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Abstract 

Background  Head and neck squamous cell carcinoma (HNSCC) is the most common malignant tumor of head 
and neck, which seriously threatens human life and health. However, the mechanism of hypoxia-associated 
genes (HAGs) in HNSCC remains unelucidated. This study aims to establish a hypoxia-associated gene signature 
and the nomogram for predicting the prognosis of patients with HNSCC.

Methods  Previous literature reports provided a list of HAGs. The TCGA database provided genetic and clinical 
information on HNSCC patients. First, a hypoxia-associated gene risk model was constructed for predicting over-
all survival (OS) in HNSCC patients and externally validated in four GEO datasets (GSE27020, GSE41613, GSE42743, 
and GSE117973). Then, immune status and metabolic pathways were analyzed. A nomogram was constructed 
and assessed the predictive value. Finally, experimental validation of the core genes was performed by qRT-PCR.

Results  A HNSCC prognostic model was constructed based on 8 HAGs. This risk model was validated in four external 
datasets and exhibited high predictive value in various clinical subgroups. Significant differences in immune cell infil-
tration levels and metabolic pathways were found between high and low risk subgroups. The nomogram was highly 
accurate for predicting OS in HNSCC patients.

Conclusions  The 8 hypoxia-associated gene signature can serve as novel independent prognostic indicators 
in HNSCC patients. The nomogram combining the risk score and clinical stage enhanced predictive performance 
in predicting OS compared to the risk model and clinical characteristics alone.
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Introduction
Head and neck squamous cell carcinoma (HNSCC) is the 
most common malignancy of the head and neck, aris-
ing from the mucosal epithelium of the mouth, phar-
ynx, and larynx. Each year, HNSCC is identified in over 
870,000 new cases worldwide, killing about 440,000 
people [1]. Smoking, alcohol consumption, Human Pap-
illoma Virus (HPV) infection and exposure to environ-
mental pollutants are all risk factors for HNSCC [2, 3]. 
Although HNSCC can be treated with surgical resection 
supplemented with radiotherapy or chemotherapy plus 
radiotherapy, HNSCC patients’ 5-year survival rate keeps 
low since there are few early diagnoses [4]. Therefore, to 
develop new therapies and improve patient prognoses, 
it is essential to identify new predictive biomarkers for 
HNSCC.

Over the past few years, high-throughput sequenc-
ing and RNA sequencing have made it easier to develop 
molecular markers, which have made individualized 
treatment and better cancer prognosis possible [5]. 
Among these, the presence of hypoxia in solid tumors is 
an intrinsic characteristic and the role of HAGs in can-
cer is receiving increasing attention [6]. In addition, the 
role of hypoxia in tumor angiogenesis, cell prolifera-
tion, differentiation, and apoptosis has been established 
[7, 8]. Hypoxia influences the immune microenviron-
ment and is linked to a poor patient prognosis [9]. In 
HNSCC, hypoxia induces epithelial-mesenchymal transi-
tion (EMT) which provides a powerful driver for tumor 
progression [10] and enhances the proliferation, migra-
tion, and invasion of tumors [11, 12]. Ding et al. reported 
immune cells infiltrated into HNSCC in a variety of risk 
groups [13].

In this study, public databases were employed to evalu-
ate the mRNA profiles and associated clinical character-
istics of HNSCC patients. Univariate and multivariate 
Cox regression algorithms were used to screen the HAGs 
related to the prognosis of HNSCC from The Cancer 
Genome Atlas (TCGA) database. Prognostic features 
were then established in TCGA database and validated 
using Gene Expression Omnibus (GEO) datasets. After-
ward, we explored potential mechanisms of prognosis 
by exploring the relationship between the risk model 
and immune status. Finally, the expression levels of core 
genes in HNSCC were validated by quantitative real-time 
polymerase chain reaction (qRT-PCR).

Methods
Data sources
The raw RNA sequence (RNA-seq) data and correspond-
ing clinical parameters of 502 HNSCC patients and 44 
adjacent normal tissues were obtained from the TCGA 

database on 23 May 2022. A total of 499 HNSCC patients 
with complete clinical information and survival data 
were included for further analysis. For external valida-
tion purposes, RNA-seq data and clinical parameters of 
HNSCC patients were obtained from HNSCC-related 
mRNA datasets (GSE27020, GSE41613, GSE42743, and 
GSE117973) in the GEO database. The clinical base-
line data of all included patients are shown in Addi-
tional file 1: Table S1 (Patient baseline information table) 
and Additional file  2 (Details of patients in the TCGA 
database).

