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Abstract 

Background Ameloblastoma, a common benign tumor found in the jaw bone, necessitates accurate localization 
and segmentation for effective diagnosis and treatment. However, the traditional manual segmentation method 
is plagued with inefficiencies and drawbacks. Hence, the implementation of an AI-based automatic segmentation 
approach is crucial to enhance clinical diagnosis and treatment procedures.

Methods We collected CT images from 79 patients diagnosed with ameloblastoma and employed a deep learn-
ing neural network model for training and testing purposes. Specifically, we utilized the Mask R-CNN neural network 
structure and implemented image preprocessing and enhancement techniques. During the testing phase, cross-vali-
dation methods were employed for evaluation, and the experimental results were verified using an external validation 
set. Finally, we obtained an additional dataset comprising 200 CT images of ameloblastoma from a different dental 
center to evaluate the model’s generalization performance.

Results During extensive testing and evaluation, our model successfully demonstrated the capability to automati-
cally segment ameloblastoma. The DICE index achieved an impressive value of 0.874. Moreover, when the IoU 
threshold ranged from 0.5 to 0.95, the model’s AP was 0.741. For a specific IoU threshold of 0.5, the model achieved 
an AP of 0.914, and for another IoU threshold of 0.75, the AP was 0.826. Our validation using external data confirms 
the model’s strong generalization performance.

Conclusion In this study, we successfully applied a neural network model based on deep learning that effectively 
performs automatic segmentation of ameloblastoma. The proposed method offers notable advantages in terms 
of efficiency, accuracy, and speed, rendering it a promising tool for clinical diagnosis and treatment.
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Background
Ameloblastoma is a benign odontogenic tumor that orig-
inates from epithelial cells, specifically from structures 
such as the lining of enamel organs, dental lamina rem-
nants, and odontogenic cysts. This slow-growing tumor 
gradually destroys cortical bone and tooth roots, often 
presenting with symptoms such as facial asymmetry, 
loose teeth, malocclusion, paresthesia, and pain [1]. It is 
the second most common odontogenic tumor, account-
ing for approximately 3%-14% of all jaw tumors and cysts 
[2]. The annual incidence of ameloblastoma is estimated 
to be one in every two million individuals [3]. Despite 
being classified as benign by the World Health Organiza-
tion, ameloblastoma poses a concern for clinicians due to 
its locally aggressive nature and the potential for recur-
rence [4]. Previous studies indicate that about 70% of 
cases may undergo malignant transformation, with a 2% 
chance of metastasis [5, 6]. Consequently, radical resec-
tion is typically required for ameloblastoma, in contrast 
to other benign odontogenic tumors. In cases where the 
lesion size reaches a certain threshold, plate reconstruc-
tion or reconstructive surgery may be necessary. Accord-
ing to the meta-analysis authored by Hendra, radical 
resection was beneficial for reducing the risk of recur-
rence regardless of the type of ameloblastoma [7]. Hence, 
achieving precise segmentation of ameloblastoma prior 
to surgery holds significant clinical implications. Accu-
rate delineation of the tumor’s boundaries from medical 
images is indispensable, as it furnishes clinicians with 
precise details concerning the tumor’s location, dimen-
sions, and morphology. Such information assumes a piv-
otal role in facilitating accurate diagnosis and differential 
diagnosis. Furthermore, this segmentation process yields 
valuable insights that can contribute to optimizing radia-
tion therapy and surgical interventions, thereby enhanc-
ing treatment planning efficacy.

Radiology plays a crucial role as a complementary tool 
to clinical examination, particularly in cases where bone 
lesions associated with ameloblastoma are challenging 
to detect during the early stages solely through physical 
examination [8]. This is particularly relevant for exten-
sive lesions or those accompanied by inflammation, as 
biopsy results can only provide a reference point. In such 
cases, radiological examination plays a crucial role in the 
diagnosis process. However, this step presents certain 
challenges. Firstly, the radiographic features of amelo-
blastoma, odontogenic keratocyst, and odontogenic cyst 
are similar, often making their distinction difficult [9]. 
Consequently, misdiagnosis is not uncommon in clinical 
practice. Secondly, early detection of the disease poses 
challenges, resulting in delays in diagnosis [10]. Finally, 
the expertise of the imaging physician and the quality of 
the scanner can influence the diagnostic outcome [11]. 

