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Abstract
Background Apical periodontitis directly affects the stress state of the affected tooth owing to the destruction of the 
periapical bone. Understanding the mechanical of periapical bone defects/tooth is clinically meaningful. In this study, 
we evaluate the effect of periapical bone defects on the stress distribution in teeth with periapical periodontitis using 
finite element analysis.

Methods Finite element models of normal mandibular second premolars and those with periapical bone defects 
(spherical defects with diameters of 5, 10, 15, and 20 mm) were created using a digital model design software. The 
edges of the mandible were fixed and the masticatory cycle was simplified as oblique loading (a 400 N force loaded 
obliquely at 45° to the long axis of the tooth body) to simulate the tooth stress state in occlusion and analyze the von 
Mises stress distribution and tooth displacement distribution in each model.

Results Overall analysis of the models: Compared to that in the normal model, the maximum von Mises stresses in 
all the different periapical bone defect size models were slightly lower. In contrast, the maximum tooth displacement 
in the periapical bone defect model increased as the size of the periapical bone defect increased (2.11–120.1% of 
increase). Internal analysis of tooth: As the size of the periapical bone defect increased, the maximum von Mises 
stress in the coronal cervix of the tooth gradually increased (2.23–37.22% of increase). while the von Mises stress 
in the root apical region of the tooth showed a decreasing trend (41.48–99.70% of decrease). The maximum tooth 
displacement in all parts of the tooth showed an increasing trend as the size of the periapical bone defect increased.
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Introduction
Apical periodontitis (AP), an infectious disease prevalent 
worldwide, is characterized by an inflammatory response 
and bone destruction in the periapical tissues [1–3]. Epi-
demiological studies have revealed that half of the global 
adult population has at least one tooth affected by AP, 
and this number is rising every year [4–6]. AP directly 
affects the stress state of the affected tooth owing to the 
destruction of the surrounding alveolar bone, which also 
has a devastating impact on the future preservation and 
restoration of the tooth [7].

Alveolar bone is the supporting tissue for teeth, and 
healthy periodontal bone support is necessary for tooth 
preservation and restoration [8, 9]. Histologically, AP can 
take the form of periapical cysts, periapical abscesses, or 
periapical granulomas, which result in varying degrees of 
periapical bone loss [10–12]. It has been demonstrated 
that horizontal resorption of alveolar bone increases 
stress concentration and tooth displacement [13, 14]. 
Moreover, periapical bone defects also affect the biome-
chanical state of the tooth, which is closely related to its 
prognosis and preservation [15]. However, the effect of 
the size of periapical bone defects on the biomechanical 
state of a tooth has not been completely elucidated.

Finite element analysis (FEA) is a sophisticated numeri-
cal analysis method that is widely used by researchers 
to study stresses and strains in complicated mechanical 
systems through computer-aided engineering. Owing to 
its ability to numerically simulate the characteristics of 
the mechanical behavior of human tissues, its applica-
tion in oral biomechanics is also becoming increasingly 
widespread [16]. In one study, FEA was used to analyze 
the stress changes in a tooth with AP under different 
stress conditions, and the results revealed that the roots 
of a tooth with AP were more prone to stress concentra-
tion [17]. Another FEA study showed that teeth with AP 
were subjected to greater stress at the root apical region 
compared to teeth with primary endodontic disease [18]. 
The results of an FEA study on mice with AP showed 
that under the same loading, the maximum differences 
in stress and strain at the root of AP-affected teeth were 
greater than those in unaffected teeth [19]. However, the 
effect of changes in the size of periapical bone defects 
on the biomechanical state of the affected tooth has not 
been studied.

Therefore, there is a need to simulate different size 
periapical bone defects in FEA models to enable better 
prediction of the prognosis of a tooth with AP from a 
biomechanical perspective. In this study, we first created 

different models of periapical bone defects in mandibu-
lar premolar tooth using digital model designing software 
and then simulated intraoral chewing [20] to investigate 
the effect of different sizes of bone defects on the biome-
chanical state of a tooth with AP through stress and tooth 
displacement analysis [16]. The null hypotheses for this 
study were: (1) periapical bone defects do not change the 
biomechanical state of the affected tooth, and (2) periapi-
cal bone defects of different sizes result in the same bio-
mechanical alterations in affected teeth.