Identification and functional enrichment analysis 
of differentially expressed genes associated with hypoxia
A total of 200 HAGs were downloaded from the Molecu-
lar Signatures Database (https://​www.​gsea-​msigdb.​org/​
gsea/​msigdb/​cards/​HALLM​ARK_​HYPOX​IA.​html). The 
same approach was used to obtain HAGs in the previ-
ously published study [14]. The "limma" package of R 
software was performed to distinguish the differentially 
expressed HAGs between HNSCC and adjacent normal 
tissues [15]. The FDR was adjusted by the Benjamini–
Hochberg method. FDR < 0.05 and |logFC|> 1.0 was set 
as the cut-off criteria of differently expressed HAGs. To 
explore the biological functions of the hypoxia-associated 
gene signature, GO and KEGG enrichment analyses were 
performed by the R-package "Clusterprofiler" (version 
4.0) [16, 17].

Development and validation of prognostic features
To establish a prognostic model, the R package "glmnet" 
was used to perform the univariate Cox regression and 
LASSO analyses on the differentially expressed genes 
screened previously. The penalty factor λ was identi-
fied by the minimum parameters. Next, a risk prognos-
tic model was developed by multi-factor Cox regression, 
and the following formula was used to calculate the risk 
score: Risk Score = Gene1 CoefixExpi + Gene2 Coefix-
Expi + …GeneN CoefixExpi (Coef: coefficients, Exp: gene 
expression levels). 499 HNSCC patients from the TCGA 
database were classified into low and high risk subgroups 
based on the median risk score. Subsequently, the over-
all survival curves of different subgroups were compared 
by Kaplan–Meier analysis, the overall survival at 1, 3, and 
5 years was described by time-dependent receiver oper-
ating characteristic (ROC) analysis, and the area under 
the curve (AUC) was used to access the model’s predic-
tive power. Finally, this prognostic gene signature was 
also demonstrated to have prognostic value in predict-
ing OS in HNSCC patients using the datasets GSE27020, 
GSE41613, GSE42743, and GSE117973.

https://www.gsea-msigdb.org/gsea/msigdb/cards/HALLMARK_HYPOXIA.html
https://www.gsea-msigdb.org/gsea/msigdb/cards/HALLMARK_HYPOXIA.html
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Prognostic value of the 8‑gene prognostic model 
independent of other clinical characteristics
The TCGA-HNSCC samples were randomized into two 
groups to clarify the association between the prognostic 
model and various clinical characteristics, such as stag-
ing, grade, age, gender, T stage, N stage, and M stage. 
There were two subgroups of patients: stage I/II and III/
IV subgroups, grade I/II and III/IV subgroups, age < 60 
and age ≥ 60 subgroups, male and female subgroups, 
T0-T2 and T3/4 subgroups, N0 and N + subgroups, and 
M0 and M1 + Mx subgroups, respectively. To confirm 
the 8-gene prognostic features’ independent prognostic 
value, Kaplan–Meier survival analysis was performed on 
specific subgroups with various clinical characteristics.

Analysis of immune infiltration
Immune differences between the two groups of the 
TCGA database were synthesized by using computa-
tional methods for assessing immune infiltration and 
function, including ESTIMATE [18], TIMER [19], MCP-
counter [20], CIBERSORTx [21], and single-sample gene 
set enrichment analysis (ssGSEA). A two-sample Wil-
coxon test was applied to compare immune infiltration 
and immune-related functions between the high and low 
risk groups.

Construction and evaluation of the nomogram
Based on the TCGA HNSCC cohort, a nomogram con-
taining characteristic risk scores and other clinical char-
acteristics was developed to better predict HNSCC 
prognosis. Using univariate Cox regression analysis, 
clinical characteristics with significant associations with 
HNSCC prognosis were screened. Then, the variables 
screened in the previous step were included in a multi-
variate Cox regression analysis to search for independ-
ent predictive variables for OS in HNSCC patients and 
to construct the nomogram by statistically significant 
variables. Finally, the predictive performance of the 
established nomogram, risk score, and clinical character-
istics was compared by using the decision curve analysis 
(DCA), calibration curves, ROC curves, and consistency 
index (C-index).

