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Abstract 

Background  Considering the prevalence of Periodontitis, new tools to help improve its diagnostic workflow could 
be beneficial. Machine Learning (ML) models have already been used in dentistry to automate radiographic analysis.

Aims  To determine the efficacy of an ML model for automatically measuring Periodontal Bone Loss (PBL) in pano-
ramic radiographs by comparing it to dentists.

Methods  A dataset of 2010 images with and without PBL was segmented using Label Studio. The dataset was split 
into n = 1970 images for building a training dataset and n = 40 images for building a testing dataset. We propose 
a model composed of three components. Firstly, statistical inference techniques find probability functions that best 
describe the segmented dataset. Secondly, Convolutional Neural Networks extract visual information from the train-
ing dataset. Thirdly, an algorithm calculates PBL as a percentage and classifies it in stages. Afterwards, a standardized 
test compared the model to two radiologists, two periodontists and one general dentist. The test was built using 
the testing dataset, 40 questions long, done in controlled conditions, with radiologists considered as ground truth. 
Presence or absence, percentage, and stage of PBL were asked, and time to answer the test was measured in seconds. 
Diagnostic indices, performance metrics and performance averages were calculated for each participant.

Results  The model had an acceptable performance for diagnosing light to moderate PBL (weighted sensitivity 0.23, 
weighted F1-score 0.29) and was able to achieve real-time diagnosis. However, it proved incapable of diagnosing 
severe PBL (sensitivity, precision, and F1-score = 0).

Conclusions  We propose a Machine Learning model that automates the diagnosis of Periodontal Bone Loss in pano-
ramic radiographs with acceptable performance.

Keywords  Artificial intelligence, Machine learning, Neural networks, Periodontal bone loss, Periodontitis

*Correspondence:
Duniel Ricardo Ortuño Borroto
Dortuno@uandes.cl
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12903-023-03819-w&domain=pdf


Page 2 of 12Cerda Mardini et al. BMC Oral Health          (2024) 24:100 

Background
Periodontitis is among the most prevalent human dis-
eases in the world. Estimates place the number of affected 
at 740 million people globally. It has a heavy disease bur-
den, affecting systemic health, nutrition, quality of life 
and self-esteem, and poses big socio-economic impacts 
and healthcare costs [1, 2].

It is well established that early diagnosis and regular 
maintenance are of paramount importance in managing 
the presence and progression of Periodontitis [3]. The 
current Classification of Periodontal and Peri-Implant 
Diseases and Conditions classifies Periodontitis in stages 
and grades. Stages go from 1 to 4 and classify the sever-
ity, extent and complexity of a patient’s Periodontitis, 
while grades go from A to C and estimate the future risk 
of progression, responsiveness to treatment and impact 
on systemic health [4]. The classification establishes that 
a thorough radiographic evaluation of the patients’ peri-
odontal condition is necessary for diagnosis and mainte-
nance, with the stage of radiographic Periodontal Bone 
Loss (PBL) serving as an index for determining stage 
and grade [4]. Table 2 depicts PBL stages in the current 
classification.

Commonly used radiographs for measuring PBL are 
periapical, bitewing and panoramic techniques [5]. While 
periapical and bitewing radiographs provide detailed 
information about individual teeth, the panoramic radio-
graph offers a broader overview of the patients’ general 
condition. In patients with generalized Periodontitis, the 
panoramic radiograph is recommended as an initial and 
periodic screening method due to its wide-ranging focus, 
along with other desirable characteristics, such as low 
radiation exposure, high accessibility, and the amount of 
information provided [5].

Meanwhile, academic publications about Artificial 
Intelligence (AI) applied to dentistry are rapidly increas-
ing [6]. A simple and helpful definition of AI is a machine 
capable of behaving intelligently, imitating a human cog-
nitive ability such as listening, speaking or observing [7]. 
Various AI techniques and applications have been pro-
posed in the area, with a primary focus on using Machine 
Learning (ML) models for automating radiographic anal-
ysis [8–10]. Among ML paradigms, Supervised Learn-
ing studies algorithms that learn by means of a labelled 
dataset, optimizing their internal structure to achieve the 
best possible performance on new data points that are 
“similar” to those observed at training [7]. For automat-
ing radiographic analysis, a model can be trained with 
a labelled dataset containing instances of a particular 
pathology. Afterwards, the trained model is compared to 
an expert criterion, usually a human specialist or another 
well-established diagnostic test, and various indices 
are calculated to determine the model’s performance. 