Materials and methods
Cone-beam computed tomography (CBCT) data
After obtaining informed consent from volunteers, 
we acquired medical CBCT digital image data of their 
oral and maxillofacial regions (Fig. 1). This study was 
approved by the Ethics Committee of Ethics Commit-
tee of the School and Hospital of Stomatology, Wenzhou 
Medical University Institute of Stomatology (Approval 
Number: WYYKQ2022022).

Model construction
CBCT images were saved in the DICOM format and 
imported into Materialise Mimics 21.0, a medical 3D 
image reconstruction program (Materialise, Belgium). 
Coronal, sagittal, and horizontal were defined as three 
directions. The threshold value was set according to the 
gray value of different anatomical structures, and values 
for the mandibular second premolar and its surround-
ing bone tissue were acquired. Thereafter, 3D digital ana-
tomical models were created by including cortical bone, 
cancellous bone, enamel, dentin, periodontal ligament, 
pulp and cementum. Meanwhile, the contact conditions 
for every contact body are set as bind (Fig. 2).

The STL file was exported to the reverse engineering 
software Geomagic Wrap 2021 (Geomagic, USA). The 
periodontal membrane thickness was set to 200 μm, the 
periodontal membrane model was constructed 1  mm 
below the enamel-cementum junction. The cylindrical 
alveolar bone was constructed lateral to the periodon-
tium, and the cortical bone thickness was set to 2  mm. 
In addition, a spherical simulation was constructed using 
the engineering modeling software SOLIDWORKS 
2021 (Dassault Systèmes, France) to construct the fol-
lowing models—Model A: no bone defects in the api-
cal region, Model B: spherical defects with diameter 
5  mm surrounding the apical region, Model C: spheri-
cal defects with diameter 10 mm surrounding the apical 
region, Model D: spherical defects with diameter 15 mm 

Conclusions The presence of periapical bone defects was found to significantly affect the biomechanical response of 
the tooth, the effects of which became more pronounced as the size of the bone defect increased.
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surrounding the apical region, and Model E: spheri-
cal defects with diameter 20 mm surrounding the apical 
region (Fig.  2). All models were meshed with second-
order cells. The elements size of enamel, dentin, peri-
odontal ligament, pulp and cementum are set to 0.3 mm, 
cortical bone and cancellous bone are set to 1 mm. The 
number of elements and nodes in each model is listed in 
Table 1.

Loading mode and loading force
In this study, the masticatory cycle was simplified to 
oblique loading as a force of 400 N loaded obliquely at 45° 
to the long axis of the tooth [21]. The position of the force 
applied is the lingual bevel of the buccal tip. The stress 
state of the tooth in occlusion was simulated, and the 
edges of the mandible were fixed to prevent movement of 
the mandible in the X, Y, and Z directions (Fig. 2).

Preconditions of the experiment
All anatomical structures were considered homogeneous 
and isotropic linear elastic materials; the corresponding 
mechanical parameters are listed in Table 2.

Biomechanical analysis
After the mesh convergence analysis, the mechanical 
properties of the materials and the boundary load con-
ditions were set and imported into the FEA software 
ANSYS 17.0 (ANSYS, USA) for solution. Overall analy-
sis of the models: maximum von Mises stress and maxi-
mum tooth displacement were measured for each model 
after the stress distribution and tooth displacement had 
been calculated and assessed. Internal analysis of the 
tooth: the tooth was divided into the coronal (occlusal 
surface, middle, and cervix) and root (cervix, middle, and 
apical) sections, and the von Mises stress and displace-
ment distributions in the tooth, as well as the variations 
in each section, were analyzed.

Results
Overall analysis of the model
Results of our FEA are presented graphically as stress dis-
tribution and tooth displacement, based on a progressive 
visual color scale, predefined by ANSYS 17.0 software 
(ANSYS, USA). Figure 3 shows the von Mises stress dis-
tribution cloud maps and tooth displacement distribution 
cloud maps for both normal and periapical bone defect 
models. The von Mises stress distribution cloud map of 
the normal tooth model showed that the stresses were 

Table 1 Number of nodes and elements for each model
Model Number of nodes Number of elements
Model A 84,398 50,523
Model B 84,274 50,509
Model C 83,921 50,229
Model D 83,504 49,864
Model E 82,980 49,370
Total 334,679 199,972

