 cells, and the highest expression 
level of osteogenic genes.

Conclusions The PD membrane is the best choice for shaping and maintenance time, while the BD membrane 
is good for osteogenesis, and the BP membrane is suitable for spatial maintenance. To meet the clinical requirements 
of guided bone regeneration, using two different kinds of collagen membranes concurrently to exert their respective 
advantages is an option worth considering.
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Introduction
Bone defects and insufficient bone remain important 
challenges in dental implant restoration [1, 2] because 
they prevent dental implants from meeting the required 
bone width and height, thus hindering the application 
of dental implants. Guided bone regeneration (GBR) 
uses bone grafts or osteoinduction materials to promote 
bone reconstruction and stable blood clot formation [3]. 
In GBR, a barrier membrane is used to form a secluded 
space in the bone defect area to prevent fast-growing 
connective-tissue cells and epithelial cells from entering 
the defect area, thus allowing slow-growing osteoblasts 
to proliferate, differentiate, and mineralize in the defect 
area for bone tissue regeneration. Therefore, barrier 
membranes need to exhibit biocompatibility, maneuvera-
bility, tissue integrity, and bioactivity to meet the require-
ments of the clinical application [4, 5].

At present, commercial barrier membranes can be 
divided into two types: non-resorbable membranes, 
such as expanded-polytetrafluoroethylene (e-PTFE) 
membrane, and resorbable membranes, such as colla-
gen membranes (Bio-Gide, Heal-All, etc.) and synthetic 
membranes (PLGA, PLDLA, etc.) [4]. Non-resorbable 
membranes may damage the regenerated tissue and bur-
den the patient owing to unavoidable exposure to the 
oral enviroment and the inconvenience of a subsequent 
operation [6, 7]. Therefore, resorbable membranes are 
currently the most popular material because of their 
excellent biocompatibility and tissue integration, and, 
importantly, subsequent operations are unnecessary 
because they are biodegradable [2].

Commercial resorbable membranes, such as Bio-Gide 
membrane from porcine dermis (PD), Heal-All mem-
brane from bovine dermis (BD), and Lyoplant mem-
brane from bovine pericardium (BP), are predominantly 
based on collagen. The biological properties of collagen 
membranes vary significantly depending on the source 
and structure of the collagen. The microstructure of col-
lagen membranes, such as fiber shape and direction, in 
addition to the source of the collagen and hydrophilicity 
of the membrane can affect the migration, proliferation, 
and differentiation of osteoblasts [8]. Moreover, GBR 
osteogenesis largely depends on the patient’s potential for 
bone healing (such as age and general nutritional status) 
and local conditions (such as blood vessels and embryo-
logical origin of bone) [9]. Therefore, to achieve desirable 
GBR outcomes, the biological properties of the collagen 
membrane and the patient’s bone healing ability need to 
be considered when selecting the collagen membrane. A 
large number of clinical data show that it takes at least 
three months to completely regenerate the bone in the 
jaw, which depends on jaw-intramembranous ossifica-
tion, active angiogenesis of the jaw and its surrounding 

soft tissue, mechanical condition of the jaw, and effective 
stress shielding of the barrier membrane. Ideally, the deg-
radation rate of the collagen membrane should match the 
rate of bone formation [4], and the collagen membrane 
should be effectively shielded from the rapidly proliferat-
ing epithelium during wound healing after surgery [3]. 
There are many kinds of commercially available collagen 
membranes, which makes it difficult to choose suitable 
membranes for individuals with different bone heal-
ing abilities and bone defects, especially in the absence 
of an index. For example, to support space maintenance 
for patients presenting with bone defects below Class 3, 
selecting collagen membranes with superior mechanical 
properties is preferred [10]. Therefore, it is necessary to 
fully characterize and compare the physical, mechani-
cal, and biological properties of commonly used collagen 
membranes to provide a reference for the selection of 
collagen membranes.

In this study, the physical properties (surface morphol-
ogy and hydrophilicity), mechanical properties, and deg-
radation rate of three common collagen membranes were 
characterized. Additionally, the effects of degradation 
products (DPs) on the proliferation and differentiation of 
MC3T3-E1 cells were determined using assays. Further-
more, the composition of the DPs of the collagen mem-
branes was also identified.

