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Abstract

Background Three-dimensional (3D) printing technology has revolutionized dentistry, particularly in fabricating
provisional restorations. This systematic review and meta-analysis aimed to thoroughly evaluate the flexural strength
of provisional restorations produced using 3D printing while considering the impact of different resin materials.

Methods A systematic search was conducted across major databases (ScienceDirect, PubMed, Web of Sciences,
Google Scholar, and Scopus) to identify relevant studies published to date. The inclusion criteria included studies
evaluating the flexural strength of 3D-printed provisional restorations using different resins. Data extraction and qual-
ity assessment were performed using the CONSORT scale, and a meta-analysis was conducted using RevMan 5.4

to pool results.

Results Of the 1914 initially identified research articles, only 13, published between January 2016 and Novem-

ber 2023, were included after screening. Notably, Digital Light Processing (DLP) has emerged as the predominant

3D printing technique, while stereolithography (SLA), Fused Deposition Modeling (FDM), and mono-liquid crystal
displays (LCD) have also been recognized. Various printed resins have been utilized in different techniques, includ-
ing acrylic, composite resins, and methacrylate oligomer-based materials. Regarding flexural strength, polymerization
played a pivotal role for resins used in 3D or conventional/milled resins, revealing significant variations in the study.
Forinstance, SLA-3D and DLP Acrylate photopolymers displayed distinct strengths, along with DLP bisacrylic, milled
PMMA, and conventional PMMA. The subsequent meta-analysis indicated a significant difference in flexure strength,
with a pooled Mean Difference (MD) of —1.25 (95% Cl—16.98 - 14.47; P<0.00001) and a high 1 value of 99%, high-
lighting substantial heterogeneity among the studies.

Conclusions This study provides a comprehensive overview of the flexural strength of 3D-printed provisional
restorations fabricated using different resins. However, further research is recommended to explore additional factors
influencing flexural strength and refine the recommendations for enhancing the performance of 3D-printed provi-
sional restorations in clinical applications.

Keywords 3-dimensional printing; dental materials, Flexural strength, Temporary dental restorations

*Correspondence:

Seyed Ali Mosaddad

mosaddad.sa@gmail.com

Artak Heboyan

heboyan.artak@gmail.com

Full list of author information is available at the end of the article

©The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or

other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12903-023-03826-x&domain=pdf

Saini et al. BMC Oral Health (2024) 24:66

Background

The use of three-dimensional (3D)-printed tempo-
rary dental restorations is increasing in clinical settings
owing to the widespread availability of intraoral scanning
technology, user-friendly dental computer-aided design
(CAD) software, and rapid 3D printing capabilities [1].
Recently, it has gained significant attention in the field
of dentistry. It has revolutionized dental restorations,
including provisional restorations [2, 3]. Utilizing tech-
nology in dental prosthesis production is more advan-
tageous than traditional methods, such as the lost-wax
technique, owing to material and energy conservation
benefits, reduced carbon emissions, and cost-effective-
ness [4]. Moreover, Provisional restorations rely on fac-
tors such as flexural strength to ensure that abutment
teeth remain stable during the interim period [5], and
they offer temporary support, protection, and aesthetics
until the final restorations are made [6].

Flexural strength is the material’s resistance to bending
without breaking, which is crucial for dental restorations,
as it ensures that they withstand forces during mastica-
tion [7]. 3D printing technology facilitates the creation
of temporary restorations using various resins, each with
distinct compositions, curing procedures, and physical
characteristics. These variations may influence the flex-
ural strength of provisional restorations [8].. By evaluat-
ing the flexural strength, dental professionals can ensure
the durability and longevity of restorations [9]. This
assessment guides materials and fabrication techniques
for optimal performance and patient satisfaction. Moreo-
ver, understanding the factors affecting flexural strength
improves the design and production of 3D-printed pro-
visional restorations, thereby enhancing clinical success
rates [10].

Therefore, assessing flexural strength is crucial for
evidence-based decision-making and guiding future
advancements in restorative dental care. Understand-
ing the flexural strength of 3D-printed provisional res-
torations using different resin materials is essential. This
enables dental practitioners to make informed decisions
when selecting materials with the desired mechanical
properties [11]. This knowledge can help optimize the
choice of resins for specific clinical scenarios, considering
factors such as anticipated functional loads and occlusal
forces.

