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mandibular model for surgical procedures involving the 
posterior mandible, such as implant surgery, the removal 
of mandibular wisdom teeth, sagittal split osteotomy and 
cyst removal [1–6]. The MC injury may result in (semi)-
permanent numbness and paresthesias in the innervated 
structures, such as lips, jaws, teeth, tongue, mucous 
membranes, gums [3, 6–9].

CBCT is widely used in oral clinic to help diagnose 
oral hard tissue diseases. However, teeth, tooth fillings, 
and dental braces in orthodontic treatment and metal 
implants in orthognathic treatment are high attenua-
tion materials which cause high noise and low contrast 
in visual impressions of CBCT images. Specifically, 
weak and false edges in parts of condyles and teeth often 
appear in the CBCT images. Furthermore, it is difficult to 
identify the boundaries of the MC since the dental braces 

Background
The MC is the most closely related to teeth among the 
bone dense canals containing blood vessels and nerves. 
It contains inferior alveolar nerve, artery and vein. Accu-
rate segmentation of the mandible canal from CBCT is 
an important step for building a personalized 3D digital 
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Abstract
Objectives  The objective of this study is to develop a deep learning (DL) model for fast and accurate mandibular 
canal (MC) segmentation on cone beam computed tomography (CBCT).

Methods  A total of 220 CBCT scans from dentate subjects needing oral surgery were used in this study. The 
segmentation ground truth is annotated and reviewed by two senior dentists. All patients were randomly splitted into 
a training dataset (n = 132), a validation dataset (n = 44) and a test dataset (n = 44). We proposed a two-stage 3D-UNet 
based segmentation framework for automated MC segmentation on CBCT. The Dice Similarity Coefficient (DSC) and 
95% Hausdorff Distance (95% HD) were used as the evaluation metrics for the segmentation model.

Results  The two-stage 3D-UNet model successfully segmented the MC on CBCT images. In the test dataset, the 
mean DSC was 0.875 ± 0.045 and the mean 95% HD was 0.442 ± 0.379.

Conclusions  This automatic DL method might aid in the detection of MC and assist dental practitioners to set up 
treatment plans for oral surgery evolved MC.
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and metal implants negatively affect the image quality in 
CBCT, and there are individual differences in patients 
and devices [10]. Although manual analysis can still 
maintain high accuracy in the daily single-digit case anal-
ysis, the energy consumption of analysts is also obvious, 
and for inexperienced doctors, misjudgment may occur.

Previous methods usually conduct manual segmen-
tation of the MC which takes huge amount of time to 
reconstruct 3D mandible models. And there are several 
semi-automated CBCT-guided planning software tools 
that support 3D MC visualization. However, the semi-
automatic methods cannot achieve high precision and 
simple usability [2, 11–12]. Accurate segmentation of 
the MC is an important step for building a 3D mandibu-
lar model for surgical procedures involving the posterior 
mandible, such as implant surgery, the removal of man-
dibular wisdom teeth, sagittal split osteotomy and cyst 
removal. However, both manual segmentation and semi-
automatic software segmentation have some problems, 
The main challenges in MC segmentation are as follows:

(1)	high noise and low contrast in CBCT images,
(2)	inaccurate density in CBCT images [13–14],
(3)	to identify the boundaries of the MC since the dental 

braces and metal implants negatively affect the image 
quality in CBCT [2],

(4)	anatomical variability among individuals [15].
The diagnosis from these CBCT results made by primary 
doctors is easily affected by inexperience. Therefore, 
there is a great demand for a rapid, accurate, and auto-
matic segmentation method for MC, to eliminate the 
misdiagnosis caused by the above difficulties as much as 
possible.

Recently, deep convolutional networks have now 
become the technique of choice in computer vision. DL 
has been widely used in medical image computing. The 
most successful type of models for image analysis to date 
are convolutional neural networks(CNNs). CNNs contain 
many layers that transform their input with convolution 
filters of a small extent. CNNs are widely used in medical 
image classification, segmentation and other fields [16–
17]. Base on two-stage segmentation framework with 
3D-UNet, the objective of this study is to develop a deep 
learning model for fast and accurate mandibular canal 
segmentation on CBCT.