Materials and methods
Collagen membrane materials
The collagen membranes selected in this study meet the 
following criteria: The osteogenic ability of the mem-
brane has been verified in animal experiments and 
clinical studies; the membrane has been widely used in 
clinical practice; and the collagen source or manufac-
turing process of the collagen membranes is different. 
On this basis, three kinds of collagen membranes were 
selected for this study: porcine dermis membrane (PD), 
bovine pericardium membrane (BP), and bovine dermis 
membrane (BD) (Table 1).

Surface morphology
The surface morphology of the three membranes was 
analyzed using scanning electron microscopy (SEM, 
Hitachi S-4800, Hitachi Co., Ltd., JPN). The membranes 
were cut to a size of 1 mm × 1 mm. After vacuum gold 
plating, the micro-morphology of the smooth and rough 
surfaces were observed and recorded with a scanning 
electron microscope operating at an acceleration voltage 
of 1 kV [11].

Mechanical property
Each collagen membrane was divided into two groups: 
dry and wet. Collagen membranes in the wet group were 
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soaked in artificial saliva (Solarbio, Beijing, China) for 
2 min before testing. The thickness of the sample was 
measured with a leather thickness measuring instrument 
(Kunshan Xiangke Testing Instrument Co., Ltd., Kun-
shan, China), and six test points were randomly selected 
on each membrane to calculate the average value. The 
tensile strength, elongation, and Young’s modulus of 
the collagen membranes were evaluated using a univer-
sal testing machine (ZwickRoell GmbH & Co.KG, Ulm, 
Germany). Each membrane was cut into 20 mm × 3.0 
mm specimens and mounted on the gripping unit of the 
tester. A tensile force was applied at a crosshead speed of 
5 mm/min until the specimen broke (n = 5). All measure-
ments were performed at room temperature. The Young’s 
modulus of the membrane is the slope of the linear elas-
tic part of the stress–strain curve. The tensile strength 
and elongation at break were calculated using the follow-
ing equations: Tensile strength (MPa) = Maximum load 
at break (N)/Cross-sectional area  (m2) [11] and Elonga-
tion (%) = (Break length − Initial length)/Initial length × 
100 [12].

Hydrophilic property
The hydrophilicity of the front and back sides of the colla-
gen membranes was evaluated by measuring the contact 
angles. In summary, 3 μL of distilled  H2O was dropped 
on the surface of the collagen membrane, and then the 
contact angle was measured with an optical contact angle 
measuring instrument (Theta Flex, Biolin Technology, 
Gothenburg, Sweden) at room temperature. Measure-
ments were repeated for a total of 5 times, and the results 
were averaged.

Degradation ratio assay
The three types of collagen membranes were sheared 
into circle (diameter 13 mm) and transferred to a 15-mL 
centrifuge tube. Then, type I collagen solution (final con-
centration of 10 U/mL, Sigma-Aldrich, Saint Louis, USA) 
and artificial saliva (Solarbio, Beijing, China) were added, 
with a sterilized filter, giving a final volume of 10 mL 
(10 specimens in each group). The reaction mixture was 
incubated at 37 °C, 130 rpm. The residual specimens were 
taken out on days 7, 14, and 21, then freeze-dried, and 
finally weighed [13]. The degradation ratio was expressed 
as the percentage of weight loss, calculated using the 

following equation: Weight loss (%) =  (W0 −  Wd)/W0, 
where  W0 is the actual weight before degradation and  Wd 
is the dry weight after degradation.

Preparation of Degradation Products (DPs)
For subsequent assays, the DPs of the collagen mem-
branes were prepared as follows. Briefly, the collagen 
membranes (5 mm in diameter) were enzymatically 
hydrolyzed with or without 20 U/mL collagenase solu-
tion, and PBS controls were established (triplicate sam-
ples in each group). After incubation at 37 °C and 130 
rpm for 24 h, the supernatant of each sample was col-
lected with a centrifuge (4230 rpm for 5 min). The protein 
concentrations were determined with a bicinchoninic 
acid (BCA) assay kit (Beyotime, Shanghai, China).