Identification of risk score‑related genes and functional 
enrichment analysis
To better understand the biological processes of 
hypoxia-associated genes, the most relevant genes 
(Pearson |R|> 0.5, P < 0.05) were identified in the TCGA 
database, and functional enrichment analysis was per-
formed using the R-package "Clusterprofiler". Subse-
quently, gene set variation analysis (GSVA) enrichment 
analysis [22] and Gene set enrichment analysis (GSEA) 

[23] were used to screen the HNSCC cohort from 
TCGA for signaling pathways significantly associated 
with risk groupings and to screen out significant path-
ways according to a false discovery rate (FDR) < 0.05. 
Benjamini–Hochberg method was used to correct the 
FDR.

Validation by the quantitative real‑time polymerase chain 
reaction
The Zhongnan Hospital of Wuhan University provided 
nine pairs of HNSCC and adjacent non-cancerous tissues 
for this study, all of which were authorized by the eth-
ics committee. Surgically resected patients with HNSCC 
who did not receive chemotherapy or radiotherapy were 
recruited for the study. Additional file  1: Table  S2 pre-
sents the baseline information of the included clinical 
samples. Total RNA was extracted from tissues using 
TriQuick Reagent (Solarbio, Beijing, China, R1100); 
reverse transcription was carried out using a Prime Script 
RT kit (TaKaRa, Dalian, China, RR037A); and quantita-
tive PCR was performed using standard protocols from 
the SYBR Green PCR kit (Toyobo, Osaka, Japan, QPK-
201). The primer sequences for PCR are shown in Addi-
tional file  1: Table  S3. Candidate genes’ relative mRNA 
levels were normalized to GAPDH mRNA expression, 
while differences were compared using paired t-tests. The 
changes were calculated using the 2−∆∆Ct  method. Data 
were presented as the mean values ± standard error of 
the mean (SEM) from at least three independent experi-
ments. To further verify the differences in eight core 
genes between high and low risk groups for HNSCC. 
Tumor samples from 16 HNSCC patients were relatively 
quantified using qRT-PCR. The relative expression lev-
els of 8 genes were input into the risk model and the risk 
score was calculated. The patients were divided into high 
and low risk groups according to the median risk score. 
qRT-PCR results were used to further compare the gene 
expression differences between high and low risk groups.

Statistical analysis
The Student’s t-test and one-way ANOVA were applied 
to compare continuous variables, while the chi-square 
test was used to compare categorical variables. Using 
a log-rank test, Kaplan–Meier survival curves were 
compared. Hazard ratios (HRs) and 95% confidence 
intervals (CIs) for genes and clinical parameters associ-
ated with hypoxia were calculated using univariate and 
multivariate Cox regressions. Statistical analyses were 
performed using R software (v4.0.2). P < 0.05 was con-
sidered a significant level.
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Results
Identification of differential hypoxia‑associated genes 
in HNSCC
First, differential expression analysis of 200 HAGs 
was performed to identify differentially expressed 
HAGs between HNSCC (n = 502) and normal samples 
(n = 44). The results showed that the RNA expression 
of 54 HAGs was significantly different, which are pre-
sented as heatmap and volcano plot (adjusted p < 0.05, 
Fig.  1A-B). Then, GO enrichment analysis was per-
formed on these 54 HAGs, which identified the main 
pathways involved in these 54 genes: response to 

hypoxia/response to oxygen levels/cell chemotaxis/
glucose metabolic process (Fig. 1C). Finally, the KEGG 
enrichment analysis was also performed on these 
54 HAGs, and the findings revealed that they were 
involved in the following signaling pathways: MAPK 
signaling pathway, HIF-1 signaling pathway, insulin 
signaling pathway, and focal adhesion (Fig. 1D).

