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Biomechanical effects of joint disc perforation 2
on the temporomandibular joint: a 3D finite
element study
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Abstract

Background Disc perforation (DP) is a severe type of Temporomandibular Disorder (TMD). DP may induce changes
in the internal stresses of the temporomandibular joint (TMJ). Herein, this study attempts to investigate the
biomechanical effects of different positions and sizes of DP on the TMJ using a biomechanical approach, to explore
the mechanical pathogenesis of TMD.

Methods Eleven three-dimensional finite element (FE)models of the TMJ were constructed based on CBCT imaging
files of a patient with DP on the left side. These models included the disc with anterior displacement and discs with
different locations and sizes of perforations on the affected disc. FE methods were conducted on these models.

Results Anterior displacement of the disc leads to a significant increase in the maxim von Mises stress (MVMS) in
both TMJs, with the affected side exhibiting a more pronounced effect. DP occurring at the posterior band and the
junction between the disc and the bilaminar region has a greater impact on the MVMS of both TMJs compared to
perforations at other locations. As the size of the perforation increases, both sides of the TMJs exhibit an increase in
the magnitude of MVMS.

Conclusions Unilateral disc anterior displacement results in an increased stress on both TMJs. Unilateral DP further
affects the stress on both sides of the TMJs. TMD is a progressive condition, and timely intervention is necessary in the
early stages to prevent the worsening of the condition.

Keywords Finite element method (FEM), Biomechanics, Temporomandibular joint disorder (TMD), Disc
displacement, Disc perforation (DP)

Wentong Gao and Jie Lu contributed equally as the first authors. *Chongging Key Laboratory for Oral Diseases and Biomedical Science,
Chongging, China

*Correspondence: 3Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of

Min Sun Higher Education, Chongging, China

samsurgeonsichuan@hotmail.com “Department of Orthopedics, The First Affiliated Hospital of Chongqing

Jie Xu Medical University, Chongging, China

xujie@hospital.cgmu.edu.cn Department of Knee Joint Sports Injury, Sichuan Provincial Orthopedic

'Stomatological Hospital of Chongging Medical University, No. 426 Hospital, Chengdu, Sichuan Province, China

Songshi North Road, Chongging, China

©The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available
in this article, unless otherwise stated in a credit line to the data.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12903-023-03521-x&domain=pdf&date_stamp=2023-11-28

Gao et al. BMC Oral Health (2023) 23:943

Background

The temporomandibular joint (TM]) is the only bilateral
synovial joint in the human body. The TMJ consists of
the temporal bone’s glenoid fossa and articular eminence,
the mandibular condyle, the disc, the joint capsule, and
the intra- and extra-capsular ligaments [1, 2]. The disc is
located between the condyle and the glenoid fossa. The
cross-section of the disc is S-shaped. This arrangement
prevents structural damage by direct contact between the
condyle and the temporal bone’s glenoid fossa. Moreover,
the disc acts as a cushion, mitigating mechanical pressure
and facilitating coordinated movements of the condyle
3, 4].

Disc perforation (DP) is a severe type of Temporoman-
dibular Disorder (TMD), that predominantly occurs at
the posterior band of the TM]J disc, the bilaminar region,
and the junction of the posterior band with the bilami-
nar region [5, 6]. The main clinical manifestations of DP
include impaired jaw movement, continuous friction
sound within the joint, and pain in the joint area dur-
ing the opening and closing of the mouth. DP can also
be accompanied by damage to other soft and hard tis-
sues of the joint, often leading to pathological changes in
the articular cartilage, subchondral bone, and ligaments.
These conditions significantly impact the physiological
and psychological well-being of affected patients [7].

DP affects the morphology and structure of the TM]J,
often leading to changes in the internal stress environ-
ment of the TM] [8, 9]. Currently, conservative treatment
remains the primary approach for disc perforation, with
surgical intervention often considered a supplementary
option when conservative treatment fails. However, the
indications for disc perforation surgery are not well-
defined, resulting in significant differences of opinion
among joint specialists regarding whether surgery should
be performed. Therefore, research on the biomechanics
of the TM]J after disc perforation is crucial.

The finite element method (FEM) is a numerical simu-
lation method that has proven effective in solving com-
plex structural mechanics problems [10, 11]. In recent
years, FEM has been widely applied in the field of TM]
biomechanics. Using FEM, Abe et al. have demonstrated
that after disc displacement, the primary load-bearing
area of the TM]J shifts posteriorly, accompanied by an
increase in the maximum stress borne by the disc [12].
Related research by Shao et al. found that in the presence
of TMD, the affected side experiences higher structural
stresses compared to the normal side [13].