After desalting with a dialysis bag (3 kDa MWCO, 
Genview, Beijing, China), DPs were characterized with 
15.5% tricine-sodium dodecyl sulfate (SDS)-polyacryla-
mide gel electrophoresis (PAGE). The tricine-SDS-PAGE 
gel preparation kit, tris-tricine-SDS buffer solution, and 
protein standard samples were all obtained from Sangon 
Biotech (Shanghai, China). Sample treatment, gel prepa-
ration, and electrophoresis were performed as previously 
described by Schagger [14]. The gel was stained with 
Coomassie brilliant blue and imaged using a gel imaging 
system (Clinx., Shanghai, China).

Cell culture
MC3T3-E1 cells were purchased from the Cell Bank of 
the Chinese Academy of Sciences (Shanghai, China) and 
cultured in high-glucose Dulbecco’s modified Eagle’s 
medium (DMEM, Hyclone, Logan, USA) supplemented 
with 10% fetal bovine serum (FBS, Biologic Industries, 
Kibbutz Beit Haemek, Israel) and 1% penicillin-strepto-
mycin (Hyclone, Logan, USA). Cells were maintained at 
37 °C, 5%  CO2, and 95% humidity. The cells were pas-
saged at 75%–90% confluence using trypsin (Hyclone, 
Logan, USA). For all experiments, the cells were seeded 
on 96-well plates, 24-well plates, or 6-well plates, at a 
density of 2 ×  103, 2 ×  104, or 8 ×  104 cells/well, respec-
tively [15].

Cell proliferation
Proliferation of MC3T3-E1 cells was evaluated using 
the cell counting kit 8 (CCK8) method. After 1 day 

Table 1 Collagen membranes used for the study

Collagen Source Brand Manufacturer LOT Constituent Abbreviations

Porcine dermis Bio-Gide Geistlich Pharma AG, Wolhusen LU, Switzerland 82101099 Heterologous collagen PD

Bovine pericardium Lyoplant B.Braun Biotech International, Melsungen, Germany 220382 Heterologous collagen BP

Bovine dermis Heal-All Zhenghai Biotechnology Co., LTD, Yantai, China SS200803 Heterologous collagen BD
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of incubation, MC3T3-E1 cell medium was replaced 
with 100 μL of complete medium containing 50 μL of 
DPs, acquired as described above, to serve as the treat-
ment group. Cells cultured with complete medium only 
served as the control group, and medium only (with-
out cells) served as the blank group. Triplicate samples 
were prepared for each group. At days 1, 3, and 5, 10 μL 
of CCK8 (Beyotime, Shanghai, China) was added to the 
well, and the absorbance (OD) at 450 nm was recorded 
with a microplate reader (Bio-Tek, Winooski, USA). Cell 
viability was calculated using the following equation: Cell 
viability = (Treatment Group OD−Blank Group OD)/
(Control Group OD−Blank Group OD) × 100% [16].

Alkaline Phosphatase (ALP) activity
After 1 day of incubation, MC3T3-E1 cell medium was 
replaced with 500 μL of osteoinduction differentiation 
medium (ODM; 50 μg/mL ascorbic acid, 100 nM DEX, 
and 5 mM β-glycerolphosphate) containing 250 μL of 
DPs, serving as the experiment group. Cells cultured 
with ODM only served as the control group, and normal 
medium only (without cells) served as the blank group. 
Triplicate samples were prepared for each group. After 1, 
7, and 14 days, cells were lysed with deionized water and 
homogenized via ultrasound at 4 °C. The cell lysates were 
transferred to a 96-well plate. ALP activity and total pro-
tein concentration were measured and quantified using 
an ALP activity kit (Jiancheng Bioengineering Institute, 
Nanjing, China) and a BCA assay kit. ALP activity was 
normalized by the corresponding total protein concen-
tration (U/mg) following the kit instructions [15].

Real‑time quantitative polymerase chain reaction (qPCR)
Total RNA was extracted with TRIzol (Invitrogen, Carls-
bad, USA) and then converted to cDNA with Hifair II 1st 
Strand cDNA Synthesis Kit (Yeasen, Shanghai, China) 
following the kit instructions. SYBR green PCR Master 
Mix (Takara, Dalian, China) was used for real-time qPCR 
on an MX 3000 platform (Agilent, Boeblingen, Ger-
many). The primers for real-time qPCR were as follows: 
Runx2, 5’-ATA GCA AAG GCC CTC ACT AA-3’ (forward) 
and 5’-AAC TGG CTC TTC TGC TGA TT-3’ (reverse); Col 
1, 5’-GAG GCA TAA AGG GTC ATC GTGG-3’ (forward) 
and 5’-CAT TAG GCG CAG GAA GGT CAGC-3’ (reverse); 
OC, 5’-TGA CCT CAC AGA TGC CAA GC-3’ (forward) 
and 5’- CGC CGG AGT CTG TTC ACT AC-3’ (reverse); 
and GAPDH, 5’- ACC ACA GTC CAT GCC ATC AC-3’ 
(forward) and 5’-TCC ACC ACC CTG TTG CTG TA-3’ 
(reverse).