Development of prognostic biomarkers 
for hypoxia‑associated genes
A univariate Cox regression approach was applied 
to screen HAGs significantly associated with OS in 
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Fig. 1  Identification of differentially expressed hypoxia-associated genes in HNSCC. A Heatmap of differentially expressed hypoxia-associated 
genes. N, Normal control group; T, HNSCC tumor group. B Volcano plot of differentially expressed hypoxia-associated genes. The abscissa represents 
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HNSCC. The analysis showed that 49 of 200 HAGs 
were highly related to OS in HNSCC, and 16 of these 
49 genes were significantly different between HNSCC 
tissues and adjacent paracancerous tissues (Fig.  2A). To 
further narrow down the gene selection, LASSO analysis 
was performed on the 16 genes screened in the previous 
step and selected 12 genes [ Serpin family E member 1 

(SERPINE1), Homeobox B9 (HOXB9), Selenium-binding 
protein 1 (SELENBP1), C-X-C motif chemokine recep-
tor 4 (CXCR4), Dystrobrevin Alpha (DTNA), Interferon-
stimulated exonuclease gene 20 (ISG20), Stanniocalcin 
2 (STC2), Heparan Sulfate-Glucosamine 3-Sulfotrans-
ferase 1 (HS3ST1), Adrenomedullin (ADM), Stan-
niocalcin 1 (STC1), Cysteine and glycine-rich protein 2 
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(CSRP2), and Transforming growth factor beta-induced 
protein (TGFBI)] as candidate genes (Fig.  2B-C). Next, 
multifactorial Cox regression analysis was performed 
on the 12 candidate genes. Finally, eight genes (HOXB9, 
SELENBP1, DTNA, ISG20, STC2, HS3ST1, CSRP2, and 
TGFBI) were screened for the construction of prog-
nostic risk models; among them, SELENBP1, CSRP2, 
and ISG20 were considered as biomarkers indicative of 
good prognosis (HR < 1), while TGFBI, STC2, HOXB9, 
DTNA, and HS3ST1 were indicative of poor prognosis 
(HR > 1). A risk model of HNSCC based on eight prog-
nostic genes was generated (risk score = (0.199 × HOXB9 
exp.) + (-0.238 × SELENBP1 exp.) + (0.359 × DTNA 
exp.) + (-0.134 × ISG20 exp.) + (0.193 × STC2 
exp.) + (0.418 × HS3ST1 exp.) + (-0.159 × CSRP2 
exp.) + (0.094 × TGFBI exp.)). Based on this risk model, 
the Kaplan–Meier method was applied to further inves-
tigate patients’ survival in HNSCC. 499 patients with 
HNSCC were distributed equally into two subgroups 
based on median risk scores, compared with the high-
risk subgroup, those in the low-risk subgroup lived 
longer (Fig.  2D-E). Then, the model’s capability of pre-
dicting future HNSCC risk was evaluated using a time-
dependent ROC analysis. The risk model predicted 
1-year, 3-year, and 5-year survival with AUC values of 
0.660, 0.714, and 0.672, respectively (Fig. 2F).

Validation and clinical value of prognostic features
The 8-gene prognostic risk model was validated in four 
GEO datasets (GSE27020, GSE41613, GSE42743, and 
GSE117973). According to the same risk score construc-
tion method in TCGA database, the four GEO datasets 
were classified into high and low risk groups based on the 
median risk scores and evaluated the performance of the 
risk model. The results of the analysis are shown in Figs. 3 
and Additional file  3: Figure S1. The AUC for 1-year, 
3-year, and 5-year OS was calculated to present the accu-
racy of the model prediction. In GSE27020 dataset, the 
AUC was 0.739, 0.701, and 0.687 respectively (Fig. 3A); In 
GSE41613 dataset, the AUC was 0.674, 0.733, and 0.680 
respectively (Fig. 3B); In GSE42743 dataset, the AUC was 
0.763, 0.717, and 0.789 respectively (Additional file  3: 
Figure S1A); In GSE117973 dataset, the AUC was 0.663, 
0.748, and 0.736 respectively (Additional file  3: Figure 
S1B). Meanwhile, in all four GEO datasets (GSE27020, 
GSE41613, GSE42743, and GSE117973), patients in the 
low-risk group survived longer than those in the high-
risk group (Fig.  3C-F, Additional file  3: Figure S1C-F). 
Taken together, the AUC of the risk score model for pre-
dicting the prognosis of patients in 3 years reached more 
than 0.7, indicating that the risk score model had a good 

value in predicting the prognosis of patients in three 
years.