Fig. 1 Typical CBCT images of periapical cysts with corresponding parameters
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concentrated in the coronal cervix of the tooth, whereas 
the stresses in the upper part of the coronal section and 
the lower part of the root were smaller (Fig. 3A). In the 
periapical bone defect models, the von Mises stress dis-
tribution cloud maps showed that although the stress 
concentration area was still located at the coronal cer-
vix of the tooth, there was a significant stress drop at the 
root. Moreover, as the size of the bone defects increased, 

the extent of the tooth roots affected also increased 
(Fig. 3A). In subsequent analysis of overall maximum von 
Mises stress, it was found that the periapical bone defect 
models showed a slight decrease in the maximum von 
Mises stress compared to that in the normal tooth model, 
but there was little difference in the change in the maxi-
mum von Mises stresses among the different periapical 
bone defect groups (Fig. 3B).

The tooth displacement distribution cloud maps of the 
periapical bone defect models showed that displacement 
in the normal tooth was mainly concentrated in the coro-
nal region, with less displacement in the root (Fig.  3C). 
However, there was large tooth displacement at the root 
of the bone defect site in the periapical bone defect mod-
els, and the tooth displacement of the root increased sig-
nificantly with increase in defect size, especially in the 
apical region (Fig.  3C). This finding was also supported 
by subsequent analysis of the overall maximum tooth dis-
placement in the models (Fig. 3D).

Table 2 Mechanical properties of the dental structures and 
restorative materials
Material Young’s modulus 

(GPa)
Poisson’s 
ratio

Ref.

Cortical bone 13.7 0.3  [22]
Trabecular bone 1.37 0.3  [22]
Dentin 18.6 0.32  [22]
Cementum 8.2 0.3  [23]
Pulp 0.00207 0.3  [24]
Enamel 84.1 0.33  [24]
Periodontal ligament 0.05 0.49  [25]

Fig. 2 Schematic view of model structure and stress loading. Model A: control group, no bone defects in the apical region; Model B: bone defect diam-
eter in the apical region- 5 mm; Model C: bone defect diameter in the apical region-10 mm; Model D: bone defect diameter in the apical region- 15 mm; 
Model E: bone defect diameter in the apical region- 20 mm
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Internal analysis of the tooth
The von Mises stress distribution cloud maps for the 
coronal (occlusal surface, middle, and cervix) and root 
(cervix, middle, and apical) sections (Fig.  4A) and the 
corresponding maximum von Mises stress analysis 
(Fig. 4B) showed that, as the size of the periapical bone 
defects increased, the maximum von Mises stresses in 
the coronal cervix region of the tooth increased consider-
ably, while the von Mises stresses in the middle and api-
cal parts of the tooth root showed a decreasing trend.

Tooth displacement distribution cloud maps for the 
coronal (occlusal surface, middle, and cervix) and root 
(cervix, middle, and apical) sections (Fig.  5A) and the 
corresponding maximum tooth displacement analysis 
(Fig. 5B) showed that the maximum tooth displacement 
in all parts of the tooth tended to increase as the size of 

the bone defects increased. These results are consistent 
with those of the overall analysis.

Discussion
Studies have shown that AP leads to resorption of the 
periapical bone, resulting in a reduction of the biome-
chanical resistance of the affected tooth and making it 
more susceptible to vertical root fractures [26–28]. How-
ever, the effects of different degrees of periapical bone 
defects on the biomechanical state of teeth have not been 
elucidated. In our current FEA study, periapical spheri-
cal defects of different diameters were modeled to simu-
late different periapical bone defects in teeth with AP 
and to analyze their effects on the biomechanical state 
of affected teeth. Our results showed that (1) the pres-
ence of periapical bone defects led to increased stress 

Fig. 3 Stress distribution and tooth displacement distribution in overall analysis of the models. A: von Mises stress distribution cloud map; B: tooth dis-
placement distribution cloud map; C: maximum von Mises stress; D: maximum tooth displacement
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Fig. 4 Stress distribution in the internal parts of the tooth. A: von Mises stress distribution cloud maps for the coronal (occlusal surface, middle, and 
cervix) and root (cervix, middle, and apical) sections; B: maximum von Mises stress for the coronal (occlusal surface, middle, and cervix) and root (cervix, 
middle, and apical) sections
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Fig. 5 Tooth displacement distribution in internal parts of the tooth. A: Tooth displacement distribution cloud maps for the coronal (occlusal surface, 
middle, and cervix) and root (cervix, middle, and apical) sections; B: maximum tooth displacement for the coronal (occlusal surface, middle, and cervix) 
and root (cervix, middle, and apical) sections
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concentration and tooth displacement, and (2) this effect 
became more pronounced as the size of the bone defect 
increased. Therefore, the null hypotheses were rejected.