Comparison to an expert criterion allows for a point of 
comparison for performance indices (such as sensitiv-
ity, precision or F1-score) to be interpreted from, given 
that they do not possess integrated categorical scales or 
cut-off points for describing their values [7]. The suc-
cessful automation of multiple oral diseases has been 
achieved with real time diagnosis and acceptable perfor-
mance, some having reached a product and service phase 
[11–13].

Considering the high prevalence of Periodontitis and 
the need for radiographic evaluation in its diagnosis and 
maintenance, using tools such as ML models capable of 
automating radiographic analysis could prove beneficial 
to currently practiced workflows. ML models applied to 
PBL have already been reported, although, to the best of 
our knowledge, never in the Chilean population [8].

The aim of this study was to determine the efficacy of 
an ML model for automatically measuring Periodontal 
Bone Loss (PBL) in panoramic radiographs by comparing 
it to dentists.

Methods
We collected 500 panoramic radiographs from two dis-
tinct populations. On one hand, 250 radiographs were 
obtained from a particular, non-representative Chilean 
population composed of patients treated at the Depart-
ment of Periodontics from Universidad de los Andes at 
San Bernardo, Santiago-Chile, during the academic year 
2021. On the other hand, 250 radiographs belonged to a 
publicly available dataset from Tufts University, Massa-
chusetts-USA. The authors voluntarily shared this dataset 
with us, and the access link can be found in the references 
[14]. For identification and anonymity, each radiograph 
was assigned a code composed of a number and its ori-
gin population (e.g., SB001, USA 001). The Chilean sub-
set was obtained from the local electronic database, and 
the USA subset was obtained from the published dataset. 
Both sets of radiographs were sampled at random respec-
tively from a larger population. No other demographic 
characteristics were considered or recorded from either 
population (i.e. age, gender, ethnicity or socio-economic 
status). Two types of radiographs were excluded from the 
study: those from edentulous patients and those from 
patients with temporary/mixed dentures.

All radiographs were manually labelled to add explicit 
information that would act as the model supervision. 
This labelling task was done by the first author, an under-
graduate student, using Label-Studio® on a MacBook 
Air® 2015 (Intel Core® i5 CPU, macOS Sierra 10.12.6 
OS). The labeller received spoken and written instruc-
tions pertaining to the correct PBL measuring technique, 
obtained from the scientific literature [15]. These instruc-
tions were given by a radiologist with more than 5 years 
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of experience. An initial training phase was performed, 
where the labeler exercised on an initial batch of non-
used panoramic radiographs and double checked the 
labeled PBL points and bounding boxes against the radi-
ologist’s experience, receiving feedback in cases of error. 
This training process comprised a total of 6 hours spread 
throughout 1 week.

The labelling process consisted of two tasks: creating 
bounding boxes containing teeth and identifying key 
points for radiographic PBL calculation on each tooth. 
As an inclusion criterion, only molars were consid-
ered for this study. Firstly, a bounding box was drawn 
to contain each molar in every panoramic radiograph. 
Then, key points were labelled to represent the neces-
sary radiographic points for calculating PBL, which 
included: 1. Cementoenamel Junction (CEJ), 2. the por-
tion of Alveolar Crest closest to the ligament space, 
and 3. the Root Apex. This accounted for three points 
per anatomical side of a given molar (mesial and dis-
tal), totaling six key points and one bounding box per 
labelled molar. As an exclusion criterion, it was estab-
lished a priori that key points would only be labelled 
when all three of the necessary radiographic points 
for calculating PBL would be “easily identifiable” in 
one anatomic side simultaneously. If any of the three 
radiographic PBL points was deemed obstructed by 
the labeller, none of the other two were labelled, even 
if plainly visible. Figure 1 shows the data labelling pro-
cess, and Table  1 shows the most frequently observed 
obstructive factors during data labelling.

The labeller was calibrated by calculating its Intraclass 
Correlation Coefficient (ICC). For this, he was asked to 
label 20 additional radiographs, 10 from each population, 
and after 1 month, to label them again. A third researcher 
then compared both sets of measurements and ICC was 
calculated.