Association between the prognostic model 
and clinicopathological characteristics
Additionally, to explore the model’s prognostic value in 
HNSCC patients after stratification based on clinico-
pathological variables in the TCGA database, patients 
were classified into subgroups according to their Age, 
Gender, Grade, M stage, N stage, Radiation therapy, 
stage, and T stage to plot Kaplan–Meier survival curves. 
The sample was divided into 16 subgroups: Young 
(< 60  years) and Old (≥ 60  years), Female and Male, 
Grade I-II and Grade III-IV, Mstage M0 and Mstage 
M1 + Mx, Nstage N0 and Nstage N + , Radiation therapy 
NO and Radiation therapy YES, Stage I-II and Stage III-
IV, Tstage T0-T2, and Tstage T3-T4. In each subgroup, 
the previous thresholds were selected and the patients 
were further allocated into the low and high groups. OS 
was significantly shorter in the high-risk group compared 
to the low-risk group across all subgroups (Additional 
file 3: Figure S2A-H, Additional file 3: Figure S3A-H). The 
results showed that the risk model could accurately pre-
dict the prognosis of HNSCC patients within the same 
clinicopathological subgroup. In conclusion, risk charac-
teristics are crucial in determining a patient’s prognosis 
for HNSCC.

Comparison of different immune status between the two 
risk score‑related subgroups
To investigate the correlations between the risk scores 
model and immune status, immune cell infiltration and 
immune-related function scores were quantified by vari-
ous algorithms (ESTIMATE, CIBERSORTx, TIMER, 
MCP counter, and ssGSEA). Figure  4 A demonstrates 
that the low-risk group’s Immune Scores were signifi-
cantly higher than those of the high-risk group, while 
the ESTIMATE Score and Stromal Score did not differ 
significantly, indicating a higher level of immunity in the 
low-risk group (p < 0.01). The variation of tumor micro-
environment cells may be the cause of risk score hetero-
geneity. Then, based on TCGA-HNSCC data, analyses of 
the difference in immune cell subpopulations revealed 
significant differences between the two subgroups for 
scores of immune cells (B cells, T cells, Myeloid den-
dritic cells, plasma cells, Macrophage M0, T cell CD4 
memory resting, T cell follicular helper, Tregs, NK cells 
resting, dendritic cells resting, Mast cells, iDCs, pDCs, 
Th2 cells, and TIL) (p < 0.001; Fig.  4B-E). Furthermore, 
immune function scores (Checkpoint, Cytolytic activity, 
HLA, Inflammation promoting, T cell co-inhibition, T 
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cell co-stimulation, and Type I IFN response) were signif-
icantly different (p < 0.05; Fig. 4F). These results indicate 
that the types of immune infiltrating cells are different 

in the high and low risk groups, and the difference in 
immune microenvironment may be an important factor 
affecting the difference in the prognosis of patients.
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Construction of the Prognostic nomogram containing 
characteristic risk scores and clinical staging
In univariate Cox regression analyses, risk score 
(HR = 1.822, 95% CI = 1.549–2.142, p-value < 0.001), Age 
(HR = 1.378, 95% CI = 1.053–1.804, p-value = 0.0193), 
Stage (HR = 1.421, 95% CI = 1.187–1.702, p-value < 0.001), 
Tstage (HR = 1.296, 95% CI = 1.124–1.495, p-value < 0.001), 

and Nstage (HR = 1.541, 95% CI = 1.303–1.822, 
p-value < 0.001) were correlated to OS in patients with 
HNSCC (Fig.  5A). In multivariate Cox regression analy-
sis, characteristic risk score (HR = 1.830, 95% CI = 1.479–
2.265, p-value < 0.001), Nstage (HR = 1.480, 95% 
CI = 1.186–1.847, p-value < 0.001) and Age (HR = 1.449, 
95% CI = 1.041–2.016, p-value = 0.0279) were shown to 
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be independent predictors of OS in HNSCC patients 
(Fig.  5A). Then, the risk score, Age, and N stage were 
combined to construct a nomogram for predicting OS of 
1-year, 3-year, and 5-year in HNSCC patients (Fig.  5B). 
The performance of the nomogram was evaluated, and 
it showed superior predictive potential compared to the 
risk score and other clinical characteristics (Age, Gen-
der, Stage, T stage, Nstage, and Grade) for OS at 1, 3, 
and 5  years (AUC = 0.704, 0.758 and 0.733 respectively, 
Fig. 5C). The calibration curves for the nomogram demon-
strated good agreement between the actual OS probabili-
ties and the OS probabilities predicted by the nomogram 
(Fig.  5D). The nomogram had good discrimination com-
pared to the risk score, Age, and Nstage, with a C-index 
close to 0.7 (Fig.  5E). The DCA curves showed that the 
nomogram had more net benefit than the risk score, Age, 
and Nstage (Fig. 5F).