Materials and methods
Ethics approval and consent to participate
The experimental protocol was established, according 
to the ethical guidelines of the Helsinki Declaration and 
was approved by the Human Ethics Committee of the 
Shantou University Medical College (SUMC), Ethical 
Approval ID:SUMC-2022-085. Informed consent was 
obtained from all subjects and/or their legal guardians. 
This study had a non-interventional retrospective design, 

and there was no human experiment or use of human tis-
sue samples. All the data were analyzed anonymously.

Patients and dataset
In this study, dental records (including images) of 220 
patients undergoing CBCT for oral surgery between June, 
2021 and March, 2022 at the Clinic of Stomatology of 
the SUMC were used. Patients presenting previous sur-
gical history or diseases of the oral, dysplasia mandible, 
the bone of mandible degenerates obviously and maxil-
lofacial region were excluded. There were 136 (61.82%) 
females and 84(38.18%) males, aged 10–66 years, with an 
average age of 36.93 ± 13.77 years.We randomly sampled 
132 (60%) of the CBCT scans for model training, 44 (20%) 
for model validation, and the remaining 44 (20%) were 
used as the testing set. All the data were annotated and 
reviewed using ITK-SNAP 3.8.0 software. Specifically, a 
senior dentist was responsible for delineating the MC, 
and another senior doctor was responsible for review-
ing. If the opinions of the two dentists disagree, the final 
annotation results was determined after consultation.

The complete flowchart of the data collection process is 
shown in Fig. 1.

CBCT scans were performed by using a 3D Imaging 
Systems (Carestream Dental Co.) with 4 mA, 90 kV, a 8-s 
exposure time, per slice thickness of 180 μm, and a voxel 
of 180 μm× 180 μm × 180 μm.

Data preprocessing
In data processing, we conducted the same procedure 
for all the data. Firstly, we clipped the intensity values of 
each scan to [-1000, 1945] to reduce the effect of extreme 
values, and then normalized truncated voxel values by 
subtracting its mean 307.49 and dividing by its standard 
deviation 195.61 [18–19].

The two-stage 3D-UNet Architecture
We adopted a two-stage 3D-UNet structure as the back-
bone of our segmentation model. A graphical illustration 
of the model is shown in Fig. 2 [20].

Small scaled MC structure is difficult to be recognized 
in the original image due to large uncertainty. In this 
paper, we adopted a two-stage approach to alleviate the 
above issue. This framework applies a coarse segmenta-
tion model and a fine segmentation model in sequence. 
Both models adopted 3D-UNet structure, which consists 
of encoder, decoder, dense skip pathway, and deep super-
vision [21]. The encoder generates high-dimensional 
features. The decoder realizes feature fusion and recov-
ers the segmentation result. Dense connection realizes 
feature reuse through skip connection to enhance fea-
ture learning, the skip connections between encoder and 
decoder are also added to keep more low-level details for 
better segmentation. The deep supervised structure can 
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accelerate the convergence of the network. In order to 
improve the gradient flow of the model, we replaced the 
convolution with the form of Bottleneck [22]. The net-
work architecture is shown in Fig. 3.

The models were trained separately and independently 
for each stage. For the coarse segmentation model, we 
re-scaled the image to 192 × 192 × 192 as input. For the 
fine segmentation model, the minimum bounding boxes 
containing the ground-truth annotations were extracted 
as input. Due to the limitation of GPU memory, we ran-
domly crop patches of size 96 × 96 × 96 of the ROI as 

inputs. The model that performs best on the validation 
dataset is chosen as the final model.

In prediction phase, the coarse segmentation model 
was used to localize the regions of interest. The mini-
mum bounding box of the coarse segmentation result is 
expanded by 5 voxels in all 3 directions and is used as the 
input for the fine model. The sliding window operation 
was used for prediction, and the sliding window step size 
was 48 voxels in all directions. We took the union of the 
segmentation results for the overlapped regions.

Fig. 2  Overall model architecture

 

Fig. 1  Flowchart of patient admission and discharge
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Our work was implemented with Pytorch 1.10.0 DL 
framework. And the models were trained on a NVIDIA 
Tesla V100 GPU.