The primary objective of this study is to investigate the
mechanical characteristics of the TM] after DP using a
3D FE model. In this study, we collected CT images of
a patient with DP on the left side of the TMJ, while the
right side was in a normal state. These images were uti-
lized to analyze the effects of different locations and

Page 2 of 12

sizes of DP on the TM]J following disc displacement. This
approach not only provides references for determining
whether patients are suitable candidates for surgery but
also offers prognostic indicators for individuals with disc
perforation.

Materials and methods

Subject and CT images

The participant in this study was a patient with DP in the
left TMJ. The inclusion criteria were as follows: (1) The
patient has a unilateral DP in the TM]J without any his-
tory of disease on the other side. (2) The patient does not
exhibit significant malocclusion or dental misalignment.
(3) The patient has no history of orthodontic treatment.
(4) The patient has not undergone any restorative treat-
ments in the oral cavity. (5) The patient has no history of
maxillofacial surgical interventions.

FE modelling

A relatively complete 3D model of the craniofacial region
was constructed by MIMICS (Materialize, Leuven, Bel-
gium) based on DICOM image files. Since the disc and
its attachments are not radiopaque in CT, the disc and
bilaminar region were reconstructed based on the joint
space, while the ligament attachments were simulated by
16 springs with a stiffness of 6.5 N [14, 15] [Fig. 1. A]. DP
commonly occurs after disc displacement. Therefore, in
addition to establishing normal discs on both sides, a disc
with anterior displacement (anteroposterior diameter:
10.55 mm, inner and outer diameter: 14.83 mm) occur-
ring on the left side was created. Based on the anteriorly
displaced disc, different types of perforated discs were
generated, including the anterior band perforated disc
(AP), intermediate band perforated disc (IP), medial band
perforated disc (MP), lateral band perforated disc (LP),
posterior band perforated disc (PP), bilaminar region
perforated disc (BP), and the junction of the posterior
band and bilaminar region perforated disc (PBP). These
models were used to investigate the effects of perforation
at different locations on the TMJ. The perforation diam-
eter was approximately 1/3 of the anteriorly displaced
disc (anteroposterior diameter:3.5 mm, inner and outer
diameter: 5 mm). To investigate the effects of different
perforation sizes on the TM], perforations were made at
the junction of the posterior band and bilaminar region.
The perforation sizes were selected as 1/4 (anteropos-
terior diameter:2.625 mm, inner and outer diameter:
3.75 mm), 1/3 (anteroposterior diameter:3.5 mm, inner
and outer diameter: 5 mm), and 1/2 (anteroposterior
diameter:5.25 mm, inner and outer diameter: 7.5 mm)
of the anteriorly displaced disc [Fig. 1. B: b1)-b3)]. The
resulting model is illustrated in Fig. 1. C.
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Fig. 1 Configuration of the FEM simulations. A. The assembled FEM model of the skull; B. b1) The measurement and partitioning of displaced discs; b2)
Elliptical cylinders of different sizes for perforation; b3) The process of building perforated discs; C. The FE models of TMJ discs: AP — anterior band per-
forated disc, IP — intermediate band perforated disc, MP — medial band perforated disc, LP — lateral band perforated disc, PP — posterior band perforated
disc, BP — bilaminar region perforated disc, PBP-1 - the junction of the posterior band and bilaminar region perforated disc (1/4 of the anteriorly displaced
disc), PBP-2 — the junction of the posterior band and bilaminar region perforated disc (1/3 of the anteriorly displaced disc), PBP-3 — the junction of the
posterior band and bilaminar region perforated disc (1/2 of the anteriorly displaced disc)

Mesh partitioning

After smoothing and denoising procedures, the model
was divided into surface meshes and volume meshes.
Smaller mesh sizes can provide more accurate results
but also increase the computational cost of the simula-
tion. Therefore, based on a bone cortical mesh size of

1.25 mm and bone trabecular mesh size of 1.5 mm, fur-
ther refinement of the mesh was performed at the con-
tact areas. The mesh sizes for the condyle, articular fossa,
teeth, disc, and bilaminar region were refined to 0.4 mm,
0.4 mm, 0.5 mm, 0.4 mm, and 0.35 mm, respectively.
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Table 1 The material properties of TMJ adopted in FE models

Tissue Young’s modulus (MPa) Poisson’s ratio
Cortical bone 13,700 03

Cancellous bone 7930 03

Disc 44.1 04

Tooth 18,600 0.31

Bilaminar region 049 049

Material Properties

Once the mesh division was completed, assembly, com-
putation, and final analysis of all constructed models
were performed using ANSYS (ANSYS Inc, USA). In this
study, the constituent materials of the TM] were assumed
to be linearly elastic and isotropic. The mechanical prop-
erties of each component are summarized in Table 1 [16].

