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Abstract
Background Accurate cephalometric analysis plays a vital role in the diagnosis and subsequent surgical planning 
in orthognathic and orthodontics treatment. However, manual digitization of anatomical landmarks in computed 
tomography (CT) is subject to limitations such as low accuracy, poor repeatability and excessive time consumption. 
Furthermore, the detection of landmarks has more difficulties on individuals with dentomaxillofacial deformities than 
normal individuals. Therefore, this study aims to develop a deep learning model to automatically detect landmarks in 
CT images of patients with dentomaxillofacial deformities.

Methods Craniomaxillofacial (CMF) CT data of 80 patients with dentomaxillofacial deformities were collected for 
model development. 77 anatomical landmarks digitized by experienced CMF surgeons in each CT image were set as 
the ground truth. 3D UX-Net, the cutting-edge medical image segmentation network, was adopted as the backbone 
of model architecture. Moreover, a new region division pattern for CMF structures was designed as a training strategy 
to optimize the utilization of computational resources and image resolution. To evaluate the performance of this 
model, several experiments were conducted to make comparison between the model and manual digitization 
approach.

Results The training set and the validation set included 58 and 22 samples respectively. The developed model can 
accurately detect 77 landmarks on bone, soft tissue and teeth with a mean error of 1.81 ± 0.89 mm. Removal of region 
division before training significantly increased the error of prediction (2.34 ± 1.01 mm). In terms of manual digitization, 
the inter-observer and intra-observer variations were 1.27 ± 0.70 mm and 1.01 ± 0.74 mm respectively. In all divided 
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Background
For the reason of abnormal jaw development in terms 
of size, shape and the positional relationship between 
maxilla and mandible, patients with dentomaxillofacial 
deformities suffer from malocclusion, facial abnormal-
ity related dysfunctions, and etc. The combination of 
orthognathic and orthodontics treatment can rehabilitate 
occlusal function and harmony facial profile. Given the 
complexity and diversity of dentomaxillofacial deformi-
ties, accurate diagnosis and precise surgical planning are 
indispensable.

Cephalometric analysis is commonly used in the diag-
nosis and surgical planning. The cephalometric analysis 
of CT images provides more information than lateral 
cephalogram (X-ray image) because CT images can be 
reconstructed into a 3-Dimensional (3D) skull model [1]. 
However, the application of 3D cephalometric analysis is 
limited in clinic for the reason that it is time-consuming 
and labour-intensive.

Deep learning (DL) provides us new solutions to 
these challenges and has already demonstrated its great 
potential in 2-Dimensional (2D) cephalometric analysis 
based on X-ray images [2–5]. In recent years, research 
on automatic 3D cephalometric analysis based on CT or 
cone beam CT (CBCT) has been more and more popu-
lar. Due to the high graphic memory footprint to pro-
cess 3D images and the clinical need for high detection 
accuracy, dividing original images into multiple sub-
regions is a promising strategy. In research of G. Dot et 
al. (2022), input image resolution was preserved in their 
proposed model by defining 5 regions of interest (ROI) 
as coarsely predicted localization of the landmarks. How-
ever, their model involved few tooth landmarks and did 
not include any landmarks in facial soft tissue, which 
are indispensable for cephalometric analysis [6]. Lang 
et al. (2022) came up with a three-stage coarse-to-fine 
framework and managed to reduce the prediction error 
to 1.38 ± 0.95  mm. However, it inevitably increased the 
operating time [7]. Employing lightweight networks like 
3D U-Net [8] or V-Net [9] is one way to reduce graph-
ics memory footprint. Liu et al. (2021) employed 3D 
U-Net for landmarks detection, while the 3D U-Net also 
could not process the origin image. They had to decrease 
the resolution of CT images to 96 × 96 × 96 to maintain 

training process, and finely tune the detection result in 
another detection stage [10].