Training process
The same data augmentation method was applied in both 
stages, which includes flipping, rotating, scaling, and 
gamma transforming. In this article, we randomly flip 
the data, and the rotation angles in all directions range 
between [-30, 30]. The scaling factor ranges from [0.85, 
1.25], the gamma transform takes values between [0.7, 
1.5]. All data augmentations were only used in the train-
ing stage.

In segmentation tasks, dice loss or cross-entropy loss 
is usually used. Dice Loss is a loss function based on the 
DSC. The cross entropy loss is used to evaluate the dif-
ference between the predicted category and the true cat-
egory for each pixel. The specific forms of dice loss and 
cross-entropy loss are as follows:

	
Ldice = 1 − 2

∑N
i pigi∑N

i p2
i +

∑N
i g2

i

	
Lce = −

M∑

c=1

yclog (pc)

In the dice loss function, calculating the sum of N vox-
els, of the predicted binary segmentation volumepi ∈ P  
and the ground truth binary volumegi ∈  G. In the cross-
entropy loss function, M  represents the number of cat-
egories where M takes 2, yc  represents the ground truth 
label value which takes 0 or 1. If the category and the 
sample category are the same, yc  takes 1, otherwise 0, 
and pc  represents the probability that the predicted sam-
ple belongs to c .

In this paper, we used a hybrid loss combining cross-
entropy loss and dice loss, the specific form is as follows:

	 L = ωdiceLdice + ωcrossLce

where ωdice  is the weight of the dice loss and ωcross  is the 
weight of the cross-entropy loss, in this study both ωdice  
and ωdice  were set to 0.5.

The SGD optimizer was used along with a momentum 
of 0.95. The learning rate varies as the epoch decreases 
according to the following formula:

Fig. 3  3D-UNet model structure
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	lr = initial_lr × (1 − epoch/max_epochs)exponent

where the initial_lr  was 0.01, the max_epochs  was 
1000, and the exponent  was 0.9.

To make the segmentation less sensitive to small false 
positive regions, a post-processing procedure is adopted. 
Only two largest regions in the segmentation results were 
kept as the final segmentation of the left and right MC.

Evaluation Metrics
To measure the performance of the DL model, Dice Simi-
larity Coefficient (DSC) and 95% Hausdorff Distance 
(95% HD) were utilized in this study.

DSC is a set similarity measure, which measures the 
volumetric overlap between the predicted segmentation 
and the ground-truth annotation. The value range is [0,1]. 
The best value of the segmentation result is 1, and the 
worst value is 0, the calculation formula is in Sect. 2.4.

The Hausdorff Distance is a measure of the degree of 
similarity between two sets of points. It is commonly 
used in image segmentation tasks that are sensitive to 
the segmentation boundary. 95% HD is based on the cal-
culation of the 95th percentile of the distances between 
boundary points in two sets of points, to eliminate the 
influence of very small subsets of inaccurate segmenta-
tions on the overall segmentation quality. The calculation 
formula is as follows:

	

95%HD

= max {maxd(t, S(P ))P95,

maxd(p, S(T ))P95 |tεS( T ), pεS(P )}

Where d(b, B) = minbεB {‖ a − b2 ‖} . The t  represents 
the coordinates of the ground truth canal voxel, the pre
presents the coordinates of the model predicted canal 
voxel, T is the set of ground truth canal voxel coordi-
nates, P  is the set of predicted canal voxel coordinates, 
and S(•)  represents an operation that extracts the sur-
face voxels of a set of voxels.

Results
The segmentation results are shown in Table 1, and sev-
eral segmentation samples are shown in Fig. 4.

From the above table, we can find that in the training 
set, validation set, test set, the fine segmentation model 
is better than the coarse segmentation model in terms of 
both DSC and 95%HD. For the DSC, the overall perfor-
mance of the fine segmentation model is 2 to 5% points 
higher than that of the coarse segmentation model. For 
the 95%HD, compared with the coarse segmentation 
model, the similarity predicted by the fine segmentation 
model is much more accurate, especially in the test set, 
the value of 95%HD is reduced by 0.585.

Meanwhile, we calculate the number of parameters of 
the models and the inference times. The coarse segmen-
tation model has 29.7  M parameters and the fine seg-
mentation model includes 29.1 M. It takes about 1.54s to 
inference a 192 × 192 × 192 patch for the coarse segmenta-
tion model. The fine segmentation model takes 0.37s to 
inference a 96 × 112 × 224 patch.