Loading and boundary conditions
This experiment employed static biomechanical analy-
sis of the TMJ based on the intercuspal position (ICP).
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In our simulation, the upper part of the skull was con-
sidered fixed support to restrict the displacement of the
upper model. The contact types between the disc and
condyle, the disc and temporal bone joint surface, as well
as between the teeth, were set as surface-to-surface con-
tact. The contact relationships were defined as frictional
contact with a coefficient of friction of 0.001 [17]. The
relationships between the disc and bilaminar region, as
well as between the teeth and the upper and lower jaw-
bones, were set as fixed contacts to ensure stable contact
without sliding or detachment. According to anatomical
information and previous research, a total of 9 groups of
muscles were included in the simulation, applying forces
on the mandible [18] [Fig. 2]. Each muscle had its direc-
tion and efficiency. The maximum values and directional
components of the muscle forces used in this study can
be found in Table 2 [19].

Fixed Support

Frictional

Bonded

Frictional

Fig. 2 The boundary conditions of FE models. SM — Superficial Masseter, DM — Deep Masseter, AT —Anterior Temporalis, MT — Middle Temporalis, PT —
Posterior Temporalis, MP — Medial Pterygoid, SLP — Superior Lateral Pterygoid, ILP- Inferior Lateral Pterygoid, AD — Anterior Digastric

Table 2 Forces (N) assigned to the masticatory muscles

Maximum muscle force (N) Efficiency Direction
L Cos-x L Cos-y L Cos-z R Cos-x R Cos-y R Cos-z

SM 190.40 1.00 3941 -79.78 168.31 -39.41 -79.78 168.31
DM 81.60 1.00 44.55 29.21 61.85 -44.55 29.21 61.85
MP 174.80 0.76 -64.56 -49.55 105.08 64.56 -49.55 105.08
AT 158.00 0.98 23.07 -6.81 152.98 -23.07 -6.81 152.98
MT 95.60 0.96 2037 45.89 76.82 -20.37 45.89 76.82
PT 75.60 0.94 14.78 60.76 33.68 -14.78 60.76 33.68
SLP 28.70 0.59 -12.89 -10.92 1.25 12.89 -10.92 1.25
ILP 66.90 027 -11.38 -13.67 -3.14 11.38 -13.67 -3.14
AD 40.00 0.28 273 10.53 -2.65 -2.73 10.53 -2.65
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Von Mises stress

Von Mises stress is equivalent stress based on the the-
ory of the fourth strength, which takes into account the
first, second, and third principal stresses. It is commonly
used for evaluating fatigue and failure criteria. Von Mises
stress is a mechanical concept in the field of elastoplastic
mechanics and has been widely applied in the field of bio-
mechanics. This study will also use it to assess the stress
distribution and potential failure areas in the TMJ model.

Result

The impact of perforation at different locations of the disc
on TMJ stress

Stress distribution on the discs of the affected side

The results of stress distribution on the discs of the
affected side are shown in Fig. 3. A, B and Fig. 4. A, B. In
the normal state of the affected-side disc, the maximum
equivalent stress (Maximum von Mises stress, MVMS)
experienced by the affected-side disc is 4.3794 MPa, while
the MVMS in the bilaminar region is 0.073212 MPa. The
high-stress areas in the disc are mainly distributed in the
middle band and posterior band. The high-stress areas in
the bilaminar region are primarily located in the anterior-
central portion of the bilaminar region. After the occur-
rence of anterior displacement of the affected-side disc,
there is a sharp increase in MVMS for both the affected-
side disc and the bilaminar region, reaching 7.7477 MPa
and 0.2386 MPa, respectively. The high-stress areas in the
disc exhibit a significant posterior shift, primarily distrib-
uted in the posterior-lateral region of the disc. The high-
stress areas in the bilaminar region also show a posterior
shift.