Driven by clinical demands and limitations of previ-
ous researches, this study aimed to develop a two-stage 
landmarks detection model to accomplish automatic and 
accurate 3D cephalometric analysis under low graphic 
memory footprint, especially targeting patients with 
dentomaxillofacial deformities. To promise clinical prac-
ticability of the method, we included 77 landmarks on 
bone, teeth and facial soft tissue in the detection task. To 
minimize graphics memory footprint while optimizing 
prediction accuracy, a recently proposed lightweight net-
work named 3D UX-Net [11] was employed and a new 
region division pattern was designed in this model.

Materials and methods
Data preparation
In this study, 80 sets of CT data of patients with dento-
maxillofacial deformities were selected from Shanghai 
Ninth People’s Hospital (Shanghai, China). This research 
was approved by the Research Ethics Committee of Hos-
pital (IRB No. SH9H-2022-TK12-1). The inclusion crite-
ria were: (1) patients diagnosed with dentomaxillofacial 
deformity and orthognathic-orthodontic joint treatment 
were required; (2) CT scanned before treatment. The 
exclusion criteria were: (1) congenital dentofacial defor-
mities; (2) have a history of orthognathic treatment. Each 
CT had a pixel size of 0.45 mm x 0.45 mm, a slice interval 
of 1  mm, and a resolution of 512 × 512 × 231. To reduce 
graphics memory footprint in computational process, 
CT images were resampled and the pixel was resized 
to 1  mm x 1  mm, so that each CT had a resolution of 
229 × 229 × 231.

Based on clinical requirements and researches involved 
3D cephalometric analysis [12–14], 77 landmarks, includ-
ing 13 facial soft tissue landmarks, 28 skeletal landmarks 
and 36 dental landmarks, were included in the detection 
task. The names, defintions and locations of the selected 
CMF landmarks were shown in detail (Fig. 1, Supplemen-
tary Table 1). 77 landmarks were manually digitized in all 
CT images by 2 junior CMF surgeons and modified by a 
senior CMF surgeon using Mimics software (Materialise, 
Belgium). Then, the final labelling results were exported 
in xml format as the ground truth for model training.

regions except Teeth Region (TR), our model demonstrated equivalent performance to experienced CMF surgeons in 
landmarks detection (p  >  0.05).

Conclusions The developed model demonstrated excellent performance in detecting craniomaxillofacial landmarks 
when considering manual digitization work of expertise as benchmark. It is also verified that the region division 
pattern designed in this study remarkably improved the detection accuracy.

Keywords Dentomaxillofacial deformity, Cephalometric analysis, Deep learning, Landmarks detection, Computer-
assisted surgery design.
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Model architecture
A two-stage deep learning model was proposed (Fig. 2). 
In Stage 1, a region division neural network was utilized 
to divide original CT images into 9 sub-regions based 
on the region division pattern we designed. In Stage 2, 
landmarks detection neural networks were constructed 
to propose possible location of each landmark based on 
sub-regions obtained in Stage 1.

Stage 1: region division neural network
A new region division pattern was designed based on 
the feature of craniomaxillofacial structures. Compared 
to the ROI detection pattern in [6], it divided the skull 
into adjacent sub-regions to adapt for more and scat-
tered landmarks detection. To create the annotations 
for the region division, location of some representative 
landmarks which were pre-annotated to segment the 
image were used, as shown in the Supplementary Fig. 1. 
By employing a classic segmentation neural network, 

Fig. 1 Name and locations of 77 CMF landmarks. a. 13 facial soft tissue landmarks. b-f. 28 skeletal landmarks. g. 36 dental landmarks
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V-Net, the skull was divided into 9 anatomical regions, as 
shown in Fig. 2 (Stage 1). Instead of directly compressing 
the image to reduce graphic memory footprint, adopt-
ing region division pattern can preserve original image 
resolution. Therefore, more graphic information was able 
to be identified by the landmarks detection neural net-
work, contributing to more accurate landmarks detection 
results.