Using various resins in the 3D printing of temporary
restorations provides versatile possibilities and benefits
[12, 13]. These temporary restorations are vital in dental
practice and serve as provisional substitutes when per-
manent restorations are fabricated [14]. Different resins,
such as methacrylate-based and photopolymerizable res-
ins, exhibit unique properties that can be tailored to spe-
cific clinical requirements [15]. These resins differ in their
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mechanical strength, esthetics, biocompatibility, and ease
of manipulation [16]. One important consideration when
selecting resins is their flexural strength [17]. Choosing
a resin with optimal flexural strength is crucial for tem-
porary restorations to withstand occlusal forces and pre-
vent fractures or debonding [18]. Additionally, Esthetic
properties, such as color and clarity resembling natural
teeth, are crucial for visually pleasing outcomes, which
can enhance esthetics and patient satisfaction during
the interim period [19]. Choosing biocompatible resins
for temporary restorations is vital to avoid adverse reac-
tions or complications, especially in patients who may be
sensitive or allergic to specific materials [20, 21]. Efficient
manipulation and rapid curing of dental materials are
crucial. Quick-curing resins streamline dental workflows
and reduce chairside time, improving patient comfort.

Moreover, DIN EN ISO 6872:2019 is a reference for
biaxial flexural strength testing; however, additional
measures are required to ensure the consistency and
comparability of results across different laboratories [22].
In addition, adherence to the fabrication guidelines out-
lined in ISO 20795.1:2013 and ASTM D790 is recom-
mended [23].

Conducting a systematic study and meta-analysis of the
flexural strength of 3D-printed provisional restorations
made from various resins is imperative for a thorough
understanding of their performance and longevity. With
the increasing use of 3D printing technology in dentistry,
understanding the effects of different resin materials on
the flexural strength of provisional restorations is crucial
for clinicians and researchers. This research can aid in
making informed decisions regarding material selection
and treatment planning, ultimately improving the qual-
ity and longevity of dental restorations while enhancing
patient care and satisfaction. Thus, the present study was
designed to critically analyze and summarize the existing
literature on the flexural strength of 3D-printed provi-
sional restorations fabricated using different resins.

Methods

This systematic review and meta-analysis adhered to the
guidelines outlined by the Preferred Reporting Items for
Systematic Reviews and Meta-Analysis (PRISMA) crite-
ria [24]. The protocol used for this systematic review was
the registered international platform for registered sys-
tematic reviews and meta-analysis protocols (INPLASY)
(2023110054).

Literature search

The search strategy was established according to the par-
ticipants, intervention, comparators or controls, and out-
come (PICO) framework [25]. Population/Participants:
3D printed provisional. Intervention: Types of resins
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affecting strength. Comparison or control: temporary
restorations/denture bases. Outcomes: Effect of various
factors on Flexural Strength. Different databases such as
ScienceDirect, Web of Sciences, PubMed, GoogleScholar,
and Scopus were searched using different keywords and
Medical subject heading terms (MeSH) terms along
with Boolean operators such as “Flexural strength [Mesh
Term]” OR “Flexural” OR “Strength,” “Resistance,” “Print-
ing, three dimensional [MeSH Term]” OR “3D printing’,
“3D printing’, “CAD materials,” “Provisional restorations,’
“Temporary restorations,” Interim restorations,” “Tran-
sitional restorations,” Substitute restorations,” “Resin
materials,” “polymer resins,” “Photopolymers,” “Meth-
acrylate-based resins,” “Photopolymerizable resins,’
“lonomer” (Supplementary Table 1).

Inclusion criteria

Studies that provided data on the flexural strength of pro-
visional restorations made using 3D printing techniques
employing various resin materials were considered.
In vitro experiments, comparative studies, and clinical
trials were eligible for inclusion, regardless of their loca-
tion or setting. The selected studies were expected to pre-
sent clear and relevant information, including the mean
flexural strength values, standard deviations, and type of
3D printing technology employed. Additionally, studies
incorporating resins with varying chemical compositions
or characteristics, such as biocompatibility and esthetic
properties, were included for comprehensive analysis and
comparison. Randomized controlled trials (RCTs) and
prospective or comparative studies published in peer-
reviewed journals between 2013 and 2023 were included.