Once the dataset was completely labelled, an algo-
rithm automatically segmented all bounding boxes 
from each radiograph. This created 2010 rectangular 
images containing 1 molar along its labelled radio-
graphic points necessary for PBL calculation [Fig.  2]. 
Afterwards, a final processing step was carried out: 
all upper molar images were inverted by 180°. This 
was done so that the model could process, both dur-
ing training and inference, all the root apex points as 
located in the lower portion of the rectangular images. 
This would help with the stability and convergence of 
the training process, a key prerequisite in producing a 
useful model.

With the newly segmented 2010 rectangular images, 
the data was partitioned to create training and testing 
datasets. Forty images were sampled at random to be 
later used for testing purposes. These images had their 
labeled PBL points removed. The remaining 1970 rec-
tangular labelled images comprised the training dataset, 
which was further divided into 80% (1576) for training 
and 20% (394) for internal validation. These images were 
used with their PBL points present.

As an overview, our ML model was structured into 
three components, which were executed sequentially. 

Fig. 1  Data labeling process. Legend: “In yellow, bounding boxes were labelled to contain molar teeth. Blue dots= CEJ. Green dots= alveolar crest. 
Red dots= root apex”

Table 1  Obstructive radiographic points

Obstructive Factor Affected Key Points

Dental Crowding CEJ, Crest

Maxillary Sinus Cortical Crest, Apex

Overexposure CEJ, Crest, Apex

Underexposure CEJ, Crest, Apex

Dental Caries CEJ

Restorations CEJ

Root Resorption Apex
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The first two components aimed to create a vector of six 
ordered pairs that would represent the exact pixels where 
each of the six radiographic points necessary for calculat-
ing PBL would be located in a rectangular molar image. 
The third and final component would take the generated 
vector and express it as two lines (one for representing 
root length and one for bone height) to further calcu-
late PBL percentage and stage. More specifically, the first 
component created an initial prediction of PBL points 
by means of statistical inference techniques. The second 
component refined the initial prediction by using a Deep 
Convolutional Neural Network (DCNN). The third and 
final component used a rule-based algorithm that trans-
lated the second component’s refined prediction into 
PBL percentage and stage. Figure 3 illustrates the model’s 
components and workflow.

The first component created an initial prediction by 
determining the probability functions that best adjusted 
to the information contained in the training dataset. This 
process was performed for each of the 12 coordinates 
which constituted the six ordered pairs in each molar 
image (representing the CEJ, alveolar crest, and apex of 

both mesial and distal aspects). The result was two prob-
ability functions per ordered pair, totaling in 12 distinct 
probability functions. When each function was sampled 
simultaneously, the result was an initial, purely statistical 
prediction of the radiographic points’ location. This sam-
pling process was repeated 25 times per image, generat-
ing additional examples with slightly different predictions 
each time. This approach allowed for data augmentation, 
which created a total number of 10,050 predictions that 
are considered as input in the next stage. This component 
utilized the package “fitter” 1.4.1 [16].

The second component consisted of refining the pre-
diction of the first component by conditioning it to the 
visual content of each molar image. For this purpose, we 
used a Deep Convolutional Neural Network (DCNN) 
with a fixed number of input/output pairs. The input 
of the DCNN consisted of paired rectangular images of 
molars along with their predictions from the first com-
ponent, while the output was the real annotation of the 
labelled training dataset. Overall, this component had 
a total of 10,050 input/output pairs. The network was 
defined and trained with Google TensorFlow Keras® 

Fig. 2  Segmented molar images with PBL points. Legend: “Sample of the resulting segmented molar images (1970) after data processing 
of labelled panoramic radiographs. Each molar image contains the necessary radiographic points for PBL calculation”
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Fig. 3  Model components and workflow. Legend: “1. The first component samples probability functions to create a statistical, yet inaccurate, 
prediction of PBL points in a molar image. 2. The second component is a deep convolutional neural network that further refines the first 
component’s prediction. 3. The third component calculates PBL percentage and stage from the second component’s prediction”
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version 2.10.0. The architecture of the DCNN fol-
lowed Xception Network’s design [17]. The loss func-
tion to minimize was the mean squared error between 
a 12-dimensional vector emitted by the second compo-
nent (DCNN) and the real vector (training dataset). The 
DCNN was trained for five epochs controlled with early 
stopping and an Adam optimizer with a learning rate of 
0.001 [18].