Stage 2: landmarks detection neural network
The landmarks detection network (Stage 2) employed 3D 
UX-Net as the backbone. The basic network architecture 
of 3D UX-Net consists of large kernel projection layer, 
encoder and decoder section. At the same time, skip 
connections are set to avoid information loss and gradi-
ent disappearance. Input data were divided into small 
patch data by large kernel projection layer, and patch-
wise features were extracted as the input of the encoder 
section. The encoder section contains four 3D UX-Net 
blocks and four downsampling blocks. Large convolu-
tional kernels (7 × 7 × 7) and small convolutional kernels 
(1 × 1 × 1) were included in 3D UX-Net blocks to enlarge 
global receptive field and supplement additional contex-
tual information. Sixteen-fold image compression was 
implemented by four downsampling blocks to reduce 

the computational volume and reserve sufficient seman-
tic feature. The decoder section was set to recover image 
resolution through res-blocks and long skip connections. 
After applying Softmax function, landmark heatmaps 
were obtained and the voxel with the highest probability 
value in each landmark heatmap was proposed as final 
predicted landmark. The architecture and components 
of the model, as well as the input and output dimensions 
of each layer, was illustrated in Supplementary Fig.  2. 
Since the input and output dimensions vary for different 
regions, frontal region (FR) was used as an example.

Implementation details
The training set and validation set included 58 and 22 
samples respectively. Abnormal data (reasons for the 
abnormal outcomes will be analysed in the Discussion 
section) were eliminated using the median absolute 
deviation (MAD) algorithm. The model was validated 
in validation set every 10 epoch and mean error of the 
validation set was taken as the result. Input and output 
size of different regions were included in Supplemen-
tary Table  2. The training details of Stage 1 neural net-
work were set as follows: Optimizer: Adam, learning rate: 
0.003, loss: Dice focal loss, batch size: 2, epochs: 300. 
The training details of Stage 2 neural network were set 

Fig. 2 Overview of the proposed two-stage model for detecting 77 landmarks from CT images. The first stage is to divide original CT images into 9 
regions using V-Net. The second stage is to detect landmarks using 3D UX-Net.
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as follows: Optimizer: Adam, learning rate: 0.0001, loss: 
focal loss, batch size: 2, epochs: 500.

Performance evaluation
The evaluation metric we chose for prediction perfor-
mance was prediction error, which was Euclidean dis-
tance between the coordinates of predicted landmarks 
and ground truth. Prediction error was calculated using 
Eq. 1:
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Where le represents the prediction error, (xpre, ypre, zpre) 
represents the predicted coordinates, (xgt, ygt, zgt) repre-
sents the ground truth, and n represents the number of 
validation samples.

To compare the landmarks detection performance of 
3D UX-Net and V-Net, model training process was also 
implemented with the backbone of Stage 2 neural net-
work substituted with V-Net. Furthermore, an experi-
ment was conducted to evaluate the impact of region 
division on the final predicted results. In order to evalu-
ate the effectiveness of our proposed model in clinical 
practice, we asked two CMF surgeons to manually digi-
tize all 77 landmarks on 10 CT images from training set, 
and one of them to repeat the work on the same 10 CT 
images one week later. Inter-observer and intra-observer 
variations were calculated based on the results.

Results
Prediction performance in four different settings
Setting 1: v-net without region division
Without region division and at a resolution of 96 × 96 × 96, 
the model with V-Net as the backbone in Stage 2 had a 
mean error of 2.40 ± 1.08 mm (Table 1), and 22.08% of the 
77 landmarks fell within 2  mm, 59.74% within 2.5  mm, 
87.01% within 3 mm, and 96.10% within 4 mm (Table 2).

Setting 2: 3D UX-net without region division
Without region division and at a resolution of 96 × 96 × 96, 
the model with 3D UX-Net as the backbone in Stage 2 
had a mean error of 2.34 ± 1.01 mm (Table 1), and 35.06% 
of the 77 landmarks fell within 2  mm, 61.04% within 

2.5 mm, 85.71% within 3 mm, and 96.10% within 4 mm 
(Table 2).