Exclusion criteria

Studies lacking pertinent data on flexural strength, those
not published in peer-reviewed journals, and those not
presented in English were excluded. Additionally, stud-
ies involving non-human subjects or those that exclu-
sively focused on permanent restorations rather than
provisional restorations were excluded. Case series, case
reports, observational studies, and reviews.

Study selection and assessment

Original publications, study titles, and abstracts were
independently evaluated. Two reviewers independently
assessed the entire text of the papers that met the inclu-
sion requirements, and their conclusions were dis-
cussed to arrive at a consensus. Any disagreements were
resolved by a third independent reviewer and settled by
consensus.
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Data extraction

Information retrieval was performed for the selected
studies that met the inclusion criteria. After screen-
ing the papers’ titles, abstracts, and full texts, a data
extraction form was used to record the extracted data.
Two reviewers independently recorded each demo-
graphic characteristic (study author details, country,
experimental design, and sample size), 3D Printing
Parameters (printed type, risen type, layer thickness,
wavelength/light intensity, temperature settings, and
build orientation), control, testing method for strength,
post-processing or treatment applied, conclusion, and
limitations for a systematic review. The mean flexural
strength values and their corresponding standard devi-
ations are essential for statistical analysis in a meta-
analysis and for constructing forest plots.

Quality assessment

Given that all selected studies were in vitro investiga-
tions, their quality was evaluated using the CONSORT
scale with 14 items (Appendix 1) for in vitro studies
[26, 27].

Data analysis

This systematic review incorporated articles through
qualitative analysis. The PRISMA checklist served as
the framework for systematically reviewing relevant
literature, and a systematic step-by-step approach was
employed to select articles. Additionally, the meta-
analysis phase was conducted using RevMan 5.4 [28]
to calculate the Cochrane Q and P values, quantify-
ing trial dispersion. A random-effects model was used,
with the significance level set at 0.05.

Results

Literature searched

An exhaustive review of the scientific literature was
conducted using multiple electronic databases. All the
identified research articles were published in highly
esteemed peer-reviewed journals. Following stringent
analysis, 1914 relevant articles were identified. Sub-
sequently, 281 duplicate articles were identified and
excluded. The remaining 1633 publications underwent
a meticulous examination of their titles and abstracts,
which revealed that 1594 articles were not pertinent to
the scope of our study and were consequently excluded.
Subsequently, the remaining 39 articles were subjected
to comprehensive scrutiny, resulting in the removal of
26 articles for various reasons (Fig. 1). Tables 1 and 2
have been included to provide a detailed overview of
the 13 remaining studies published between January
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Fig. 1 PRISMA flow chart

2016 and November 2023, highlighting their essential
characteristics and features.

General characteristics

The studies included in the analysis were conducted in a
range of countries. Most studies were conducted in South
Korea [1, 29, 30] and Brazil [31-33], followed by Saudi
Arabia [34, 35], China [36], Turkey [37], Romania [38],
India [39], and Germany [40]. Most studies have employed
Digital Light Processing (DLP) [30, 33, 35, 38, 40], ste-
reolithography (SLA) [32], Both DLP and SLA [1, 29, 34],
Fused Deposition Modeling (FDM) [1], and mono-liquid
Crystal Display (LCD) [36], with a variety of printed mate-
rials, such as acrylic, composite resin, and methacrylate
oligomer-based materials. The layer thickness was 50 um
in most studies [30, 34, 35, 40], and the wavelength/
light intensity varied across studies, with a maximum of
405nm/13.14mW/cm 2[34]. The temperature settings,
build orientation, and post-curing times were addressed

S
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differently (Table 1). The control materials included poly-
methyl methacrylate (PMMA), heat-activated polymer-
ized Polymethyl methacrylate (PMMA) resin, self-cured
resin, heat-polymerized acrylic, milled materials, acrylic
resin, zirconia crowns, conventional auto-polymerized
resin, conventional pressure/heat-cured acrylic resin, and
various composite resins (Table 1).