Enrichment analysis based on hypoxia 8‑gene signature
To clarify the signaling pathways related to the hypoxia 
8-gene signature, we screened the genes with the highest 
correlation coefficients with risk scores (Pearson |R|> 0.5, 
P < 0.05) in the TCGA database and applied functional 
enrichment analysis to them. A total of 50 negatively and 
51 positively correlated genes were screened by correla-
tion analysis, and the correlation heatmap was presented 
in Fig. 6A. Next, GO enrichment analysis was performed 
on these 101 genes, which revealed that these genes were 
mainly involved in signaling pathways including divalent 
inorganic cation homeostasis, response to insulin stimu-
lus, fibroblast proliferation, positive regulation of hemo-
stasis and positive regulation of coagulation (Fig.  6B). 
Subsequently, KEGG enrichment analysis showed that 
they were involved in signaling pathways including Axon 
guidance, Inflammatory mediator regulation of TRP 
channels, Rap1 signaling pathway, and EGFR tyrosine 
kinase inhibitor resistance (Fig.  6C). Additionally, the 
signaling pathways involved in the hypoxia 8-gene sig-
nature were investigated using GSVAs and the results 
showed that in the high-risk subgroup, the top 5 signal-
ing pathways significantly activated included Glycolysis, 
Adipogenesis, MYC Targets V1, MTORC1 Signaling, 
and PI3K-AKT-mTOR Signaling (Fig.  6D). Finally, the 
signaling pathways involved in the hypoxia 8-gene signa-
ture were screened by GSEA enrichment analysis, which 
showed that the significantly enriched signaling pathways 
in the high-risk subgroup included: Dilated cardiomyo-
pathy, ECM Receptor interaction, Focal adhesion, Hyper-
trophic cardiomyopathy and pathways in cancer (Fig. 6E). 
Significantly enriched signaling pathways in the low-risk 
subgroup included Alpha-linolenic acid metabolism, 
Autoimmune thyroid disease, Oxidative phosphoryla-
tion, Parkinson disease, and Ribosome (Fig. 6F).

Core gene expression validation
To determine the expression of 8 hypoxia-related genes in 
HNSCC tumor tissues, we collected 9 pairs of tissues from 
oral squamous cell carcinoma patients for qRT-PCR veri-
fication. There was no difference in HOXB9, SELENBP1, 
ISG20, HS3ST1 and CSRP2 expression between tumor 
and normal tissues (Additional file 3: Figure S4A-E). Three 
genes (DTNA, STC2, and TGFBI) were differentially 
expressed between HNSCC tumor tissue and normal tis-
sue, and STC2 and TGFBI were significantly up-regulated 
in tumor tissue, which was consistent with the analy-
sis results (Fig.  7A-C). Furthermore, the risk model was 
used to divide 16 HNSCC patients into high and low risk 
groups. qPCR detection found that STC2, TGFBI and 
HOXB9 were significantly up-regulated between the high 
and low risk group (Fig. 7D-F), while SELENBP1, DTNA, 
ISG20, HS3ST1 and CSRP2 had no significant differences 
(Additional file 3: Figure S4F-J).