Setting 3: v-net with region division
With region division and at a resolution of 229 × 229 × 231, 
the model with V-Net as the backbone in Stage 2 had a 
mean error of 1.90 ± 0.93 mm (Table 1), and 61.04% of the 
77 landmarks fell within 2  mm, 89.61% within 2.5  mm, 
96.10% within 3 mm, and 98.70% within 4 mm (Table 2). 
This setting had a similar graphic memory footprint to 
Setting 1.

Setting 4: 3D UX-net with region division
With region division and at a resolution of 229 × 229 × 231, 
the model with 3D UX-Net as the backbone in Stage 2 
had a mean error of 1.81 ± 0.89 mm (Table 1), and 76.62% 
of the 77 landmarks fell within 2  mm, 90.91% within 
2.5 mm, 93.51% within 3 mm, and 98.70% within 4 mm 
(Table  2). This setting had a similar graphic memory 
footprint to Setting 2 and demonstrated the best perfor-
mance for landmarks detection.

The training loss curve (Fig.  3), validation loss curve 
(Fig. 4) and validation error curve (Fig. 5) were demon-
strated as follows.

Table 1 Prediction errors in 4 different settings (unit: mm)
R-ZR L-ZR FR NR TR MER R-MAR L-MAR SR Overall

V-Net without
Region division

2.40
± 1.08

3D UX-Net without
Region division

2.34
± 1.01

V-Net with
Region division

1.82
± 0.84

1.92
± 0.93

1.61
± 0.80

1.99
± 1.08

1.89
± 0.94

2.16
± 1.01

2.18
± 0.99

1.89
± 0.84

1.26
± 0.52

1.90
± 0.93

3D UX-Net with
Region division

1.74
± 0.82

2.02
± 0.98

1.58
± 0.77

1.93
± 0.96

1.74
± 0.88

2.23
± 1.09

1.90
± 0.96

1.97
± 0.89

1.22
± 0.44

1.81
± 0.89

Table 2 Prediction accuracy within a given margin
Error margin Prediction accuracy

V-Net without
Region division

2 mm 22.08%
2.5 mm 59.74%
3 mm 87.01%
4 mm 96.10%

3D UX-Net without
Region division

2 mm 35.06%
2.5 mm 61.04%
3 mm 85.71%
4 mm 96.10%

V-Net with
Region division

2 mm 61.04%
2.5 mm 89.61%
3 mm 96.10%
4 mm 98.70%

3D UX-Net with
Region division

2 mm 76.62%
2.5 mm 90.91%
3 mm 93.51%
4 mm 98.70%
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Comparison with manually digitized landmarks
The error of landmarks detection using 3D UX-Net with 
region division was compared to the inter- or intra-
observer variation. The inter-observer and intra-observer 
variations were 1.27 ± 0.70  mm and 1.01 ± 0.74  mm, 

respectively. The intraclass correlation coefficient of 
landmarks digitized by the two observers was greater 
than 0.99. Unpaired t-tests proved that there is no statis-
tically significant difference between prediction error of 
the model and inter-observer variation except for teeth 

Fig. 5 Validation error curve in 4 different settings

 

Fig. 4 Validation loss curve in 4 different settings

 

Fig. 3 Training loss curve in 4 different settings
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region (TR) (p > 0.05) (Table 3). Using the form of scatter 
plots, differences in each of the nine regions are shown 
in Fig.  3. In TR, errors of the model and inter-observer 
variation were 1.73 ± 0.84 mm and 0.71 ± 0.53 mm, which 
showed a statistically significant difference (p < 0.05).