Manual interpretation of images is time-consuming, 
and professional radiologists require extensive training. 
All these factors contribute to the increased demand for 
accurate diagnosis of ameloblastoma based on medi-
cal imaging. Rapid and accurate methods for diagnosing 
ameloblastoma using medical imaging hold significant 
clinical importance.

Since the concept of artificial intelligence (AI) was pro-
posed at the Dartmouth Conference in 1956, AI has made 
significant progress and is gradually changing every field 
of human society. In the realm of cysts and tumors of 
the jaw, AI has shown great potential [12]. In the field of 
medical imaging, AI techniques can extract vast amounts 
of information from images such as computed tomogra-
phy (CT), magnetic resonance imaging (MRI), and pano-
ramic radiographs (PR), enabling lesion segmentation, 
feature extraction, and disease classification. By digging 
deep into extensive image datasets, AI can assist doc-
tors in making more accurate diagnoses, predictions, 
and treatment decisions [13, 14]. In a study conducted by 
Poedjiastoeti in 2018, VGG-16 architecture was utilized 
for the differential diagnosis of ameloblastoma and odon-
togenic keratocyst on PR [15]. The results demonstrated 
a sensitivity of 81.8%, specificity of 83.3%, accuracy of 
83.0%, and a diagnostic time of 38 s. The diagnostic effi-
ciency achieved through AI techniques is comparable to 
that of oral and maxillofacial surgery, while significantly 
reducing the diagnostic time. Zijia Liu combined two 
types of convolutional neural networks (CNN), VGG-19 
and ResNet, to construct an AI model [16]. By cropping a 
256 × 256 area around the tumor on PR and differentiat-
ing between the two tumors, they achieved an improved 
accuracy of 90.36%. PR has shown positive diagnostic 
value as a primary screening tool, although it may not be 
the optimal choice for jaw lesions. On the other hand, CT 
imaging provides a high-resolution, three-dimensional 
representation of jaw cysts and tumors without distor-
tion or overlap [17]. Similar studies have been conducted 
on CT/CBCT images. The results of Bispo’s study indi-
cate that Inception v3 has a high classification accuracy 
for odontogenic keratocysts and ameloblastomas based 
on CT images [18]. However, the initial dataset of CT 
images used in the experiment was limited to only 350 
images, requiring further expansion. To address this limi-
tation, Chai conducted an improved experiment using 
Inception v3 [19]. They increased the sample size and 
employed cropping techniques on cone-beam computed 
tomography (CBCT) images for differential diagnosis. 
The results demonstrated higher accuracy, sensitivity, and 
specificity compared to clinical surgeons. However, these 
articles primarily focused on the differential diagnosis 
of ameloblastoma and odontogenic keratocyst, without 
exploring the accuracy of AI in tumor segmentation. Yet, 
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segmentation serves as the fundamental basis for classifi-
cation. To the best of our knowledge, there are no exist-
ing studies on automatic ameloblastoma segmentation 
based on CT/CBCT images. Moreover, previous studies 
primarily utilized horizontal images, lacking coronal and 
sagittal images.

This paper aims to investigate and evaluate the appli-
cation of artificial intelligence technology for the auto-
mated segmentation of ameloblastoma on CT images. 
Specifically, we utilize three-dimensional CT images as 
input for analysis and processing using the Mask R-CNN 
neural network model. Our goal is to leverage the capa-
bilities of Mask Region-based Convolutional Neural Net-
work (Mask R-CNN) to train a model using a limited 
dataset, thereby achieving precise and efficient segmen-
tation of ameloblastoma lesions.