The expression levels of each target gene were normal-
ized to the corresponding GAPDH threshold cycle (CT) 
values using the 2−▵▵CT comparative method [16].

High‑performance Liquid Chromatography (HPLC) 
and mass spectrometry
The three types of collagen membranes were subjected 
to enzymatic hydrolysis for 21 days. DPs were collected 
by filtration–centrifugation using a Millipore centrifu-
gal device (10 kDa MWCO, Millipore, Milford, MA). 
The resulting fractions were desalted using a C18 col-
umn (Thermo Scientific, San Jose, USA), then lyophi-
lized, and finally stored at −20 °C until analyzed. Mass 
spectrometric analyses were performed as previously 
described [17]. The lyophilized peptides were separated 
using an Ultimate 3000 RSLCnano system coupled to a Q 
Exactive (Thermo Scientific, USA). Samples were loaded 
into a trap column (C18, 3 μm, 120 Å, 100 μm × 2 cm) 
and separated with a reversed-phase analytical column 
(C18, 2μm, 100 Å, 75 μm × 150 mm, Thermo Scientific, 
USA). Peptides were separated using a gradient of mobile 
phase A (3% dimethyl sulfoxide, 0.1% formic acid, and 
97% H2O) and B (3% dimethyl sulfoxide, 0.1% formic 
acid, and 97% acetonitrile). The flow rate was set to 300 
nL/min. The mass spectrometer was operated in data-
dependent acquisition (DDA) mode with the following 
settings: Full MS scan (R = 70 K, AGC = 3e6, max IT = 
20 ms, scan range = 350–1800 m/z) followed by up to 
15 MS/MS scans (R = 17.5 K, AGC = 2e5, max IT = 100 
ms). The isolation window was set to 1.6 m/z, and 28% 
normalized collision energy was used for higher-energy 
collisional dissociation (HCD). The dynamic exclusion 
time of repeated ion acquisition was set to 35 s [17].

The acquired raw mass spectrometric data were pro-
cessed in MaxQuant (v1.6.2.10) [18] and searched against 
UniProt for taxonomy: “Sus scrofa” (TaxID 9823) for PD 
and “Bos taurus”(TaxID 9913) for the other two collagen 
membranes. All data and search results have been depos-
ited to the iProX database ( http:// www. iprox. org) with 
the iProX accession: IPX0006335000.

Statistical analysis
Data analysis and figure construction was performed 
using GraphPad Prism 6 (GraphPad, San Diego, USA). 
Values represent mean ± standard deviation (SD). Com-
parison among different groups was made by two-way 
analysis of variance (ANOVA). P values <0.05 were con-
sidered statistically significant.

Results
Physical characteristics of collagen membranes
Gross appearance was determined: The smooth surface 
of all collagen membranes was soft and elastic, while the 
texture of the rough surface was irregular (upper part, 
Fig.  1). SEM images revealed marked differences in the 
microstructures of the collagen membranes (lower part, 

http://www.iprox.org
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Fig. 1). On the smooth side, collagen bundles of the PD 
and BP membranes were regular and arranged closely, 
while collagen bundles of the BD membrane were slightly 
irregular and arranged loosely. On the rough side, colla-
gen bundles of BP interweaved with each other to form 
a three-dimensional (3D) grid with regular pores, while 
collagen bundles of PD and BD were arranged loosely.

The mechanical properties (tensile strength, elonga-
tion, and Young’s modulus) of the three kinds of collagen 
membranes in both the dry and wet states were com-
pared (Fig.  2a–c). The results indicated that the tensile 
strength and Young’s modulus of the BP membrane in 
both the dry and wet states were significantly higher than 
those in other groups (P < 0.0001), although no signifi-
cant difference was found between the BD and PD mem-
branes (P > 0.05) except the Young’s modulus in the wet 
state (P = 0.034). Elongation was the highest for the PD 
membrane, irrespective of the state, intermediate for the 
BD membrane, and lowest for the BP membrane. Moreo-
ver, for all collagen membranes, the tensile strength and 
Young’s modulus were lower in the wet group than in the 
dry group, while elongation showed the opposite trend.