Model construction and validation
FEA model construction is the basis of FEA, and good 
models simulate real situations better and provide more 
accurate data [29]. In numerous previous FEA studies, 
mandibular second premolars were selected for analysis 
because of their relatively simple anatomical structure 
[30–32]. Therefore, we chose this tooth as the recon-
structed object for our AP models. AP can be catego-
rized into different types depending on the size of the 
bone defects [10–12]. In general, AP with periapical 
bone defects > 10 mm in diameter are clinically referred 
to as periapical cysts, and those < 10 mm are referred to 
as periapical granulomas [33]. For modeling rigor, we 
applied two modeling approaches in our pre-experi-
ments (Approach 1: Set periapical bone defects as a sepa-
rate contact body. Approach 2: Not set periapical bone 
defects as a separate contact body). We analyzed the von 
Mises stress distribution and tooth displacement distri-
bution of two modeling approaches. The results showed 
that the two modeling approaches produce almost identi-
cal mechanical effects (Supplementary Figs. 1, 2).

The validity of the model and the accuracy of the analy-
sis are closely related. This study conducted a tentative 
analysis after the initial construction of the model and 
confirmed that the stress distribution and tooth displace-
ment distribution cloud map of the normal model and 
the periapical bone defect model showed similar trends 
to those in the previous literature [7, 17, 18].They con-
structed a normal tooth model and a periapical bone 
defect tooth model (anterior and premolar) and per-
formed the corresponding finite element analyses. Von 
Mises stress analysis showed that the periapical bone 
defect portion of the periapical bone defect tooth model 
showed a significant decrease in stress. Tooth displace-
ment analysis demonstrate a large increase in Tooth dis-
placement at the periapical bone defect region of tooth. 
This characteristic biomechanical change is consistent 
with our modeling analysis.

Notably, our analysis reveals that stresses were con-
centrated in the coronal cervix of the tooth and would 
increase with the generation of periapical bone defects. 
Experimental and clinical case studies have also demon-
strated that the coronal cervix of the tooth is prone to 
fracture and that the incidence of tooth fracture is higher 
in teeth with periapical inflammation [17, 34]. There-
fore, this characteristic clinical feature is consistent with 
our finite element results. At the same time, in order to 
improve result accuracy, a sensitivity analysis was con-
ducted to refine the mesh until stress values were con-
vergent. In summary, the FEA model established in this 

study is reasonable, qualified and validated for subse-
quent studies. Meanwhile, the digital image correlation 
(DIC) and model construction analysis in vitro also are 
useful tool for validating FEA models [35, 36].

Von mises stress analysis
In the overall analysis, the maximum von Mises stresses 
in the periapical bone defect models were lower com-
pared to that in the normal model (Fig.  3A, B), which 
seems to be inconsistent with the consensus that teeth 
with AP are prone to root fracture [17]. Considering that 
only the maximum von Mises stress was analyzed in the 
overall analysis of the models, this may have neglected 
the change in stresses in the internal parts of the tooth. 
Therefore, we further investigated the von Mises stress 
changes in six parts of the tooth in the coronal (occlusal 
surface, middle, and cervix) and root (cervix, middle, and 
apical) sections. First, we found that the stresses in the 
tooth were concentrated in the coronal cervix (Fig.  4A, 
B), where the von Mises stresses were the highest, which 
is consistent with previous study findings [17]. This phe-
nomenon may be attributable to the oblique nature of the 
masticatory force [37]. Maintaining intact coronal and 
radicular tooth structure as well as cervical tissue to gen-
erate a ferrule effect is thought to be critical for optimiz-
ing the biomechanical behavior of a restored tooth [38, 
39]. Therefore, we should aim to preserve as much den-
tal tissue as possible to strengthen the resistance of the 
coronal cervix during the later restoration of the affected 
tooth.