Outcomes

The study outcomes (Table 2) encompassed a com-
prehensive analysis of the various testing methods
employed to evaluate the flexural strength of the den-
tal materials and their respective strength values
(Table 2). The most commonly used testing methods
include the 3-point flexural bend test [31-38], uni-
versal testing machine [1, 29, 30, 39], and piston-on-
three-ball (P3B) method [40]. Polymerization leads
to flexural strengths of PR=79.54, CH=95.58, and
CC=104.20 [39]. In the case of the SLA-3D technique
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and DLP Acrylate photopolymer, flexure strengths
were recorded as 116.08 and 46.83, respectively, while
DLP Bis-acrylic and Milled PMMA exhibited strengths
of 146.37 and 168.57, respectively, and Conventional
PMMA registered 89.54 [29]. Notably, the FDM group
did not experience any breakage. For values exceeding
50 MPa, post-polymerization treatment was applied to
NextDent (56.4MPa) and the control (93.4 MPa) [36].
Graphy exhibited a flexural strength of 329.3, whereas
NextDent measured 177.8, with no specific treatment
[30]. The flexural strengths of 3DCS, 3DOS, CHP, and
CAP were 143, 141, 76, and 88, respectively [38], and
they underwent polymerization. When post-polym-
erization was conducted with 3000 flashes of ultra-
violet light, the cosmos temperature was 56.83, Evolux
PMMA was 111.76, and Structur 2 SC was 87.34 [32].
Moreover, the flexural strength results before acceler-
ated aging (pre-aging) showed that the A2 group had
a significantly greater strength of 151 +7 MPa (p <0.05)
than the other groups following the polishing and aging
procedures [35]. The flexural strengths of the 3D poly-
mer-infiltrated ceramic network and nanohybrid com-
posite resin were 83.5, 140.3, and 237.3, respectively
[40]. Most studies reported that the study design was a
limitation (Table 2).

Meta-analysis

Nine studies with 785 samples in the intervention (3D
printed) and control groups (resin used in conventional
or milled techniques) were included to assess the flexural
strength of 3D-printed provisional restorations fabri-
cated with different resins. As shown in Fig. 2, our pooled
result found a significant difference in flexure strength,
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with a pooled Mean Difference (MD) of —1.25 (95%
CI—16.98 - 14.47; P<0.00001) and I* =99%.

Quality assessment

All studies (13) included the abstract, introduction, inter-
vention, outcome, statistical method, and results (Items
1-4, 10, and 11) [1, 29-40]. While 12 studies delved
into the limitations of the trials (Item 12), nine disclosed
information about their funding sources (Item 13) [1, 30—
40]. Interestingly, none of the studies addressed sample
size calculation for the specimens (Item 5) or accessibility
of the full trial protocol (Item 14). Additionally, there was
a notable absence of information regarding the method
used to generate a random allocation sequence (item 6)
in any of the studies. Furthermore, none of the studies
provided details regarding the blinding of the examiners
or information about the researcher responsible for gen-
erating the random allocation (Items 8 and 9), as outlined
in Table 3.

Discussion

The flexural strength of 3D-printed provisional restora-
tions is critical for assessing their structural integrity and
suitability for clinical use [41]. As digital technologies
continue to reshape the landscape of prosthodontics, the
choice of printing materials plays a pivotal role in deter-
mining the mechanical performance of the final restora-
tions [42]. This study investigated the flexural strength
of 3D-printed provisional restorations, focusing on the
influence of different resin materials. By scrutinizing the
mechanical properties of these restorations, we aimed to
provide valuable insights that can inform clinicians and
researchers about the comparative strengths associated
with various resin options, ultimately guiding informed