To assess the hydrophilicity of the three kinds of col-
lagen membranes, static water-contact angles were meas-
ured. As shown in Fig.  2d, the water contact angle was 
significantly higher on the smooth surface than on the 
rough surface of the PD and BP membranes. However, 
the water contact angle was not significantly different 
between the smooth and rough surfaces of the BD mem-
brane. On both smooth and rough surfaces, the water 
contact angle was the smallest for the PD membrane and 
the largest for the BP membrane.

Degradation ratio of collagen membranes
To determine the degradation ratio of the collagen mem-
branes, the oral environment was mimicked using artifi-
cial saliva and collagenase. As shown in Fig.  3a, the PD 
and BP membranes became translucent within 21 days 
of treatment with collagenase, and, unexpectedly, the BD 
membrane was completely degraded. The degradation 
weight loss also confirmed the above findings. For the 
artificial saliva group, there was no significant difference 
among the three types of membranes on day 7. Moreo-
ver, the degradation weight loss increased gradually with 

Fig. 1 Gross appearance (scale bar: 1 cm) and SEM (scale bar: 50 μm) images of collagen membranes
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treatment time up to day 21. The BD membrane suffered 
the highest degradation weight loss, followed by the BP 
membrane and then the PD membrane. By contrast, the 
degradation weight loss decreased in the collagenase 
group on day 7. On day 21, the PD membrane suffered 
the lowest degradation weight loss. The degradation 
weight loss of the BD membrane was up to 100%, indicat-
ing complete degradation of the BD membrane (Fig. 3b, 
c). The results demonstrate that the BD membrane is the 
most susceptible to degradation among the three mem-
branes, irrespective of the treatment: artificial saliva or 
collagenase.

On the basis of the above results, collagenase was 
used to degrade the collagen membranes in subsequent 
experiments.

After incubating for 24 h, DPs were analyzed to deter-
mine the protein concentration, as shown in Table 2. The 
protein concentration of degraded collagen membranes 

in the collagenase group was significantly higher than 
that in the PBS group (P < 0.0001). As expected, the 
BD membrane had the highest protein concentration of 
DPs, specifically it was 1.4 times than those of the other 
membranes, followed by the BP membrane and then the 
PD membrane. However, DPs from the three collagen 
membranes treated with collagenase had a similar com-
position. Eight protein bands were observed in the elec-
trophoretic gel with molecular weights ranging from 25 
to 116 kDa (Fig. 3d).

Effects of DPs on MC3T3‑E1 cells
The proliferation of MC3T3-E1 cells was measured after 
MC3T3-E1 cells were cultured with collagen membrane 
DPs for 1, 3, and 5 days. The effect of DPs on the prolif-
eration of MC3T3-E1 cells was correlated with the incu-
bation time. In general, differences in cell proliferation 
were not significant between the control and groups with 

Fig. 2 Comparison of the physical characteristics of different collagen membranes. a Tensile strength, b elongation at break, and c Young’s 
modulus of collagen membranes in the dry and wet state. The error bars represent ± SD. Two-way analysis of variance analysis. ns: not significant; 
****P < 0.0001 vs PD; #### P < 0.0001 vs BP. n = 3 for all samples. d Water contact angle of collagen membranes. Mean ± SD shown. n = 5 for all 
samples
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added DPs until day 5 (P < 0.05, Fig. 4a). Cell proliferation 
was the highest in the presence of BD-DPs, intermediate 
in the presence of PD-DPs, and lowest in the presence of 
BP-DPs.

Similar to the cell proliferation results, ALP activity of 
cells treated with DPs increased with the incubation time 

and reached the peak on day 14, compared with the con-
trol group. Moreover, ALP activity of cells was the high-
est in the BD-DPs group, intermediate in the PD-DPs 
group, and lowest in the BP-DPs group (Fig. 4b).