Hyperparameters included the number of filters in 
CNN layers, activation function type and number of out-
put neurons in the last layer. These hyperparameters were 
manually adjusted based on observed training dynamics 
(i.e., final loss value). The batch size was set to 32, and 
dropout was applied to all layers except the final layer at 
a rate of 0.5 (i.e., a 50% chance of turning off each neuron 
during the forward pass). No other regularization param-
eters were used apart from dropout. Internal model vali-
dation was performed during training by computing the 
loss and accuracy on a validation dataset consisting of 
20% of the total data in the training dataset held out for 
this purpose.

The third and final component was a rule-based algo-
rithm for calculating PBL percentage and expressing it as 
a stage based on the prediction made by the second com-
ponent. This algorithm generated two lines connecting 
the ordered pairs that represented a molar’s root length 
(established between Apex and CEJ points) and its perio-
dontal bone height (established between Apex and Alve-
olar Crest points), as illustrated by Fig.  4. Afterwards, 
it automatically calculated the resulting quotient and 
expressed it as a percentage. For each resulting percent-
age, the algorithm assigned the corresponding PBL stage 
according to the classification proposed by the Classifica-
tion of Periodontal and Peri-Implant Diseases and Con-
ditions, found in Table 2.

Regarding the computational resources needed for cre-
ating and training the model, a cloud server from Google 
Colab was used, equipped with an Nvidia Tesla® P100 
GPU with 16GB VRAM and two Intel Xeon CPUs run-
ning at 2.30Ghz with a total of 13GB of RAM.

Once trained and validated, the model was compared 
to five human participants in a standardized test. These 
participants were two radiologists, two periodontists, 
and one general dentist. It was decided a priori that the 
two radiologists would collectively represent the correct 
answers of the test (ground truth), while both periodon-
tists and the general dentist would serve as additional 
comparisons for the model. A third radiologist was 
consulted for resolution in cases of differing responses 
between radiologists. All participants were registered as 
individual national healthcare providers in the Chilean 
Health Superintendence of the National Health Ministry 
(MINSAL). Additionally, the amount of time since the 

date of degree emission for each of the participant’s pro-
files was recorded. A document of informed consent was 
previously signed voluntarily by each participant. This 

Fig. 4  Radiographic PBL calculation. Legend: “Lines drawn 
between CEJ and root apex points represent root length: A1= left 
root length, A2= right root length. Lines drawn between the alveolar 
crest and root apex points represent bone height: B1= left bone 
height, B2= right bone height. PBL was calculated as follows: PBL 1 
(%) = (A1-B1/A1) *100. PBL 2 (%) = (A2-B2/A2) *100”

Table 2  PBL calculation and stage according to the Periodontal 
and Peri-Implant Diseases and Conditions Classification [4]

PBL Amount (%) Stage

< 15% 1

15–33% 2

> 33% 3/4
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document explained the nature of the study, its purpose, 
implications for participants and measures for assuring 
confidentiality.

The test was conducted in a classroom located at the 
Universidad de los Andes campus in San Bernardo, 
Santiago, Chile. All human participants performed the 
experiment at the beginning of the workday morning, 
immediately after arrival to the clinical center and with-
out any previous form of work. This was done to ensure 
absence of physical and mental fatigue during the experi-
ment across participants. Each participant performed the 
experiment individually, alone in the classroom save for 
an experiment supervisor and with all classroom lights 
turn off. As mentioned, the test comprised 40 unlabeled 
rectangular molar images displayed on a 13.3-in. monitor 
with a resolution of 1440 × 900. Participants were previ-
ously instructed on the expected technique for measur-
ing PBL, involving all three radiographic PBL points 
and the subsequent method of percentage calculation 
and stage assignment. The test instructions were that 
for each molar image, the participants had to measure 
the percentage of PBL and determine the correspond-
ing periodontal stage on both the right and left sides of 
each molar image. Participants were also provided a ruler 
and white sheet of paper alongside the test answer sheet. 
Before beginning the test, the participants openly stated 
that they understood the requested task. The time taken 
by each participant was measured in seconds. Subse-
quently, the model was run on all molar images, and the 
time taken was recorded.

Data analysis for binary classification was conducted. 
Responses made by each participant, including the 
model, were categorized based on diagnostic indices 
(True Positive, True Negative, False Positive, False Nega-
tive) in relation to the responses of both radiologists. 
These indices were calculated considering each possible 
answer class (PBL stage 1, 2, and 3/4) as separate binary 
tests. Table  3 displays the expression of the diagnostic 
indices for each PBL class.