Materials and methods
The study protocol adhered to the principles outlined 
in the Declaration of Helsinki and received approval 
from the Ethics Committee of the First Affiliated Hos-
pital of Fujian Medical University (Approval No.IEC-
FOM-013–2.0). Since this study was conducted 
retrospectively, the ethics committee of the First Affili-
ated Hospital of Fujian Medical University waived the 
need for informed consent from the participants.

Data collection
The retrospective analysis involved patients diagnosed 
with ameloblastoma at the Stomatology Center of the 
First Affiliated Hospital of Fujian Medical University 
between 2013 and 2022. Histopathological confirma-
tion of all cases was performed by a pathologist with 
over ten years of experience. CT data were obtained 
using an Aquilion TSX-101A device (Toshiba Co., Ltd, 
Tokyo, Japan) at the Radiology Department. The imaging 

parameters were set as follows: 120  kV, 40  mA, pulsed 
scan time of 3  s, 32 × 32 cm2 field of view, and a voxel 
size of 0.6  mm. Based on inclusion and exclusion cri-
teria, a total of 79 patients were included in the study. 
The mean age of the subjects was 35.8 years (range from 
13–75  years), and there were 50 males and 29 females. 
Detailed demographic data of the study participants are 
presented in Table  1. Preoperative CT images of these 
patients were retrospectively selected, resulting in a total 
of 3566 images in different orientations (sagittal, hori-
zontal, and coronal), all stored in Digital Imaging and 
Communications in Medicine format.

Image processing and augmentation
Prior to applying deep learning techniques, we per-
formed preprocessing on the included images. The 
original images were accessed using the Picture 
Archiving and Communication System developed by 
YLZ Information Technology company, enabling us 
to view the images in different orientations. Subse-
quently, each image was cropped to a tumor-centered 
image with dimensions of 512 by 512 using the sni-
praste software, overseen by an oral and maxillofa-
cial surgeon (Fig.  1). Imaging characteristics of each 
tumor, such as cortical marginal and internal radiolu-
cent lesions, should be included. The cropped images 
were stored in PNG format. To eliminate dimensional 
variations among the data, normalization processing 
was carried out to ensure comparability across differ-
ent indicators. Linear normalization was implemented 

Table 1 Demographic data of the participants

n Proportion (%)

Gender
 Male 50 63.29

 Female 29 36.71

Age
 0–19 20 25.32

 20–39 25 31.65

 40–59 25 31.65

 ≥ 60 9 11.38

Location
 Maxillary 11 13.92

 Mandibular 68 86.08
Fig. 1 Tumor-centered image cropping with snipraste: A 512 × 512 
Dimensional Approach
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in the Aihis software, involving linear transformation 
of the original data to map the result values between 
the range of 0 to 1. The normalized images were then 
imported into Labelme software, where an oral and 
maxillofacial surgeon with five years of experience 
manually delineated the edges of the ameloblastoma 
lesions (Fig. 2). These annotations were reviewed and 
adjusted by a senior surgeon. The labeled data were 
randomly divided into a training set (2854 images), 

a validation set (356 images), and a test set (356 
images) in an 8:1:1 ratio. During the training pro-
cess, data augmentation techniques were applied to 
reduce redundancy and prevent model overfitting. The 
data augmentation methods employed in our study 
included resizing, random flipping, and padding. As a 
result, the dataset was augmented by 10 times, with a 
total of 3566 images ultimately utilized for construct-
ing the model.

Mask R‑CNN Architecture and Workflow
Mask R-CNN is an advanced technique for instance seg-
mentation that combines region proposal and convo-
lutional neural network. It allows marking the specific 
category of the target on each pixel, enabling tasks such 
as category detection, image segmentation, and feature 
point positioning. In our study, the pre-processed images 
were fed into the Mask R-CNN network for transfer 
learning. The workflow of Mask R-CNN is illustrated in 
Fig.  3. The main components of Mask R-CNN include 
the backbone network, regional proposal network (RPN), 
and head. For our article, the backbone network con-
sisted of a 101-layer deep residual network (ResNet101) 
combined with a feature pyramid network (FPN).