Discussion
HNSCC is characterized by late diagnosis, easy metasta-
sis, relapse, and resistance to treatments. The five-year 
survival rate of patients is very low, which seriously endan-
gers the health of patients [24]. Although great progress 
has been made in diagnosis and treatment strategies in the 
past decades, the overall survival rate of HNSCC patients 
has not been significantly improved [25]. Therefore, it is 
necessary to explore new prognostic prediction schemes 
to accurately assess the tumor progression and survival 
status of patients. Hypoxia is a common phenomenon in 
tumor tissues, which has a wide impact on tumor angio-
genesis, proliferation, migration, and the prognosis of can-
cer patients [26, 27]. So far, hypoxia-associated genes have 
been used as risk factors to establish prognostic risk mod-
els for a variety of tumors, including liver cancer, breast 
cancer, bladder cancer and so on [28–30]. In HNSCC, the 
effect of hypoxia on tumor progression has been dem-
onstrated. However, the exact molecular mechanism of 
hypoxia-associated genes in HNSCC is still unclear, and 
their prognostic value is far from elucidated.

In this study, 54 differentially expressed hypoxia-asso-
ciated genes in HNSCC patient samples from TCGA 
database were screened by differential expression analy-
sis. Eight hypoxia-associated genes (SELENBP1, CSRP2, 
ISG20, TGFBI, STC2, HOXB9, DTNA and HS3ST1) with 
high predictive value were screened by univariate Cox 
regression analysis, LASSO regression analysis and mul-
tivariate Cox regression analysis. Finally, a prognostic risk 
model for HNSCC was constructed. The prognostic value 
of the risk model was validated in four HNSCC datasets 
(GSE27020, GSE41613, GSE42743 and GSE117973) from 
the GEO database. Kaplan–Meier survival analysis and 
ROC curve analysis showed that the AUC values of 5-year 
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survival predicted by this model were 0.672 (TCGA), 
0.687 (GSE27020), 0.680 (GSE41613), 0.789 (GSE42743) 
and 0.736 (GSE117973), significantly better than previ-
ously reported HNSCC prognostic models (AUC = 0.607) 
[31]. The prognosis prediction model we constructed 

contains 8 hypoxia-associated genes, which is significantly 
better than the 24-gene prognosis model constructed 
by Ding et  al. [13]. Reduction in the number of genes 
reduced the difficulty of detection. In addition, Ding et al. 
only compared the prognostic value of risk scores and 
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clinicopathological factors as independent prognostic fac-
tors. Our study not only assessed the predictive value of 
risk scores and clinicopathological factors as independ-
ent prognostic factors, but also combined risk scores with 
independent prognostic factors such as Age and N stage 
to build a nomogram. Most importantly, compared to 
Ding et al., we used clinical samples to validate differences 
in predictive genes between tumors and adjacent normal 
tissues and between high-low risk groups.

The eight hypoxia-associated genes identified in 
this study have been studied in the field of tumor. As a 
member of the family of selenium-binding proteins, 
SELENBP1 is a tumor suppressor, and its low expression 
has been reported to contribute to a poor prognosis in 
the lung [32], ovarian [33], and colorectal cancers [34]. 
CSRP2 is involved in tumor cell proliferation, migration, 
and invasion in breast cancer [35], gastric cancer [36], 
and lymphocytic leukemia [37]. CSRP2 is associated with 
a better prognosis in oral squamous cell carcinoma [38]. 
ISG20 is a 3’-5’ exonuclease that can degrade viral RNA 
in vitro [39]. In human gliomas, patients expressing high 
ISG20 had a poor prognosis, which was inconsistent with 

our study [40]. The inconsistent may be due to cancer 
type specific that gliomas are a non-epithelial cell derived 
whereas HNSCC is epithelial cell malignancy. These 
studies revealed the tumor suppressor role of SELENBP1, 
CSRP2, and ISG20, whose low expression is often a risk 
factor for poor tumor prognosis. In this study, we found 
that low expression of SELENBP1, CSRP2 and ISG20 
in HNSCC has predictive value for poor prognosis of 
HNSCC. Therefore, SELENBP1, CSRP2 and ISG20 were 
included as part of the influencing factors to construct a 
prognostic prediction model in this study.