Performance metrics were computed for each par-
ticipant in each stage. The calculated metrics were 
sensitivity, specificity, recall, precision and F1-score. 
Performance averages were also determined, including 

macro-, weighted-, and micro-averages. All acquired data 
was tabulated and analyzed in spreadsheets using Micro-
soft Excel®.

This study was approved by the Research Committee of 
the Dental Faculty and the Scientific Ethics Committee 
of Universidad de los Andes. All patients from the Chil-
ean population whose radiographs were used in the study 
voluntarily signed an Informed Consent document at the 
time of treatment.

Results
The ICC value for the data-labeling observer was 0.91. 
The participants’ years of experience can be found in 
the Supplemental Files. Regarding the test results pro-
vided by both radiologists, PBL stage 1 was identified in 
57.14% of the instances, PBL stage 2 in 35.71%, and PBL 
stage 3/4 in 7.14%. The average value for each PBL stage 
was 10.58% for stage 1, 24.84% for stage 2, and 46.66% 
for stage 3/4.

Table  4 displays the recorded time for each partici-
pant. On average, radiologists took 23.2 minutes to 
complete the test, while controls took 26.9 minutes. The 
overall human average (radiologists and controls) was 
25.4 minutes. In contrast, the model answered the test 
in 0.93 seconds.

For PBL stage 1, the model obtained the second-
highest sensitivity of the group (0.5), following peri-
odontist 2 (0.75), the lowest precision (0.26), recall 
(0.42) and specificity (0.39) of the group, and the third 
highest value for F1-score (0.34). For stage 2, the model 
obtained the second-highest sensitivity of the group 

Table 3  Expression of diagnostic indices for each PBL class

Legend: TP True Positive, TN True Negative, FP False Positive, FN False Negative.

Stage 1 Stage 2 Stage 3

Truth Test Answer Truth Test Answer Truth Test Answer

1 2,3 2 1,3 3 1,2

1 TP FN 2 TP FN 3 TP FN

2,3 FP TN 1,3 FP TN 1,2 FP TN

Table 4  Time obtained by each participant in standardized test

Legend: “m minutes, s seconds”

Participant Time (m/s)

Radiologist 1 23.38 m

Radiologist 2 23 m

Periodontist 1 31.48 m

Periodontist 2 18.78 m

General Dentist 30.31 m

AI Model 0.93 s
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(0.4) after Periodontist 2 (0.46), the third-highest value 
for precision (0.17) and F1 score (0.24), and the lowest 
value for recall (0.53) and specificity (0.56). Regarding 
stage 3/4, the model obtained values of 0 for sensitiv-
ity, precision and F1 score, although the highest value 
of the group for recall (0.96) and specificity (1.00). Peri-
odontist 2 achieved the highest indices in every stage. 
All values obtained by every participant on each perfor-
mance metric are listed in Table 5.

Concerning macro average, the model yielded the low-
est values for sensitivity (0.3), specificity (0.65), precision 
(0.14) and recall (0.64), while ranking third in terms of F1 
score (0.19). Periodontist 2 obtained the highest values 
for all five metrics.

Regarding weighted average, the model obtained the 
second-highest sensitivity (0.23), tied to General Den-
tist, the third-highest value in precision (0.11) and F1 
score (0.15), and the lowest in recall (0.26) and specificity 
(0.26). Periodontist 2 obtained the highest values for all 
five metrics.

Finally, about micro-average, the model obtained the 
second-highest sensitivity (0.42), tied to General Den-
tist, and the third highest value for precision (0.22) and 
F1 score (0.29). Once again, Periodontist 2 obtained the 

highest values for all three metrics. The values obtained 
by each participant on macro-, micro-, and weighted 
averages are listed in Table 6.

Discussion
The model proposed in this study aimed to automate the 
diagnosis of radiographic Periodontal Bone Loss (PBL) 
using a Deep Convolutional Neural Network (DCNN), 
which managed to do with acceptable performance and 
real-time diagnosis.