3Dresins ConventionalMilled Mean Difference Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Rand 95% Cl  Year IV, R 95% CI
Digholkar et al., 2016 7954 1013 20 9558 1244 20 59% -16.04 [-23.07,-9.01) 2016a -
Digholkar et al., 2016b 7954 1013 20 1042 1277 20 59% -24.66(-31.80,-17.52) 2016b -
Cho and Choli, 2019a 116.08 14.46 5 16857 2.06 5 58% -52.49(-65.29,-39.69] 2019a -
Cho and Choi, 2013b 14637 752 5 8954 699 5 59% 56.83 (47.83,65.83] 2019b -
Tagin and Ismatullaev, 2022 66 3 10 85 1 10 6.0% -19.00 [-20.96,-17.04) 2022 -
Al-Qami and Gad, 2022 56.4 47 10 934 108 10 59% -37.00-44.30,-29.70) 2022 -
Kim et al,, 2022 3283 454 15 1778 19.46 15  52% 151.50(126.50,176.50] 2022 —
Simoneti et al., 2022a 489 12 10 692 8.8 10 6.0% -20.30 -25.80,-14.80) 2022a -
Pantea et al,, 2022a 141 17 10 88 10 10 58% 53.00(40.78, 65.22] 2022a -
Simoneti et al., 2022b 773 31 10 75 8.2 10 6.0% 2.30-3.13,7.73] 2022b r
Pantea et al., 2022b 143 15 10 76 7 10 59% 67.00 [56.74,77.26] 2022b -
Prause etal,, 2023a 835 185 30 1403 129 30 59% -56.80 [-64.87,-48.73] 2023a -
Ribeiro et al,, 2023a 81.33 2038 150 729 16.56 150 6.0% 8.43(4.23,12.63] 2023a -
Prause et al,, 2023b 835 185 30 2373 316 30 58% -153.80(-166.90,-140.70] 2023b -
Ribeiro et al., 2023b 81.33 20.38 150 3497 10.29 150 6.0% 46.36 [42.71,50.01] 2023b -
Ribeiro et al., 2023¢ 81.33 2038 150 827 932 150 6.0% -1.37-4.96,2.22] 2023c 1
Ribeiro et al., 2023d 81.33 2038 150 9157 11.76 150 6.0% -10.24 [-14.01,-6.47) 2023d -
Total (95% CI) 785 785 100.0% -1.25[-16.98, 14.47] *

= - ChiF= - . ) \ L y

Heterogeneity: Tau®= 1070.21; Chi*= 2467.72, df= 16 (P < 0.00001); F = 99% 100 20 0 50 100

Test for overall effect Z=0.16 (P = 0.88)

Fig. 2 Forest plot for flexure strength

3D resins Conventional/Milled
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Table 3 Quality assessment of In-vitro studies
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Studies Item
1 2a 2b 3 4 5 6 7 8 9 10 1 12 13 14

[39] Y Y Y Y Y N N N N N Y Y Y Y N
[29] Y Y Y Y Y N N N N N Y N N N N
(1] Y Y Y Y Y N N N N N Y Y Y Y N
[36] Y Y Y Y Y N N N N N Y Y Y N N
[34] Y Y Y Y Y N N N N N Y Y Y Y Y
[37] Y Y Y Y Y Y N N N N Y Y Y N N
[31] Y Y Y Y Y N N N N N Y Y Y Y N
(30] Y Y Y Y Y N N N N N Y Y Y Y N
[38] Y Y Y Y Y N N N N N Y Y Y Y Y
[32] Y Y Y Y N N N N N N Y Y Y N N
[33] Y Y Y Y Y N N N N N Y Y Y Y N
[35] Y Y Y Y Y N N N N N Y Y Y Y N
[40] Y Y Y Y Y N N N N N Y Y Y Y N
Y Yes, N No

decision-making in the realm of digitally fabricated pro-
visional prosthetics.

In the present study, DLP was the most commonly used
3D technique, which may be due to its efficiency, speed,
and high-resolution capabilities [43]. In dental applica-
tions, where precision and quick turnaround times are
paramount, DLP technology excels by utilizing a digital
light source to selectively cure all layers of liquid resin
simultaneously [44]. This simultaneous curing acceler-
ates the printing process compared to other methods,
such as LCD 3D, SLA, or FDM [45]. In addition, DLP
printers often provide a higher resolution, enabling the
production of intricately detailed dental structures with
exceptional accuracy [46]. The ability to rapidly produce
precise, high-quality dental models and prosthetics has
positioned DLP as the preferred choice, streamlining the
workflow in dental laboratories and clinics [46]. Mean-
while, a statistically significant difference in trueness
was observed when comparing the LCD 3D printer and
DLP 3D printers (p=0.004). Similarly, for precision, a
statistically significant difference was found between the
LCD 3D printer and DLP 3D printers (p=0.011), indi-
cating that the DLP 3D printer exhibited greater accu-
racy in dental model printing than the LCD 3D printer
[47]. Similarly, no statistically significant differences were
observed among the four software types analyzed using
the DLP printer. Nevertheless, a group comprising the
amalgamation of D-CAD (Blender—InLAB) exhibited the
highest average (—0.0324 SD=0.0456), demonstrating
superior accuracy compared to the group with the lowest
average (consisting of the Meshmixer and Blender mod-
els), which included generic and specific software (0.1024
SD=0.0819) [48]. Furthermore, DLP printers showed a