To determine the effect of DPs on mineralization, the 
gene expressions of Runx2, OC, and Col 1, well-known 

Fig. 3 Comparison of the degradation of different collagen membranes. a Photographs of collagen membranes before and 21 days 
after degradation using collagenase. Degradation weight loss (%) of the collagen membranes incubated with artificial saliva (b) and collagenase (c) 
after 7, 14, and 21 days. The error bars represent ± SD. Two-way analysis of variance analysis. ns: not significant, *P < 0.05, ***P <0.001, ****P < 0.0001 
vs PD. n = 3 for all samples. d SDS-PAGE-Tricine gel electrophoresis. M: low molecular weight marker. Lane 1 and 2: PD incubated with or without 
collagenase; Lane 3 and 4: BP incubated with or without collagenase; Lane 5 and 6: BD incubated with or without collagenase; Lane 7: Collagenase 
solution
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osteoblast markers, were evaluated by real-time qPCR. 
As shown in Fig.  4c–e, after 7 days of treatment, when 
compared with the control group, there are no statisti-
cal differences in the OC, Runx2, and Col 1 expressions. 
However, when we prolonged the treatment to 14 days, 
all gene expressions noticeably increased. In addition, 
BD-DPs induced a higher level of Runx2, OC, and Col 1 
gene expressions than PD-DPs and BP-DPs.

Analysis of the DPs of collagen membranes
Excluding common contaminating peptides and low 
abundance peptides, a total of 887 peptides were iden-
tified in the degradation products of the three col-
lagen membranes by liquid chromatography-mass 

spectrometry (LC–MS). Among them, 334 peptides, 
derived from 24 proteins, were identified in the BD mem-
brane. Fewer peptides were identified in the PD mem-
brane, and the lowest number of peptides was identified 
in the BP membrane (Fig. 5a). The peptides ranged from 
8 to 25 amino acids in length (Fig. 5b). Despite the dif-
ferences in peptide sequences, the identified proteins, 
including collagen and elastin, were similar (Fig. 5c and 
Supplementary Table S1 and S2).

Discussion
The three kinds of collagen membranes display unique 
features in clinical applications. The PD membrane can 
resist degradation for a long time, thus achieving sig-
nificant bone growth effect in clinical applications by 
virtue of its excellent histocompatibility and reliable 
biosafety [19, 20]. The potential of the BD membrane 
in promoting tissue healing has been widely explored, 
and it is often used to guide tissue regeneration in the 
clinic [21, 22]. The BP membrane is known for its excel-
lent tensile strength and mechanical properties [23, 24]. 
These membranes with different characteristics have 
shown consistent osteogenic efficacy in animal models 
and clinical trials [21, 25, 26]. However, these data pri-
marily arise from clinical observations and studies of a 

Table 2 Total protein concentration of the degradation products 
of collagen membranes was measured by BCA method (n=5, 
mean ± SD)

Collagen Source Total Protein Concentration (μg/mL)

Collagenase Group PBS Group

Porcine dermis 823.34 ± 7.05 131.06 ± 4.49

Bovine pericardium 720.66 ± 10.62 17.46 ± 3.01

Bovine dermis 1279.78 ± 6.5 231.23 ± 4.52

Fig. 4 Effects of collagen membranes degradation products on the proliferation and differentiation of MC3T3-E1 cells. CCK-8 proliferation assay 
performed with and without collagen membranes degradation products after 1, 3, and 5 days. b Alkaline phosphatase (ALP) activity of MC3T3-E1 
cells incubated with or without collagen membranes degradation products for 1, 7, and 14 days. ALP activity was normalized by total cellular 
protein amounts. qPCR analysis of osteoblastic marker (c) runt-related transcription factor 2 (Runx2), (d) osteocalcin (OC), and (e) collagen type I 
(Col-1) relative expression in MC3T3-E1 cells incubated with or without collagen membranes degradation products for 7 and 14 days. The error bars 
represent ± SD. Two-way analysis of variance analysis. ns: not significant, *P < 0.05, **P < 0.01, ***P < 0.05, ****P < 0.0001. n = 3 for all samples
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membrane in isolation of other membranes, not from a 
comparison between different membranes.