The dataset used for this study was particularly small 
and below the recommended size for training models 
similar to ours [19]. Study design determinations were 
made to ensure the best possible performance in the con-
text of limited data access. The first determination was 
the use of two distinct populations. While the Chilean 
population of periodontal patients was the original sub-
ject intended to be studied, a second population, in the 
form of a publicly available dataset from Tufts University, 
was included due to the difficulty of obtaining a suffi-
ciently large dataset from the original population alone. 
This decision might have consequences for the model’s 
performance, as it has been proposed in the relevant lit-
erature that the dataset should come from the population 
for which an AI is intended to be used [20]. We propose 
that any detrimental effects in the model’s capability to 
generalize in the used Chilean population is offset by the 
fact that including a second population enables the exist-
ence of the model in the first place. It is also possible to 

Table 5  Performance metrics obtained by each participant

Stage 1 Stage 2 Stage 3/4

Sensitivity
    General Dentist 0.417 0.333 1.000

    Periodontist 1 0.208 0.000 1.000

    Periodontist 2 0.750 0.467 1.000

    AI Model 0.500 0.400 0.000

Specificity
    General Dentist 0.696 0.723 0.870

    Periodontist 1 0.804 0.769 0.753

    Periodontist 2 0.804 0.954 0.909

    AI Model 0.393 0.569 1.000

Recall
    General Dentist 0.613 0.650 0.875

    Periodontist 1 0.625 0.625 0.763

    Periodontist 2 0.788 0.863 0.913

    AI Model 0.425 0.538 0.963

Precision
    General Dentist 0.370 0.217 0.231

    Periodontist 1 0.313 0.000 0.136

    Periodontist 2 0.621 0.700 0.300

    AI Model 0.261 0.176 0.000

F1 Score
    General Dentist 0.392 0.263 0.375

    Periodontist 1 0.250 0.000 0.240

    Periodontist 2 0.679 0.560 0.462

    AI Model 0.343 0.245 0.000

Table 6  Performance averages obtained by each participant

Sensitivity Precision F1 Score Specificity Recall

Macro-Average

    General 
Dentist

0.583 0.273 0.343 0.763 0.713

    Periodontist 1 0.403 0.150 0.163 0.775 0.671

    Periodontist 2 0.739 0.540 0.567 0.889 0.854

    AI Model 0.300 0.146 0.196 0.654 0.642

    Weighted-
Average

    General 
Dentist

0.230 0.160 0.180 0.380 0.340

    Periodontist 1 0.100 0.100 0.080 0.410 0.330

    Periodontist 2 0.350 0.330 0.330 0.450 0.430

    AI Model 0.230 0.110 0.150 0.260 0.260

Micro-Aver-
age
    General 
Dentist

0.429 0.286 0.343

    Periodontist 1 0.190 0.151 0.168

    Periodontist 2 0.667 0.571 0.615

    AI Model 0.429 0.225 0.295
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consider finetuning the weights as additional Chilean 
data is made available.

A clear limitation is that neither of the populations 
used in this study were representative in nature. The 
Chilean population originated from a subset of periodon-
tal patients from a specialized care center. Additionally, 
the demographic characteristics of both populations 
remained unclear. This is relevant, given that the used 
dataset largely determines a model’s learned patterns. 
Given the non-representative nature of the data, the 
model’s performance retains validity only in relation to 
these two specific populations, while its performance 
on external populations remains undetermined. On the 
same note, considering that the Chilean population is 
from a subset of periodontal patients, there is a consider-
able chance of it being skewed towards over represent-
ing periodontally compromised patients over healthy 
ones. In the context of automating a radiographic pathol-
ogy, achieving a balanced dataset where all ranges of a 
given disease are uniformly represented is of paramount 
importance.

The number of radiographs included in the study 
(500) represented the maximum amount that the 
researchers managed to manually label during the 
study’s allocated time frame. The size of the used data-
set constitutes an important limitation on both model 
training and evaluation procedures, given the widely 
known fact that ML models perform better, all other 
conditions being unchanged, if the dataset is more 
extensive [17].

The second significant determination was using pano-
ramic radiographs and molars as the units of study. It 
was determined in advance that a limited amount of data 
should, in turn, be as standardized as possible to promote 
effective learning by the model. Panoramic radiographs 
were chosen as study technique due to their inherently 
standardized capture method, which involves taking 
images around a fixed occlusal block [21]. Similarly, it 
was decided to avoid including anterior teeth to regular-
ize anatomical features across data points, which limits 
performance and validity in teeth other than molars [21].

Another limitation was using a single observer during 
data labelling, which manifested in the form of Obstruc-
tive Factors [Table  1], where the observer could not 
be sure of the precise location of certain radiographic 
points. Having two or more observers responsible for 
data labelling would solve this issue and reduce bias. 
When faced with visually challenging points, multiple 
observers could make collective decisions, which would 
offer two advantages: firstly, there would be no excluded 
radiographic points, therefore utilizing data more effi-
ciently, and secondly, it would enhance the model’s per-
formance by providing information about precisely those 

visually demanding points. The use of a sole observer 
helps explain the performance observed. Nonetheless, 
the obtained ICC value (0.91) argues for a well-instructed 
and calibrated undergraduate student.