notable advantage over LCD printers in another study,
displaying lower RMS values and less shrinkage in 5-unit
and full-arch cases. Point deviation analysis revealed sig-
nificant directional differences in all DLP-printed res-
torations. However, only a few LCD printing and DLP
printer cases have proven to be the most accurate for
short-unit restorations, demonstrating reduced devia-
tion and shrinkage [49]. In contrast, the DLP and FDM
groups observed significant differences in trueness and
precision. The average trueness values for DLP and FDM
were 0.096 (0.021) (P<0.001) and 0.063mm (0.024)
(P<0.001), respectively. Similarly, the average precisions
for DLP and FDM were 0.027 mm (0.003) (P <0.001) and
0.036 mm (0.003) (P <0.001), respectively. Notably, wid-
ening (0.158 mm [0.089] for DLP and 0.093 mm [0.005]
for FDM, P=0.05) and twisting (0.03 mm [0.014] for DLP
and 0.043mm [0.029] for FDM, P=0.05) of the printed
models were observed. FDM demonstrated greater accu-
racy, suggesting its suitability as a viable alternative to
DLP [50].

Moreover, various printed materials, such as acrylic,
composite resin, and methacrylate oligomer-based mate-
rials, have been identified. These diverse substances cater
to different applications and offer a range of proper-
ties, including strength, flexibility, and biocompatibility.
Acrylic polymers, known for their durability and versa-
tility, are commonly utilized in 3D printing because of
their adaptability to various applications [51]. Composite
resins blend different materials for enhanced characteris-
tics, balanced strength, and aesthetics, making them suit-
able for dental and aesthetic applications [52]. With their
unique chemical compositions, methacrylate oligomer-
based materials contribute to developing materials with
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specific properties often used to synthesize resins opti-
mized for 3D printing processes [53]. The utilization of
these materials underscores the flexibility of 3D printing
technologies in accommodating a wide array of applica-
tions and functional requirements.

Polymerization plays a crucial role in determining the
flexural strengths of different materials, and notable vari-
ations were observed in this study. For instance, SLA-
3D and DLP Acrylate photopolymers exhibited distinct
strengths, as did DLP bisacrylic, milled PMMA, and
conventional PMMA. These diverse findings underscore
the complex interplay of material composition, printing
techniques, and post-processing treatments in deter-
mining flexural strength (Table 2). The question arises
as to why polymerization plays a vital role because it is
a chemical process by which monomers, the building
blocks of polymers, join together to form a larger, more
complex structure. In 3D printing, this process is funda-
mental for creating solid and durable objects from liquid
or semi-liquid resin materials [54]. The resin transforms
from a liquid or semi-liquid state to a solid state during
polymerization, creating a three-dimensional network
of polymer chains. The polymerization process’s extent
and efficiency directly affect the printed object’s final
mechanical properties, including its flexural strength
[55, 56]. Incomplete polymerization can result in struc-
tural weaknesses, reduced bond strength between poly-
mer chains, and compromised mechanical properties.
In contrast, well-controlled and thorough polymeriza-
tion contributed to forming a robust and homogenous
material, enhancing its flexural strength. As shown in
Table 2, the different resin materials used in the 3D print-
ers underwent polymerization. This underscores the sig-
nificance of the polymerization process in influencing the
mechanical properties, particularly the flexural strength
of 3D-printed resin materials [57]. Similarly, in another
study, 40 resin samples were mechanically tested using a
universal testing machine, with subsequent fractographic
analysis of the failed bending samples. Additively manu-
factured samples demonstrated higher elastic moduli
(2.4£0.02GPa and 2.6+£0.18 GPa) and average bending
strength (141+17MPa and 143 +15MPa) compared to
conventional samples (1.3+0.19GPa and 1.3+0.38 GPa
for elastic moduli; 88 + 10 MPa and 76 + 7 MPa for bend-
ing strength). The results indicated greater homogeneity
in the materials produced through additive manufactur-
ing [38]. In contrast, different materials were polymer-
ized in another study, and the flexural strength, including
cold-polymerized PMMA, recorded 125.90 MPa for heat-
polymerized PMMA, 140MPa for auto-polymerized
bis-acryl composite (133 MPa), and light-polymerized
urethane dimethacrylate resin measured 80.84 MPa.
Notably, the highest flexural strength was observed for
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heat-polymerized PMMA. The lightly polymerized ure-
thane dimethacrylate resin exhibited the lowest flexural
strength, indicating a significant difference in strength
between the materials [5].