Discussion
DL has been widely used in the field of medical image 
segmentation [23].In many tasks, end-to-end deep neural 
networks have been shown to be superior to traditional 
methods [24–25]. Regardless of the limitation of GPU 
memory and computing power, compared to a single 
3D-UNet model, the two-stage model can lead to better 
performance for certain tasks, such as segmentation of 
sclerosis lesion, liver, spleen and pancreas [26–27].

There are several difficulties in CBCT image segmen-
tation. For example, the small-scaled targets, unclear 
boundary, high noises and low contrast in CBCT images, 
etc. [28.–29]. Although the segmentation of the MC faces 
many challenges, our finding results represent a great 
improvement over many previous related studies. Our 
results for the segmentation of MC (DSC of 0.884, 95% 
HD of 0.352, in the validation set) are significantly supe-
rior to those reported by Lahoud P et al. (DSC of 0.774, 
95% HD of 0.705) and Jaskari J et al. (DSC of 0.575, 95% 
HD of 1.39) [2, 15].

In this study, we adopted a two-stage coarse-to-fine 
3D-UNet framework to segment the medical images 
of the inferior alveolar nerve canal, it can verify the 
advantages of using DL algorithms in the high-precision 
reconstruction of 3D bony anatomical structures. The 
two-stage 3D-UNet is likely to be more suitable for the 
small segmentation targets than the single 3D U-Net. 
The coarse model is used to localize the MC, and the fine 
segmentation model is used to perform a fine-grained 
segmentation. From the result of this study, the seg-
mentation of mandibular canal based on the two-stage 
3D-UNet can meet the needs of dentate subjects needing 
oral surgery.

According to our results, the MC segmentation based 
on DL is likely to play a more active role in the future 
However, the clinical deployment of DL models is closely 

Table 1  Results of the two-stage 3D-UNet segmentation model
Model Data grouping DSC 95% HD 

(mm)
Coarse 
segmentation

Train dataset 0.847 ± 0.038 0.508 ± 0.564

Validation dataset 0.860 ± 0.040 0.630 ± 0.585

Test dataset 0.827 ± 0.057 1.027 ± 1.422

Fine 
segmentation

Train dataset 0.872 ± 0.028 0.417 ± 0.170

Validation dataset 0.884 ± 0.023 0.352 ± 0.104

Test dataset 0.875 ± 0.045 0.442 ± 0.379
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related to model size and inference time. In this study, the 
number of parameters of the coarse segmentation model 
has 29.7  M and the fine segmentation model includes 
29.1  M. In the following research, we plan to compress 
and solidify the model to make the model occupy less 
storage and more convenient for terminal deployment. In 
addition, a 192 × 192 × 192 patch for the coarse segmenta-
tion model takes about 1.54s, and the fine segmentation 
model takes 0.37s to predict the MC in our study. This 
makes the prediction time for a case likely to exceed ten 
seconds or more. In the follow-up research, we will opti-
mize related algorithms to shorten the prediction time of 
a single patch.

This study still has several limitations. This research 
is a single-center study, and the generalization ability of 
the segmentation model has not been verified in other 
cohorts. In addition, more data is needed in order to 
verify the reliability of the model under multiple vari-
ables (age, gender, and ethnicity). And there is still a lot 
of room for improvement in the efficiency of model infer-
ence and the optimization of the model capacity. In the 
future, we will focus on solving above problems.

To conclude, the findings of this study demon-
strate the potential of DL algorithms in automated MC 

segmentation. Automatic segmentation algorithm will 
play a positive role in the planning of operations involv-
ing the MC.

Conclusion
The MC segmentation is a relatively complex task due 
to many challenges. We developed a two-stage 3D-UNet 
deep neural network for accurate segmentation of the 
MC, and the segmentation results were greatly improved 
compared with previous studies. We believe that the DL 
model of the MC segmentation will bring some positive 
changes to clinical oral surgery planning.

List of Abbreviations
DL	� Deep learning
MC	� Mandibular canal
CBCT	� Cone beam computed tomography
DSC	� Dice Similarity Coefficient
95% HD	� 95% Hausdorff Distance
CNNs	� Convolutional neural networks
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