Still, the main limitation regarding this model’s clini-
cal validity is that it cannot measure PBL on unprocessed 
panoramic radiographs. As previously reported, the 
model can only measure PBL on processed cuts contain-
ing molar images from a panoramic radiograph. While 
it was attempted to have it perform this task on unpro-
cessed radiographs using another CNN, this still needs to 
be achieved. This lack of success explains the first com-
ponent as a workaround for this issue. Considering that 
this pre-processing phase encompassed between 6 to 
8 hours of computing, this limitation would have to be 
resolved for creating a truly automated model. Therefore, 
a clear direction for future work would be to train a CNN 
to automatically segment molar cuts from a panoramic 
radiograph, allowing the existing model to then meas-
ure the amount of PBL in those cuts. Such an approach 
would aid in creating a clinically useful model.

Another investigative line worth considering would 
be to create a model for automating PBL measurement 
based on regression equations, that could then be trained 
and compared to dentists in a binning basis instead of a 
categorical stage basis. This, in turn, would allow to fur-
ther study and consider the level of similarity between 
the model and a human standard in a percentage-by-per-
centage manner, something that our proposed method 
cannot perform.

Regarding the standardized comparison test, 40 images 
were drawn at random. This number was chosen as it 
appeared to be representative enough of the population 
of study, yet not high enough to start imposing fatigue 
on human participants. As mentioned, this random 
sampling resulted in an unbalanced testing set, given 
the expert criteria of both radiologists identifying most 
instances as light to moderate PBL (Stage 1 = 57.14%, 
Stage 2 = 35.71%) and the vast minority as severe PBL 
(Stage 3/4 = 7.14%). We suspect this is because the train-
ing dataset did not contain many instances of PBL stage 
3/4 to begin with.

The data was analyzed as a binary classification system. 
This means that even though the model was tested on 
a question which has a multi-class answer (i.e., there is 
PBL, and it is one of three possible choices: 1, 2 or 3/4), 
each of the possible answer classes were considered as 
separate and independent tests (i.e., there’s three types of 
tests, one per each PBL class, and one can either identify 
it successfully or not). This was done so that the diagnos-
tic indices of true positive, true negative, false positive 
and false negative could be calculated in the first place, 
given that they can only be expressed in binary form. 
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This, in turn, created sets of diagnostic indices for each 
PBL class on each participant [Table 3].

As previously stated, an assumption was made a priori 
that both radiologists would collectively represent the 
ground-truths of the study over that of other partici-
pants (periodontists and general dentist). This assump-
tion was made on the need for determining a set of 
answers to be considered as known true data points, or 
as ground-truths. Given the studied variable of measur-
ing radiographic PBL and considering the specialty of 
Radiology to be the most closely related to the analysis 
of radiographic images, it was decided to consider the 
radiologists’ answers as ground-truths over that of the 
both periodontists’ and general dentist.

Afterwards, performance metrics were calculated 
(sensitivity, specificity, precision, recall and F1-score). 
Sensitivity and precision both express information 
about the success rate in positive answers (i.e., the 
capacity to identify presence of disease), on the con-
trary, specificity informs about the success rate in 
negative answers (i.e., the capacity to identify absence 
of disease), recall informs about the rate of success of 
positive and negative answers at the same time, and 
F1-Score is the harmonic mean between sensitivity and 
precision. Moreover, given the unbalanced testing set, 
averages were further calculated. Given the data, both 
weighted- and micro-averages stand as the most precise 
indices, as they take into consideration the observed 
frequency of each answer class and, therefore, describe 
an unbalanced dataset more precisely. On the contrary, 
macro-average assumes all classes as equally prevalent.

Regarding the model’s performance, specifically around 
the time variable, one thing is concluded: the model was 
exceedingly faster than the human participants, as it 
achieved real time diagnosis in practical terms, diagnos-
ing 40 teeth in 0.93 s, or 0.02 s per tooth. Further down 
the implications of this result will be discussed.