The meta-analysis in the present study indicated a
statistically significant difference in flexure strength
between the groups (MD=-1.25, 95% CI: —16.98 -
14.47, p<0.00001). An I value of 99% suggested high
heterogeneity among the included studies, indicating
substantial variability in effect sizes. A negative mean
difference shows reduced flexure strength in the experi-
mental group compared to the control group. This may
be due to differences in the characteristics of the com-
pared groups, diverse methodologies for assessing flex-
ural strength, and disparities in the types of materials or
3D printing technologies employed. The sample size and
geographic location might have also contributed to the
observed heterogeneity. Our findings align with those of
other studies, and milling techniques demonstrated nota-
bly higher flexural strength values (Hedge g=—3.88; 95%
CI, —7.20 to —0.58; P=0.02), and this difference per-
sisted even after the aging process (Hedge g=—3.29; 95%
CI, —6.41 to —0.17; P=0.04) compared to printing [58].
Similarly, the milled resin exhibited mechanical proper-
ties in flexure strength that were superior or comparable
to those of the bisacrylic resin. In contrast, 3D-printed
resins demonstrate statistically inferior properties com-
pared to milled and bisacrylic resins [32]. In contrast,
one study indicated that printed samples exhibited higher
mean bending strengths (141 + 17 and 143 + 15 MPa) than
traditional samples (88 +10 and 76+7 MPa). These find-
ings suggest superior mechanical properties in terms of
elastic moduli and bending strength for printed samples
and imply a higher degree of homogeneity in the mate-
rial when produced through printing processes [38]. The
mean flexural strengths for CAD/CAM, injection mold-
ing, and compression molding were 97.46, 84.42, and
71.72, respectively, with corresponding standard devia-
tions of 9.93, 10.42, and 11.58, respectively. Statistical
analysis indicated that CAD/CAM is the optimal denture
fabrication method, exhibiting the highest mean flex-
ural strength and lowest standard deviation compared to
compression and injection molding [59].

Although this study offers valuable insights, its
strengths and limitations should be acknowledged. The
strength lies in the comprehensive synthesis of existing
literature, which provides a collective understanding of
the flexural strength across various 3D printing resins.
Meta-analysis adds quantitative rigor to the findings,
thus enhancing their statistical robustness. However,
the limitations include potential heterogeneity among
the included studies arising from variations in method-
ologies, printing technologies, and materials. Reliance
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on available published data may introduce publication
bias, and the dynamic nature of 3D printing technolo-
gies may result in temporal discrepancies. Despite these
limitations, this study is valuable for clinicians, research-
ers, and industry professionals seeking evidence-based
insights into the flexural strength of 3D-printed provi-
sional restorations.

Conclusions

This systematic review and meta-analysis comprehen-
sively examined the flexural strength of 3D-printed
provisional restorations crafted using diverse resins.
The pooled results revealed a significant difference in
the flexural strength between the studied resin materi-
als, emphasizing careful consideration when selecting
materials for provisional restorations. Notably, the het-
erogeneity observed in the meta-analysis underscores
the variability in methodologies and material character-
istics across the included studies. However, the negative
mean difference suggests a lower flexural strength in cer-
tain experimental groups than in the controls. Further
research and subgroup analyses are imperative to unravel
the sources of heterogeneity and refine our under-
standing of the nuanced factors influencing the flexural
strength of 3D-printed provisional restorations with dif-
ferent resin compositions.

Abbreviations
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DLP Digital Light Processing
SLA Stereolithography

FDM Fused Deposition Modeling
LCD Liquid Crystal Display

MD Mean difference

CAD Computer-aided design

RCTs Randomized controlled trials
PMMA  Polymethyl methacrylate
P3B Piston-on-three-ball method
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