In addition, TGFBI is a secreted extracellular matrix 
(ECM) protein that is induced by transforming growth 
factor β (TGFβ). It is reported that p-EMT-related 
genes including TGFBI were highly expressed in 
HNSCC samples compared to normal tissue, and this 
was linked to a poor prognosis [41]. Hypoxia-induced 
EMT has been demonstrated in a variety of tumors, and 
whether upregulated TGFBI under hypoxia affects the 
prognosis of HNSCC patients through EMT requires 
follow-up studies. Under hypoxia conditions, the 
expression of glycoprotein hormone STC2 is activated 

Fig. 7  Validation of expression of core genes by quantitative real-time PCR (qRT-PCR). The figures of qRT-PCR showed the expression levels of DTNA 
(A), STC2 (B), and TGFBI (C) in adjacent normal tissues and HNSCC tissues (n = 9, each group); the figures of qRT-PCR showed the expression levels 
of STC2 (D), TGFBI (E), and HOXB9 (F) in low and high risk groups (n = 8, each group).*P < 0.05, **P < 0.01, ***P < 0.001
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[42], which drives the growth, proliferation, and tumor-
igenesis of tumor cells. HOXB9 is a HOX gene involved 
in the regulation of several human cancers [43]. DTNA 
encodes a scaffolding protein that keeps muscle cells 
structurally intact. Previous study have identified 
DTNA as a valuable diagnostic marker for colon ade-
nocarcinoma [44]. In the analysis results, DTNA was 
highly expressed in tumor tissues, and in the validation 
results, DTNA expression was downregulated in tumor 
samples; this inconsistency may be due to the selection 
of advanced HNSCC tissues for validation. HS3ST1 is 
a rate-limiting enzyme involved in the biosynthesis of 
heparan sulfate. Conditional deletion of HS3ST1 sig-
nificantly inhibited tumor development in colorectal 
cancer [45]. These studies suggest tumor promotion 
by TGFBI, STC2, HOXB9, DTNA, and HS3ST1. In our 
study, high expression of TGFBI, STC2, HOXB9, DTNA 
and HS3ST1 was found to be associated with poor 
prognosis in HNSCC. Whether these genes contribute 
to the progression of HNSCC by a similar mechanism 
requires further investigation.

It is reasonable to infer that the eight genes we iden-
tified as a whole had high prognostic value for HNSCC. 
Additionally, we combined characteristic risk scores and 
clinical staging to develop a nomogram. The nomogram 
calibration curves predicted the OS of HNSCC patients 
more accurately. Meanwhile, we used ESTIMATE, 
TIMER, MCP counter, CIBERSORTx, and single sam-
ple gene set enrichment analysis (ssGSEA) to assess the 
immune state between various risk groups. The results 
showed differences in immune cell scores between the 
high and low risk groups, suggesting that risk scores 
may influence the prognosis of HNSCC patients through 
tumor microenvironment. Finally, qRT-PCR was per-
formed on eight genes (HOXB9, SELENBP1, DTNA, 
ISG20, STC2, HS3ST1, CSRP2, and TGFBI). According 
to risk score, HNSCC samples were grouped into high 
and low risk groups. STC2, TGFBI and HOXB9 were 
found significantly up-regulated in the high-risk group.

In recent years, several studies[46–48]have been dedi-
cated to establishing prognostic signatures related to 
hypoxia in HNSCC patients using the TCGA database. 
However, our study employed distinct approaches, such 
as multi-dataset validation, multi-algorithm for immune 
infiltration analysis, combined clinicopathological fea-
tures of patients, clinical sample validation, etc.

This study is based on database data mining and pre-
liminary qPCR experimental validation, which still has 
some limitations. Firstly, the limited sample size may 
lead to selection bias. To make the results more stable, 
more clinical cases should be further included to carry 
out large sample studies. Secondly, this study verified the 
expression trend of 8 HAGs at transcript level between 

tumor and normal tissues, as well as between high and 
low risk groups based on qPCR. Whether there is a cor-
responding trend at the protein level needs further study. 
In addition, for better clinical application value, large-
sample multi-center clinical trials and prospective stud-
ies are still needed to confirm the prognostic predictive 
value of the diagnostic model. Finally, functional and 
mechanism studies of the identified hypoxia-related 
genes in HNSCC may also be new directions.

Conclusions
We have developed a risk model based on 8 HAGs to 
predict prognosis in HNSCC patients. Additionally, we 
developed a nomogram which showed better predictive 
performance than the risk score and clinical character-
istics. Our findings suggest that the HAGs-based risk 
model has important value in prognostic prediction and 
clinical decision making in HNSCC.
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