When perforation occurs in the anterior and middle
band of the affected-side disc, there are no significant
changes observed in the MVMS and stress distribution
areas of both the affected-side disc and the bilaminar
region compared to the anteriorly displaced disc. When
perforation occurs in the medial and lateral bands of the
affected-side disc, there is an increase in MVMS for the
affected-side disc. The MVMS for the medial perforation
is 8.2254 MPa, while the MVMS for the lateral perfora-
tion is 8.8317 MPa. However, there are no significant
changes observed in the stress distribution. Compared to
the anteriorly displaced side, The MVMS and stress dis-
tribution of the affected-side bilaminar region does not
show any significant differences.

After perforation occurs in the posterior band of the
affected-side disc, there is a significant increase in the
MVMS, reaching 13.247 MPa. High-stress concentra-
tion areas are observed around the site of perforation.
The MVMS in the affected-side bilaminar region also
shows a significant increase, reaching 0.36855 MPa. The
high-stress areas are distributed at the junction between
the disc and the bilaminar region. After the occurrence
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of perforation at the junction between the affected pos-
terior band and the bilaminar region, the MVMS of the
affected-side disc reaches a peak value of 15.668 MPa.
The stress in the bilaminar region is 0.30213 MPa, also
indicating a relatively higher state. The high-stress
regions in both the disc and the bilaminar region are
located around the perforation site. The occurrence of
perforation in the bilaminar region has a less notice-
able impact on the MVMS and stress distribution of the
affected-side disc. The stress in the bilaminar region is
relatively high, measuring 0.25953 MPa, with the high-
stress regions mainly distributed around the perforation
site.

Stress distribution on the condyles of affected side

The results of stress distribution on the condyles of the
affected side are shown in Fig. 3. C and Fig. 4. C. When
the disc on the affected side is in a normal state, the
MVMS experienced by the condyle is 3.445 MPa, with
a uniform stress distribution and no significant stress
concentration. However, after the occurrence of disc dis-
placement, the MVMS in the affected condyle increases
to 6.4715 MPa, and the stress distribution starts to shift
towards the anterior part of the condyle. When perfo-
ration occurs at the junction between the disc and the
bilaminar region, the MVMS in the condyle reaches its
peak at 7.2234 MPa. However, no significant regular pat-
terns of MVMS change are observed when perforations
occur in other locations. After the occurrence of perfo-
ration in the posterior band and at the junction between
the disc and the bilaminar region, the high-stress distri-
bution area in the condyle becomes smaller, indicating a
more concentrated stress distribution.

Stress distribution on the discs of normal side

The results of stress distribution on the discs of the
affected side are shown in Fig. 5. A, B and Fig. 4. D, E.
In the normal state of the disc on the unaffected side,
the MVMS experienced by the normal-side disc is
4.3924 MPa, while the MVMS in the bilaminar region is
0.069512 MPa. The high-stress areas in the normal-side
disc are primarily distributed in the middle band and
posterior band. In the normal-side bilaminar region, the
high-stress areas are mainly distributed in the anterior-
middle portion of the bilaminar region. After the occur-
rence of disc displacement on the affected side, there is
a significant increase in MVMS in the normal-side disc,
reaching 4.9622 MPa, and in the bilaminar region, reach-
ing 0.076212 MPa. However, when perforations occur
in the anterior band, middle band, and medial region of
the affected-side disc, there are no significant changes
in MVMS in the normal-side disc and bilaminar region
compared to the disc displacement condition.
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Fig. 3 Stress distribution on affected-side TMJ impaired by disc perforated at different locations (MPa). A: discs, B: bilaminar regions, C: condyles



Gao et al. BMC Oral Health (2023) 23:943

>
=

20~ 0.4
= N
© ©
£ 15+ — S 0.3
@ — = AP »
g g
7 10 = P 7 0.2
$ = VP 8
H = 0.1
: 5 m P z 01
S I = PP 2
. : = PR o.o-\; QLR
TOR LKL m BP OR &3¢
<
D E
6
= N 0.10-
s -
s - 0 £ 0.08-
2 4+ =1 AP 2
3 2
£ = P g 0.06-
&
.g 2] = MP § 0.04-
= m LP s
< -
s B § 0.02
0- PBP-2 0.00-
S ORI LM m BP