The ResNet101 backbone network was utilized to 
extract features from different layers of CT images of 
ameloblastoma. These features captured important 
semantic and spatial information about the lesions. FPN 
then combined the features from different layers to cre-
ate a feature map that contained crucial information 
at multiple scales. RPN played a key role in identifying 

Fig. 2 Manual delineation of Ameloblastoma lesions using Labelme 
Software

Fig. 3 The workflow of Mask R-CNN
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potential regions of interest (ROI) within the image. It 
employed a sliding window technique to scan the image 
and determine areas where targets, in this case, amelo-
blastoma, might be present. The features extracted by the 
backbone network were fed into the RPN block, which 
performed two primary tasks: classification and bound-
ing box regression. During the classification process, 
each anchor (a predefined bounding box) was evaluated 
to determine whether it represented a background or a 
foreground (potential ameloblastoma) region. The RPN 
assigned a classification score to each anchor based on 
its likelihood of containing the target. Simultaneously, 
the RPN also estimated the bounding box coordinates 
around the object within each anchor. These coordinates 
defined the spatial extent of the potential ROI. By calcu-
lating the intersection ratio between each anchor box and 
the ground truth on the image, multiple candidate ROIs 
of varying sizes were obtained. Overall, the combination 
of ResNet101, FPN, and RPN allowed for the extraction 
of informative features, identification of potential amelo-
blastoma regions, and localization of precise bound-
ing boxes around these regions for further analysis and 
segmentation.

In the final step of our methodology, the region propos-
als obtained from the RPN were further processed and 
analyzed in the head block of the Mask R-CNN model. 
Approximately 2000 region proposals were extracted 
from each image by filtering out regions with low scores. 
Each region proposal was then warped to a fixed size of 
227 × 227 pixels and input into the head block. To align 
the ROI for accurate feature extraction, we employed 
ROIAlign, a technique that transformed regions of dif-
ferent sizes on the feature map into a uniform size. By 
utilizing bilinear interpolation, each pixel within the ROI 
was calculated based on adjacent grid points on the fea-
ture map, allowing us to capture critical feature infor-
mation specific to the region of interest. In this step, we 
performed tumor classification, regression, and segmen-
tation tasks. By adding a segmentation branch on the 
fully connected layer, we classified and predicted each 
pixel within the ROI, generating a binary mask as the 
final output. This mask delineated the boundary of the 
ameloblastoma region. To optimize the model’s perfor-
mance, we conducted training and validation iterations 
for 100 epochs, using augmented data. The learning rate 
of the model was set at 0.005 (SGD). The weight decay 
was set at 0.0001. To evaluate the effectiveness of the 
trained model, we performed ten-fold cross-validation. 
This rigorous training and evaluation process ensured 
that the model was optimized to accurately classify and 
segment ameloblastoma lesions in CT images, providing 
reliable results for clinical diagnosis and treatment plan-
ning. Throughout the training process, the validation loss 

steadily decreased, indicating improved accuracy and 
convergence. To evaluate the model’s generalization per-
formance, we acquired an additional dataset of 200 CT 
images of ameloblastoma from a different dental center. 
We followed the same experimental procedures as before, 
repeating the steps to assess the model’s performance on 
this new dataset. This validation process allowed us to 
examine how well the model could handle data from an 
external source and provided insights into its robustness 
and applicability across different datasets. Our model 
was trained under the Ubuntu operating system, version 
18.04, with the graphics card being the NVIDIA TITAN 
RTX 24G.