First, the tensile strength and Young’s modulus of 
the three collagen membranes, important indicators of 
the resistance of solid materials to deformation, were 
obtained. Elongation, a vital index to characterize the 
softness and elasticity of fibers, was also evaluated. The 
experimental results showed that the tensile strength and 
Young’s modulus of the BP membrane were significantly 
higher than those of the other membranes, reflecting its 
excellent spatial maintenance ability. Among the three 
membranes, the PD membrane had the highest elonga-
tion, indicating excellent plasticity. In addition, as com-
mon occurrences in clinical treatment, insufficient soft 
tissue at the bone defect and high wound suture tension 
are risk factors leading to partial leakage of the mem-
brane, thus exposing the membrane to the oral cavity. 
Previous research showed that a moist environment has 
a significant impact on the mechanical properties of the 
membrane [27]. That’s why, to demonstrate the effect 
of oral saliva on the mechanical properties of collagen 

membranes, both the dry and wet groups were evaluated. 
The results showed that the tensile strength and Young’s 
modulus of the wet group were lower than those of the 
dry group, consistent with the results of previous studies 
[28]. It is well established that the mechanical properties 
of resorbable membranes are poorer than those of non-
resorbable membranes [29]. Therefore, if collagen mem-
branes are selected as the barrier membrane, clinicians 
should reduce the extra pressure, avoid overstretching 
the collagen membrane when fixing it with membrane 
tacks or sutures, and avoid unnecessary stretching when 
pre-trimming the collagen membrane before implanta-
tion. When additional stress is inevitable or more support 
space is needed, the BP membrane is the most suitable 
candidate among the three membranes because it exhib-
its high tensile strength, which minimally decreases after 
wetting, and it has the largest Young’s modulus, reflect-
ing its greater stiffness. Furthermore, extra support, such 
as bone graft materials, membrane tacks, and suture 
retention, can be given to compensate for the mechanical 
strength of the membrane.

Fig. 5 Analysis of peptides identified by LC–MS after in vitro degradation of three collagen membranes. a Identified proteins and peptides. b 
Length distribution of peptides (amino acids). X-axis represents the length of the peptides, and y-axis represents count of peptides. c Protein origin 
distribution
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The hydrophilicity of the collagen membranes was 
evaluated by measuring the water contact angles. Gen-
erally, surfaces with low contact angles exhibit strong 
biocompatibility and tissue integration. Conversely, 
surfaces with high contact angles can reduce cell adhe-
sion and tissue regeneration [30], which is related to 
positioning the smooth surface to face the suture sur-
face of the wound and the rough surface to face the 
bone defect area in clinical applications. The contact 
angle on both the smooth and rough surfaces of the PD 
membrane was the lowest, while that of the BP mem-
brane was the highest. The hydrophilicity of the col-
lagen membrane may be related to the arrangement 
of collagen fibers on the surface, specifically a looser 
arrangement tends to correlate with a lower contact 
angle and higher hydrophilicity [31]. This is consistent 
with the results of this study, specifically the hydro-
philicity of the PD and BP membranes is higher on 
the rough surface than on the smooth surface, and the 
rough surface has a looser arrangement of the micro-
structure than the smooth surface.

In contrast to non-resorbable membranes, collagen 
membranes are biodegradable, which is a distinct advan-
tage because a subsequent operation is unnecessary. 
In vivo studies of the collagen membranes show that these 
membranes significantly degrade within 8 to 12 weeks 
[32, 33]. In addition to cellular and enzymatic microen-
vironments under microbe-free conditions, spontaneous 
exposure to the oral enviroment is essential for the degra-
dation of resorbable membranes [34–37]. Upon exposure 
to the oral environment, resorbable membranes degrade 
rapidly in the presence of saliva and collagenase derived 
from periodontal pathogens, such as Porphyromonas gin-
givalis and Bacteroides melaninogenicus [38]. Consider-
ing the requirements of clinical applications, degradation 
of membrane materials benefits the healing of damaged 
tissues. Even in the case of exposure to the oral environ-
ment, the exposed membrane should be kept in situ, thus 
continuing to function during the regenerative process 
[39, 40]. Therefore, artificial saliva and collagenase were 
introduced to evaluate the effects of the degradation of 
collagen membranes. In the present study, among the 
three membranes, the BD membrane degrades with the 
highest rate, while the PD membrane degrades with the 
lowest rate. Although in vitro studies have limitations in 
simulating the oral environment, the results of this exper-
iment are consistent with those of Neto et al., that is, the 
PD membrane is less degraded than the BP membrane 
during bone regeneration in a rabbit bone defect model 
[41]. The PD membrane derived from porcine dermis is 
denser and degrades with a lower rate than the BD mem-
brane, which is derived from bovine dermis, indicating 

that the degradation rate is related to the structure and 
source of the collagen [42].