3

Page 7 of 12
C
= N = = N
= D g 6. = D
=1 AP 2 = AP
= P £ 4 = P
= MP 8 = VP
= LP =z, = LP
= PP g = PP
., .Sk 0- =1 PBP-2
o = BP SOoR 363\33:@“‘:3 m BP
F
5_.
— - = N
= D & 4 =D
= AP g ) =1 AP
= P @ -7
= MP 8 27 = VP
= LP E 14 m LP
= PP > PP
PBP-2 0- PBP-2
m BP M sxxgngé%? m B8P

Fig. 4 Peak value of the stress on the TMJ affected by perforated disc at different sites (MPa). A: affected-side discs; B: affected-side bilaminar regions; C:
affected-side condyles; D: normal-side discs; E: normal-side bilaminar regions; C: affected-side condyles

After the occurrence of perforation in the lateral band
of the affected-side disc, there is an increase in MVMS
in the normal-side disc and bilaminar region, reaching
5.0098 MPa and 0.076618 MPa, respectively. Perforation
in the posterior band of the affected-side disc results in
a significant increase in MVMS in the normal-side disc,
reaching 5.405 MPa, and the MVMS in the normal-side
bilaminar region also increases to 0.080442 MPa.

When perforation occurs at the junction between the
posterior band and the bilaminar region, the MVMS in
the normal-side disc and bilaminar region reach their
peaks, with the disc reaching 5.5432 MPa and the bilami-
nar region reaching 0.081781 MPa. The impact of perfo-
ration occurring in the bilaminar region on the MVMS in
the normal-side disc is not significant. When observing
the influence of pathological changes in the affected-side
disc on the stress distribution in the normal-side disc
tissue, no significant changes in stress distribution are
observed in the normal-side disc and bilaminar region.

Stress distribution on the condyles of normal side

The results of stress distribution on the discs of the
affected side are shown in Fig. 5. C and Fig. 4. F. In the
normal state of the disc on the unaffected side, the
MVMS experienced by the normal-side condyle is
3.7358 MPa, with a uniform stress distribution and no
significant stress concentration. After the occurrence of
disc displacement, the MVMS in the affected condyle
increases to 4.2059 MPa. When perforations occur in the
anterior, middle, posterior, lateral, and bilaminar region
of the affected-side disc, there are no significant changes

in MVMS in the normal-side condyle. However, signifi-
cant increases in stress are observed in the normal-side
condyle when there are perforations in the posterior
band and at the junction between the disc and the bilami-
nar region, reaching 4.502 MPa and 4.5959 MPa, respec-
tively. When observing the influence of disc pathology on
the stress distribution in the normal-side condyle, no sig-
nificant changes in stress distribution are observed in the
normal-side disc and bilaminar region.

The impact of different sizes of perforations of the disc on
TMJ stress

Stress distribution on the affected TMJ

The results of stress distribution on the TMJ of the
affected side are shown in Fig. 6. A and Fig. 7. A, B, C.
As the disc undergoes displacement accompanied by an
increasing perforation size, the MVMS in the affected-
side disc and bilaminar region gradually increases. At
the 1/2 perforation size, the stress in the disc and bilami-
nar region reaches its peak, measuring 16.854 MPa and
0.34661 MPa, respectively. The stress distribution area
also decreases with the expansion of the perforation size,
leading to significant stress concentration, particularly
around the perforation site.

However, the MVMS in the condyle does not increase
proportionally with the perforation size. As the affected-
side disc progresses from a normal state to anterior dis-
placement and further to the 1/4 perforation stage, the
MVMS in the condyle gradually increases. At the 1/4 per-
foration, the condyle reaches its peak MVMS, measuring
9.0282 MPa. However, as the perforation size expands to
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Fig. 5 Stress distribution on normal-side TMJ impaired by disc perforated at different locations (MPa). A: discs, B: bilaminar regions, C: condyles
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Fig. 6 Stress distribution of the affected-side TMJ (A) and normal-side TMJ (B) impaired by disc perforated with different apertures (MPa)

1/3 and 1/2, the maximum stress in the condyle shows a
continuous decrease. These findings indicate that as the
perforation size increases, the MVMS in the affected-side
disc and bilaminar region progressively rises, reaching a
peak at the 1/2 perforation size. Meanwhile, the condyle’s
maximum stress varies during disc displacement and
perforation progression, peaking at the 1/4 perforation
size and decreasing thereafter when the perforation size
expands to 1/3 and 1/2.

Stress distribution on the normal TMJ
The results of stress distribution on the TMJ of the
affected side are shown in Fig. 6. B and Fig. 7. D, E, E.