Statistical analysis
The performance evaluation of Mask R-CNN in this 
study involved the utilization of Dice coefficient and 
average precision. The Dice coefficient serves as a com-
monly employed metric in medical image segmentation, 
functioning as a measure of set similarity between two 
samples within a threshold range of [0,1]. Its primary 
application lies in medical image segmentation, where 
a Dice coefficient of 1 represents optimal segmentation 
performance, while a value of 0 indicates the poorest 
result. The Dice coefficient is mathematically defined as 
follows:

The Average Precision (AP) is a performance met-
ric commonly used to assess the effectiveness of object 
detection or image segmentation models. In tasks involv-
ing object detection or image segmentation, the model 
generates a set of bounding boxes or pixel masks, which 
need to be compared with the ground truth targets. The 
IoU (Intersection over Union) is computed between the 
model’s prediction and the actual target, and the predic-
tion is considered accurate if the IoU exceeds a prede-
fined threshold. To evaluate the model’s performance at 
various thresholds, we calculate different combinations 
of recall and precision. Plotting these values results in 
a Precision-Recall (PR) curve, and the area under this 
curve corresponds to the Average Precision.

Result
In the process of building the model, we initially set the 
training to run for 100 epochs. Surprisingly, the accu-
racy had already reached a satisfactory level by the 20th 
epoch (Fig.  4). This outcome underscores the effective-
ness of our chosen loss function configuration, which 
facilitated rapid model convergence and achieved excel-
lent accuracy within a concise training period. Dur-
ing the segmentation process, the model showcased 

Dice(X, Y) =
2IX ∩ YI

IXI+ IYI
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remarkable efficiency, taking a mere 0.1  s to segment 
an image. This swift performance significantly reduces 
the operational time compared to manual segmentation 
methods, thereby endowing it with substantial practical 
advantages. Figure  5 shows the segmentation of amelo-
blastoma on CT images by Mask R-CNN model. After 
extensive testing and evaluation, our model exhibited 
remarkable proficiency in automatically segmenting 
ameloblastoma. The DICE index achieved an impressive 
value of 0.874. Moreover, when the IoU threshold ranged 

from 0.5 to 0.95, the model’s AP was 0.741. For a spe-
cific IoU threshold of 0.5, the model achieved an AP of 
0.914, and for another IoU threshold of 0.75, the AP was 
0.826 (Table 2). As the IoU threshold changes, the mod-
el’s PR curve also varies accordingly. From Fig. 6, we can 
observe that when the IoU is set between 0.5 and 0.75, 
the precision remains consistently high while the recall 
value increases. After the recall exceeds 0.7, the preci-
sion gradually decreases, and once the recall surpasses 
0.8, the precision decreases significantly. Even when the 
IoU is set to 0.85, the resulting PR curve remains satisfac-
tory. These results indicate the model’s ability to attain a 
high level of precision and accuracy in object detection 
or image segmentation tasks across various IoU thresh-
olds. However, as the IoU exceeds 0.9, the model’s perfor-
mance becomes increasingly unstable, and the area under 
the PR curve exhibits a steep reduction. In the evalua-
tion of the model’s generalization performance, we gen-
erated similar PR curves (Fig. 7). Comparing with Fig. 6, 
we observed that when the IoU falls within the range of 
0.5 to 0.75, all curves exhibit consistent patterns, and 
their corresponding AP values are quite close. However, 
when the IoU reaches 0.9, the corresponding PR curve 
becomes highly irregular.

Fig. 4 Accuracy VS epochs

Fig. 5 Ameloblastoma was identified and segmented by Mask 
R-CNN model

Table 2 Performance metrics for automatic segmentation of 
ameloblastoma

Dice 
coefficient

AP(IoU = 0.5–0.95) AP(IoU = 0.5) 
(IOU = 0.50:0.95)

AP(IoU = 0.75) time (s)

0.874 0.741 0.914 0.826 0.332
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Discussion
Tumor segmentation plays a crucial role in medical image 
analysis [20]. However, to the best of our knowledge, 
there have been no studies focusing on the application 
of AI in ameloblastoma segmentation, although similar 
studies have been conducted on other types of tumors. 
For instance, Abdolali et  al. proposed an asymmetric 
analysis-based method for automatic segmentation of 
jaw cysts, which demonstrated favorable performance 
in experimental results [21]. In the case of keratocystic 
odontogenic tumor, the average Dice coefficient achieved 

was 0.80. Furthermore, Paderno et  al. achieved a Dice 
coefficient of 0.65 for the AI model in segmenting oral 
squamous cell carcinoma, as observed in their experi-
ment [22]. Those experimental results provide evidence 
of the effectiveness of AI in segmenting maxillofacial 
tumors. It is widely recognized that the clinical appli-
cation of segmentation becomes more valuable as the 
efficiency of the process improves. In our research, we 
proposed a Mask R-CNN model specifically designed for 
automatic segmentation of ameloblastoma based on CT 
images. In terms of accuracy assessment, it is generally 