Precision analysis for cephalometric indicators
To better explore the applicability of the model in clinic, a 
precision analysis was conducted for 6 indicators (3 angle 
indicators and 3 distance indicators) commonly used in 
cephalometric analysis, including SNB, SNA, ANB, and 
three sides of the mGoR-uN-mGoL triangle. The values 

of these indicators were calculated by the coordinates of 
related landmarks, which were obtained by the model 
prediction or manual annotation (i.e. ground truth). 22 
samples in validation set were used in analysis. Paired 
t-tests showed that no statistically significant difference 
between the predictions of this model and the ground 
truth in all six cephalometric indicators (Table 4).

Discussion
With region division and 3D UX-Net, the performance of 
the proposed model in landmarks digitization was equiv-
alent to that of experienced CMF surgeons, except for 

Table 3 Comparison between prediction error of model and inter-observer variation (unit: mm)
Region Prediction error

of the model
Inter-observer variation Mean difference p-value

Mean Std Mean Std
R-ZR 1.74 0.82 2.09 1.23 -0.35 ＞0.05
 L-ZR 2.02 0.98 1.98 0.87 0.04 ＞0.05
FR 1.58 0.77 1.50 0.90 0.08 ＞0.05
NR 1.93 0.96 1.69 0.78 0.24 ＞0.05
TR 1.74 0.88 0.71 0.53 1.03 <0.05
MER 2.23 1.09 2.26 0.94 -0.03 ＞0.05
R-MAR 1.90 0.96 1.99 0.87 -0.09 ＞0.05
 L-MAR 1.97 0.89 2.28 0.86 -0.31 ＞0.05
SR 1.22 0.44 0.85 0.61 0.37 ＞0.05

Fig. 6 Differences of prediction error among the model, inter-observer variation and intra-observer variation. (The height of the points in the scatter plot 
represented the average error of the landmarks detection, and the dashed line represented the average error of all the landmarks in the region)
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TR. In TR, landmarks were manually digitized based on 
highly precise optical dental models that were registered 
to CT images, while such optical dental models could not 
be processed by this model. Moreover, the landmarks 
on the teeth are easier to be recognized than in other 
anatomical regions, reducing the inter-observer varia-
tion. These factors led to a statistically significant differ-
ence between the error of the model and inter-observer 
variation in the dental region. In addition, six important 
indicators in 3D cephalometric analysis were obtained 
and further proved the clinical feasibility of the proposed 
model (Table 7).

Despite the desirable results were achieved for most 
samples, there were still some extremely abnormal errors 
existed in some cases, which resulted from the following 
reasons:

  • Inconsistency in patients’ eye status: The abnormal 
detection of landmarks in the periocular soft tissues 
(sICaL, sICaR, sOCaL, sOCaR) could be caused by 
differences between the patient’s open and closed 
eyes (Fig. 7a).

  • Inconsistency between the head position of CT data 
and natural head position [15]: The head positions 
of some CT images are too forward-leaning, which 
can interfere with the detection process of the model, 
especially after region division (Fig. 7b).

  • The severity of deformity: Severely abnormal 
structures impeded the accuracy of landmarks 
detection. for example, impacted tooth. (Fig. 7c).

  • Craniomaxillofacial information missed in CT data: 
In some cases, the inferior part of chin was not 
captured, causing the loss of detection for landmarks 
such as sMe and mMe (Fig. 7d).

Graphic memory footprint refers to the amount of ran-
dom-access memory (RAM) in graphics card that soft-
ware references or uses when running. Excessive graphic 
memory footprint can result in highly expensive training 
cost and deployment cost, hindering the development 
of the model and its wide application. The lightweight 
medical image processing network V-Net is often used as 

the backbone network for landmarks detection to reduce 
the graphic memory footprint. The recently proposed 
3D UX-Net, characterized by combining the features of 
the Swin Transformer [16] with convolutional networks, 
has been increasingly popular for its lightweight archi-
tecture and efficient image processing performance. This 
inspired us to consider replacing V-Net with 3D UX-Net 
as the backbone of the landmark detection neural net-
work to increase the accuracy of landmarks detection. 
This study proved that 3D UX-Net outperformed V-Net 
in 3D landmarks detection.