On the normal side, the MVMS experienced by the
articular disc, bilaminar region, and condyle all increase
continuously with the expansion of the perforation size
in the articular disc. The stress peaks are measured at
5.8317 MPa for the articular disc, 0.0861 MPa for the
bilaminar region, and 4.7862 MPa for the condyle. How-
ever, the stress distribution in these structures does not
show significant changes despite the increase in MVMS.

Discussion

DP is a progressive degenerative condition [20, 21]. DP
leads to a change in the stress environment of the TMJ,
and clinically, there are also cases of condylar bone
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remodelling that occur after DP [6, 22]. Therefore, study-
ing the biomechanical behaviour of TM] is of significant
importance for understanding the aetiology of TMJ dis-
orders. In this study, we constructed a 3D FE model of
the TMJ with DP and performed static analysis under
the ICP state. We systematically investigated the effects
of disc displacement and perforation on the stress distri-
bution in the TMJ. Our study demonstrated that anterior
displacement and perforation of the disc have adverse
effects on the TMJ.

In this study, after the anterior displacement, there is
a significant increase in the maximum stress experienced
by both sides of the disc, condyles, and bilaminar region.
The primary stress distribution area of the affected-side
disc shifts to the posterior-lateral region, consistent with
A’ Pérez del Palomar and Long’s Clinical study [23, 24].
It validates the effectiveness of the FEM and provides
strong evidence for the predictive and guiding role of
FE analysis in TM]J-related research. When perfora-
tions occur at the junction of the posterior band and the
bilaminar region, the MVMS of all bilateral TM] struc-
tures is significantly higher than perforations in other
areas. This indicates that the perforations occurring in
the posterior band and at the junction pose greater harm
to bilateral TMJ structures than perforations in other
areas. Currently, conservative treatment remains the pri-
mary approach for treating DP, and there is no specific

indication for surgical intervention [25, 26]. According to
the findings of this study, DP occurring in the posterior
band and at the junction of the posterior band and the
bilaminar region may be more suitable for early surgi-
cal treatment to prevent destructive damage to the disc.
When the perforation continues to enlarge, the MVMS
experienced by the bilateral discs, bilaminar regions,
and the condyles of the unaffected side increases as the
perforation of the affected-side disc expands. Moreover,
the MVMS is predominantly located around the perfora-
tion site. We speculate that this stress distribution trend
leads to further enlargement of the perforation lesion.
This indicates that perforations occurring at the posterior
band and the junction should be addressed and treated
as early as possible. However, we also observed that the
stress on the condyle of the affected side does not fol-
low this pattern. It is important to note that our sample
size was small, and the observations were limited to the
head of the condyle. This pattern needs further confir-
mation through future studies. It was also found that the
displacement of the joint disc and changes in the loca-
tion and size of perforations not only affect the stress on
the affected-side TMJ but also result in changes in stress
on the normal-side TMJ. Lai et al’s study also revealed
that an increase in friction coefficient can influence the
stress on the normal-side TM]J, aligning with the findings
of this study [27]. Therefore, in the treatment of TMD,
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it is essential to consider not only the treatment of the
affected side but also to take preventive measures for the
unaffected side to prevent bilateral TM] pathologies and
minimize the suffering of the patients.

This study established a relatively detailed FE model
of the TM]J, including the human masticatory system,
and for the first time validated the impact of the location
and size of DP on the TMJ. However, the FE model was
reconstructed based on only one participant, and the pre-
sented results lack statistical value. There may be varia-
tions in the results due to differences in TMJ morphology
and the degree of disc displacement. Additionally, limited
by software and imaging equipment, we only conducted
static analysis in the closed-mouth position, which can-
not dynamically represent the patient’s jaw movement.
Furthermore, bone and teeth are not homogeneous
materials, and Zheng’s study has also demonstrated that
different regions of the bone have different Young’s mod-
ulus and Poisson’s ratio [9]. The results obtained from
heterogeneous models may differ from those obtained
from homogeneous models, which should be taken into
account and improved in future research.

Conclusion

(1) Unilateral disc anterior displacement results in an
increased stress on both TMJs.

(2) Unilateral DP further affects the stress on both sides
of the TMJs.

(3) The enlargement of the DP aperture leads
to a further increase in stress on both
temporomandibular joints.

(4) TMD is a progressive condition, and timely
intervention is necessary in the early stages to
prevent the worsening of the condition.

Abbreviations

™J temporomandibular joint
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