Fig. 6 Precision-Recall curves of model for different IoU

Fig. 7 The generalization performance of the Mask R-CNN model



Page 8 of 10Xu et al. BMC Oral Health           (2024) 24:55 

considered reliable when the intersection over union 
value exceeds 0.7 [23]. Our experimental results demon-
strate that when the IoU is set to 0.75, the model achieves 
accurate segmentation with an AP value of 0.826. This 
indicates the effectiveness of Mask R-CNN in accu-
rately partitioning ameloblastoma. This success may be 
attributed to the utilization of Mask R-CNN, which is a 
versatile and compact framework for object instance seg-
mentation. This model not only detects targets within the 
image but also provides pixel-level segmentation results 
for each individual target [24]. The PR curves clearly 
indicate that the model’s performance starts to decrease 
significantly when the IoU is set above 0.9. On the other 
hand, the model consistently demonstrates reliable per-
formance when dealing with IoU values between 0.5 and 
0.75. The results suggest that the AI model we applied 
exhibits a relatively accurate segmentation ability for 
ameloblastoma, although it may not possess an abso-
lute accuracy in segmentation. Furthermore, we assess 
the generalization of our model through the evaluation 
of externally validated datasets, and the results are also 
satisfactory. This indirectly indicates that the model pos-
sesses good robustness.

Previous studies commonly employed traditional 
semantic segmentation models in similar contexts. 
However, these methods often face challenges related 
to imbalanced classification [25]. In contrast, our study 
utilizes Mask R-CNN, an instance segmentation frame-
work known for its superior feature extraction capability. 
By selecting Mask R-CNN as our deep learning model, 
we benefit from its ability to provide accurate bounding 
boxes and pixel masks for each target, enabling pixel-
level segmentation [26]. Furthermore, Mask R-CNN 
exhibits versatility in handling targets of different sizes, 
shapes, and quantities, making it highly adaptable across 
various application scenarios, including medical image 
segmentation [27]. During our investigation, we found 
that three scenarios may lead to less efficient segmenta-
tion. Firstly, when the tumor is situated in the maxilla, 
challenges arise due to the thinner bone cortex of the 
maxilla and the proximity of multiple sinus cavities. Max-
illary lesions often lead to the destruction of the nasal 
cavity, ethmoid sinus, and sphenoid sinus, causing the 
tumors to locally extend into the sinus cavity. As a result, 
the model faces difficulty in accurately distinguishing 
the boundary between the sinus cavity and the tumor. 
Secondly, when the tumor extensively destroys the jaw 
cortex, the damaged jaw bone loses its structural conti-
nuity, posing difficulties for both human experts and AI 
algorithms in accurately determining the tumor bound-
ary. Lastly, in cases where a section of the ameloblastoma 
boundary overlaps with the crown or root of a tooth, the 

precise distinction becomes challenging due to the high 
density exhibited by both structures on imaging.

In our study, CT imaging was selected over cone-
beam computed tomography (CBCT) for the diagnosis 
of jaw tumors due to its unique advantages. Firstly, CT 
offers higher spatial resolution and a wider scanning 
range [28], enabling more accurate segmentation of jaw 
tumors and facilitating the development of precise treat-
ment plans for ameloblastoma. Secondly, CT images 
exhibit a highly linear relationship between pixels, which 
enhances the stability and reliability of computer analy-
sis and reconstruction [29]. Moreover, unlike previous 
experiments that utilized only horizontal CT images, our 
study employed three-dimensional CT images, providing 
a more comprehensive representation of the anatomical 
structures and pathology. This allowed our model to cap-
ture additional spatial information, further enhancing its 
performance.