Due to the high resolution of CT images and lim-
ited graphic memory, even lightweight networks such 
as V-Net or 3D UX-Net was unable to directly process 
the entire CT images. Thus, the images were often com-
pressed to lower resolutions like 96 × 96 × 96 to reduce the 
graphic memory footprint. However, image compression 
will inevitably cause detection inaccuracy. To avoid sig-
nificant resolution loss, a new region division pattern was 
designed to divide the entire CT images into 9 regions, 
allowing landmarks detection to be performed in each 
region. In this method, the resolution loss was limited to 
a smaller extent while achieving higher detection accu-
racy with a lower graphic memory footprint.

Time consumption is one of the most important fac-
tors that hinder the implementation of 3D cephalomet-
ric analysis in clinical practice. Manual digitization often 
takes 15 to 25  min for experienced surgeons, and even 
longer for beginners. Our two-stage deep learning model 
has effectively solved this problem under lower graphic 
memory footprint, using only 83s to complete the land-
marks digitization task (on NVIDIA RTX 2080Ti 11G).

Comparing to the recent methodologies [6, 7], we pro-
posed a new region division pattern adapt for more and 
scattered landmarks detection and covered landmarks 
on all three tissues in CMF CT, including 13 facial soft 
tissue landmarks, 28 skeletal landmarks and 36 den-
tal landmarks. At the same time, this study has some 
limitations. There was not sufficient consideration on 
a method to reduce the occurrence of abnormal results 
or to ensure the safe use of the model in clinical practice. 

Table 4 Error of indicators used in cephalometric analysis
Indicators Model Ground Truth Mean difference p-value

Mean Std Mean Std
SNA (°) 81.96 3.24 81.64 3.33 0.32 ＞0.05
SNB (°) 83.79 5.25 83.18 4.75 0.61 ＞0.05
ANB (°) 3.82 1.99 3.91 1.97 -0.09 ＞0.05
mGoL-uN (mm) 118.57 8.63 118.28 8.77 0.29 ＞0.05
mGoR-uN (mm) 118.14 8.17 118.79 7.70 -0.65 ＞0.05
mGoL-mGoR (mm) 96.33 4.63 96.91 5.18 -0.58 ＞0.05
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The abnormal outcomes have also inspired us to fur-
ther optimize the whole process of automatic landmarks 
detection, including aligning the head position [17–19], 
standardizing the process of CT imaging, addressing 
abnormal data and evaluating the applicability of the 
model to different patients. Furthermore, in the field of 
landmarks detection, incorporating the dependency 
between landmarks into model training is proved to 
be effective [7, 20]. In this research, the training pro-
cess were implemented with 9 separate regions from 
CT images, which inevitably cuts off some potential 
dependency between landmarks. Restoring the balance 
between global and local constraints while still maintain-
ing the region division pattern will be further investi-
gated in future.

In summary, the model demonstrated excellent per-
formance in detecting craniomaxillofacial landmarks in 
CT images while consuming low graphic memory foot-
print and short time. This model satisfies the clinical 
requirements for detection accuracy of 3D cephalomet-
ric indicators. With further modification and big samples 

validation, the proposed method could be applied in clin-
ical practice and contributed to the diagnosis and treat-
ment planning of dentomaxillofacial deformities.

Abbreviations
CT  computed tomography
CMF  craniomaxillofacial
TR  teeth region
3D  3-Dimensional
DL  deep learning
2D  2-Dimensional
CBCT  cone beam computed tomography
ROI  region of interest
R-ZR  right zygomatic region
L-ZR  left zygomatic region
FR  frontal region
NR  nasal region
MER  mental region
R-MAR  right mandibular region
L-MAR  left mandibular region
SR  sphenoid region
MAD  median absolute deviation
RAM  random-access memory

Fig. 7 Possible reasons for extremely abnormal results
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