Regarding the model’s performance for measuring PBL, 
it obtained an acceptable performance for detecting PBL 
stages 1 and 2, or light to moderate, as it obtained val-
ues of 0.23 and 0.29 for weighted sensitivity and F1-score, 
respectively. It expressed a slight tendency towards over-
diagnosing PBL stage 2, as it obtained a value of 0.17 
for precision in said stage. Lastly, it proved incapable of 
detecting PBL stage 3/4, or severe PBL, as it obtained val-
ues of 0 for both sensitivity and F1-score in this stage.

Compared to the human controls, the model obtained 
a similar overall performance against the General Dentist 
and Periodontist 1, given the comparable values obtained 
by the model on the weighted and micro averages of 
sensitivity, precision and F1 score [Table 6]. However, it 
obtained a worse performance when compared to Peri-
odontist 2 and both Radiologists, given the lower values 

obtained by the model in the weighted and micro aver-
ages of sensitivity, precision and F1 score. When consid-
ering the performance obtained between human controls 
(periodontists and general dentist), there was a notice-
able better performance from Periodontist 2 across all 
performance indices, which can be explained by the con-
siderably larger trajectory from this participant both as a 
DDS and as a periodontist (Supplemental files).

As previously noted, weighted- and micro-average val-
ues are affected in direct proportion to an observed class’ 
prevalence. Therefore, the model’s performance was not 
significantly affected by its inability to measure PBL stage 
3/4, as this class expressed a very low prevalence. How-
ever, the fact remains: not being able to detect the most 
severe cases of a pathology constitutes a serious limita-
tion. Another direction for future research would be to 
create a new dataset composed exclusively of instances of 
PBL Stage 3/4 to strengthen the models’ performance on 
this stage.

The results of this study allow for multiple implications. 
Firstly, we have demonstrated that the method used 
here is overall data efficient. In the context of Machine 
Learning algorithms like Deep Convolutional Neural 
Networks, a dataset of 500 original images (panoramic 
radiographs) represents a low number, which can never-
theless work thanks to the utilization of data augmenta-
tion techniques and study design resolutions to increase 
the amount of useful data points [17].

A second implication is the demonstrated capacity to 
automate the measurement of PBL in molars from pano-
ramic radiographs using Machine Learning. Considering 
Periodontitis’ prevalence, not only in Chile but also glob-
ally, coupled with the known significance of early diag-
nosis and periodic monitoring for at-risk and affected 
populations [3], the value of this model starts to become 
evident, as it could help automate the radiographic analy-
sis of a massively prevalent condition, helping diminish 
both time and human resources needed in the currently 
practiced workflows.

Moreover, the automation of other radiographic 
pathologies has already been reported, such as interprox-
imal caries, periimplantitis, and even tumours and cysts 
of the jaw [9, 10, 22]. All these conditions rely heavily on 
early diagnosis and maintenance to facilitate disease pre-
vention and arrest progression, both aimed at conserv-
ing as much healthy tissue as possible. Looking ahead, 
the development of ML models capable of simultane-
ously automating the diagnosis of multiple pathologies 
shows excellent promise. Such models would signifi-
cantly enhance clinical workflows, enabling practitioners 
to work more swiftly and precisely, diminishing fatigue 
and, as research shows, increasing sensitivity to certain 
pathologies [10]. Further studies are needed to determine 
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the nature and extent of these models’ effect on health-
care workflows and services.

This is not to say that there are no obstacles to work 
through, as proposed, there are multiple challenges to 
be addressed, mainly: 1. Ensuring data protection and 
security, given the need for datasets composed of sensi-
tive patient information. 2. Gathering and producing 
sufficiently large and standardized datasets, as they are 
needed for creating differentiated AI models. 3. Creat-
ing and inserting clinically useful models that are trans-
parent, reliable, and unbiased [23]. Resolving these 
challenges will ensure the long-term success of health-
care-applied AI models that make dental care faster, bet-
ter, and more widely available.

One final future direction would be to apply this archi-
tecture to different features found in and around the den-
tal structure in panoramic radiographs, such as caries, 
dental restorations, periapical lesions, type of bone defect 
present in PBL (i.e., vertical or horizontal defects), and 
presence of furcation lesions.

Conclusions
The Machine Learning model developed in this study 
achieved acceptable performance and real-time diag-
nosis for measuring Periodontal Bone Loss (PBL) in 
cropped images of molars from panoramic radiographs. 
In the future, using similar tools could improve work-
flows for multiple oral pathologies with radiographic 
manifestations.
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