Second, our results clearly showed that as the size of 
the bone defects increased, the maximum von Mises 
stress in the coronal cervix of the tooth increased con-
siderably, while the maximum von Mises stress in the 
middle and apical part of the tooth root decreased con-
siderably (Fig. 4A, B). These results indicate that although 
periapical bone defects have no noticeable effect on the 
overall maximum von Mises stress of the tooth, they 
lead to stress concentration in the coronal region of the 
tooth, while the stress at the root decreases. This inter-
esting change we may be able to explain in terms of the 
mechanical integrity of the tooth-alveolar bone [40]. 
During mastication, the tooth needs to rely on the sur-
rounding bone to disperse the chewing force. However, 
due to the thinning or defect of bone around the root, 
the tooth is unable to disperse the pressure well, which 
results in stress concentration in the coronal region. 
Meanwhile, the stress reduction at the root may be due to 
the loss of contact between the root and the bone tissue 
due to the defect of preapical bone, which naturally leads 
to a decrease in root stress. What’s more, this change in 
stress can lead to a polarization of stresses within the 
tooth and finally have an extremely destructive effect on 
the residual dental hard tissue [41, 42].
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Tooth displacement analysis
In the overall analysis of the models in this study, the 
maximum tooth displacement was much higher in the 
periapical bone defect models than in the normal group 
and increased with increasing periapical bone defect 
size (Fig.  3C, D). This could be the result of the tooth 
loss of its restriction by the periapical alveolar bone. 
And increased tooth displacement due to alveolar bone 
destruction is considered a risk factor for the preser-
vation and restoration of the affected tooth [43] The 
maximum tooth displacement of each part of the tooth 
showed the same results in the subsequent internal analy-
sis of the tooth (Fig. 5A, B). Under normal circumstances, 
the displacement of natural teeth during functional load-
ing ranges from 0.02 to 0.2 mm [44]. At a periapical bone 
defect diameter of 1 mm, the maximum tooth displace-
ment is already 0.216  mm, and the tooth displacement 
continues to rise as the bone defect increases in size, and 
such unreasonable tooth displacement are unacceptable 
because they can lead to periodontal tissue dysfunction 
and destruction, and even tooth loosening or loss. Nota-
bly, the increase in maximum tooth displacement was 
most significant in the apical portion of the tooth com-
pared to that in other parts. Therefore, this phenomenon 
should be considered in the preservation and restoration 
of teeth with periapical bone defects, especially when 
establishing an occlusal relationship with the contra-
lateral tooth. As the displacement between an affected 
tooth with periapical bone defects and a normal tooth 
differs under the same masticatory load, this may prevent 
a uniform distribution of the load. Therefore, considering 
the physiological mobility of the adjacent tooth, it is rec-
ommended that when periapical bone defects are pres-
ent in a tooth, occlusion of the affected tooth should be 
appropriately lowered [45, 46].

Meanwhile, for the treatment of AP with periapi-
cal bone defects, it is suggested that the periapical bone 
defects are filled with bone to increase the support of the 
affected tooth, considering its increased displacement. 
However, it is unclear whether the biomechanical state of 
the model will change after the filling of the apical region 
with the bone defect filling material. Further analysis is 
required to clarify this aspect.

Limitations of the current study
In this study, we use static linear analysis because of its 
simple computational procedure, fast solution speed and 
easy understanding and verification of the results. How-
ever, masticatory cycle in the oral cavity is a dynamic 
process, so in the subsequent study, we need to use 
dynamic analysis to more realistically reproduce the clin-
ical conditions and obtain more accurate data. In addi-
tion, only FEA was performed in this experiment and no 
in vitro experiments were conducted in conjunction with 

the desired corresponding realistic model. In the next 
experimental design, we should consider constructing 3D 
printed models to verify the validity of the FEA model.

This study focused on the biomechanical response 
of teeth with different sizes of periapical bone defects; 
However, aspects such as subsequent corresponding root 
canal therapy treatment, full crown restoration, and the 
biomechanical situations in the corresponding states 
were not considered.

Conclusion

1. Periapical bone defects result in stress concentration 
in the coronal cervix and a decrease in stress in 
the root of the affected tooth. Moreover, these 
changes become more pronounced as the size of 
the periapical bone defect increases (2.23–37.22% of 
increase).

2. Periapical bone defects lead to increased tooth 
displacement, which increases with the size of the 
periapical bone defect, and this change is particularly 
pronounced at the apical part of the root (2.11–
120.1% of increase).
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