It is well established that collagen peptides can promote 
osteogenesis by enhancing osteoblast (MC3T3-E1 cells) 
proliferation and differentiation [43, 44]. Although colla-
gen membranes are known to provide a conducive envi-
ronment for osteoblasts to adhere, survive, and grow, they 
are not considered a key player in promoting osteogenesis 
[45–47]. Because the three kinds of collagen membranes 
were found to have different degradation rates, this exper-
iment explored the effect of DPs on bone defects during 
GBR by evaluating the proliferation of MC3T3-E1 cells, 
the activity of ALP (an osteoblast differentiation marker), 
and the messenger ribonucleic acid (mRNA) expression 
level of bone formation-related genes (Runx2, Col1, and 
OC). The results showed that the DPs of the three kinds of 
collagen membranes enhanced cell proliferation and ALP 
activity, in addition to up-regulating the mRNA expres-
sion level of osteoblast-related genes. This is the first 
demonstration, to our knowledge, showing that degrada-
tion products of collagen membrane can promote osteo-
genesis. Among the three membranes, the BD membrane 
is the most effective, followed by the PD membrane, in 
promoting osteogenesis. This high performance is likely 
due to the high total collagen in the BD membrane com-
pared with that in the other membranes. Another reason 
is related to the source of the collagen.

Collagen membranes are composed of numerous pro-
teins, including fibrillar collagens, non-fibrillar collagens, 
and leucine-rich repeat proteoglycans, as well as a small 
number of structural proteins, such as vimentin, actin-
based microfilaments, annexins, tubulins, and histones 
[48]. Consistent with other studies, of the 887 peptides 
identified in the degradation products of the three col-
lagen membranes, a large number is derived from dif-
ferent collagen chains and elastin. Interestingly, collagen 
peptides from different sources exhibit a wide range of 
biological functions, such as anti-inflammation, wound-
healing, and anti-oxidative stress [49–51]. Two bioactive 
peptides, C2 and E1, derived from bovine tendon colla-
gen can support cell adhesion and counter stress [52]. Liu 
et al. [53] also found that bovine collagen peptides with 
different molecular weights have different effects on the 
differentiation and mineralization of osteoblasts. In the 
present study, by identifying the DPs of the three colla-
gen membranes, a pool of collagen peptides is available 
for the screening of peptides capable of promoting oste-
ogenesis. A common strategy to extend the function of 
collagen membranes is to load or modify the membrane 
with bioactive components [46, 54]. Yu et al. modified a 
collagen membrane with stromal cell-derived factor-1 
alpha (SDF-1α), a pro-osteogenic protein, by chemical 
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conjugation, and reported that the modified membrane 
significantly promotes new bone and micro vessel for-
mation [46]. Chen et al. used sonication to coat a colla-
gen membrane with silver nanoparticles, thus conferring 
excellent anti-bacterial activity against Staphylococcus 
aureus and Pseudomonas aeruginosa [55]. These modi-
fied membranes not only require redesign of the bioactive 
component but also lack evaluation of biocompatibility. 
In contrast, collagen peptides derived from the degra-
dation products of collagen membranes are potentially 
safer than the above bioactive components. Therefore, in 
future studies, identifying peptides with high bioactivity 
among the DPs of collagen membranes can be attempted 
to develop functional collagen membranes.

Conclusion
In this study, the physical, mechanical, and in vitro bio-
logical properties of three kinds of collagen membranes 
were determined. The findings indicate that the PD 
membrane is the best choice for shaping and mainte-
nance time, the BD membrane is good for osteogenesis, 
and the BP membrane is suitable for spatial maintenance. 
More importantly, two kinds of collagen membranes can 
be used concurrently to exert their respective advantages 
for clinical needs during GBR, for example, placing the 
PD membrane as the outer layer to prolong maintenance 
time and using the BD membrane as the inner layer for 
osteogenesis. Further studies are necessary to determine 
the osteogenic effect of single and combined membranes 
on GBR. Because of the limitations of in  vitro experi-
ments, in  vivo experimental studies are needed to pro-
vide clinicians with reliable indicators.
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