The training of deep learning models typically relies on 
large-scale datasets to ensure the robustness of the final 
results [30]. However, certain rare medical conditions, 
like the ameloblastoma studied in this research, often 
present limited sample sizes that do not meet the require-
ments for deep learning. Consequently, there has been 
a growing research focus on leveraging deep learning 
techniques with limited sample sizes, resulting in nota-
ble advancements in this field in recent years [31, 32]. 
Nonetheless, deep learning based on small samples faces 
its own challenges, with overfitting and data imbalance 
being among the most common issues [33]. To address 
these concerns during the construction of Mask R-CNN, 
we fine-tuned the classifier’s weights and employed data 
augmentation techniques to mitigate the impact of data 
imbalance. Furthermore, we obtained images from other 
medical centers to assess the model’s extrapolation capa-
bility, which ultimately yielded satisfactory results.

Several studies have explored the application of arti-
ficial intelligence and radiomics in the diagnosis and 
treatment of ameloblastoma, with a focus on differen-
tial diagnosis. Gomes et al. conducted research on MRI 
texture analysis, including contrast, entropy, and homo-
geneity, as a tool for distinguishing ameloblastoma from 
odontogenic keratocyst, achieving a diagnostic efficiency 
of 83.3% [34]. In another study, researchers utilized the 
VGG-16 model for jaw tumor classification based on 
panoramic images, but the diagnostic efficiency and time 
of the AI model did not exhibit significant advantages 
compared to manual diagnosis [15]. Subsequently, Liu 
et  al. improved the experiment by comparing four deep 
learning models and found that a convolutional neural 
network structure based on transfer learning algorithm 
could accurately differentiate ameloblastoma from odon-
togenic keratocyst with an accuracy of 90.4% [16]. Similar 
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studies utilizing CT images have also demonstrated rela-
tively high accuracy levels [18, 19]. However, accurate 
segmentation is a crucial prerequisite for AI models to 
effectively classify medical images and produce reliable 
results. In other fields, the segmentation and classifica-
tion of tumors by artificial intelligence on medical images 
have been intensively studied [35, 36]. Therefore, the sig-
nificance of our study lies in addressing this research gap 
by applying a segmentation approach for ameloblastoma. 
By accurately separating ameloblastoma from medical 
images, our model can assist doctors in precisely deter-
mining the tumor’s location, size, and shape. This infor-
mation holds great importance for accurate diagnosis 
and differential diagnosis. Furthermore, it can provide 
valuable insights for radiotherapy and surgery, enabling 
better treatment planning. Additionally, tumor segmen-
tation can contribute to patient prognosis assessment 
and aid in estimating the probability of recurrence. Man-
ual interpretation in radiology often involves perceptual 
errors, which account for a substantial portion of misdi-
agnoses [37]. AI has the potential to effectively address 
this issue [38]. Our model demonstrates remarkable effi-
ciency in the segmentation process, requiring only 0.1 s 
per image. This significant reduction in operational time 
compared to manual segmentation methods makes our 
approach highly time-effective.

However, this study does have certain limitations that 
should be acknowledged. The samples used in this exper-
iment were obtained from a single center, which may 
introduce a bias and limit the extrapolation ability of the 
model to diverse populations or different imaging pro-
tocols. Further research involving multiple centers and 
a more diverse patient population would be beneficial to 
explore the model’s generalizability and assess its perfor-
mance in different clinical settings.

Conclusion
It seems that deep learning holds significant potential in 
aiding oral general practitioners and junior maxillofa-
cial surgeons in the swift detection and segmentation of 
ameloblastoma, thereby facilitating early diagnosis and 
treatment. Furthermore, this study introduces a novel 
approach and methodology for the application of com-
puter-aided diagnosis in the realm of oral and maxillofa-
cial surgery, with the potential for widespread adoption 
and implementation.
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