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Abstract
Background Although periodontitis has previously been reported to be linked with multiple sclerosis (MS), but the 
molecular mechanisms and pathological interactions between the two remain unclear. This study aims to explore 
potential crosstalk genes and pathways between periodontitis and MS.

Methods Periodontitis and MS data were obtained from the Gene Expression Omnibus (GEO) database. Shared 
genes were identified by differential expression analysis and weighted gene co-expression network analysis 
(WGCNA). Then, enrichment analysis for the shared genes was carried out by multiple methods. The least absolute 
shrinkage and selection operator (LASSO) regression was used to obtain potential shared diagnostic genes. 
Furthermore, the expression profile of 28 immune cells in periodontitis and MS was examined using single-sample 
GSEA (ssGSEA). Finally, real-time quantitative fluorescent PCR (qRT-PCR) and immune histochemical staining were 
employed to validate Hub gene expressions in periodontitis and MS samples.

Results FAM46C, SLC7A7, LY96, CFI, DDIT4L, CD14, C5AR1, and IGJ genes were the shared genes between periodontitis, 
and MS. GO analysis revealed that the shared genes exhibited the greatest enrichment in response to molecules of 
bacterial origin. LASSO analysis indicated that CFI, DDIT4L, and FAM46C were the most effective shared diagnostic 
biomarkers for periodontitis and MS, which were further validated by qPCR and immunohistochemical staining. 
ssGSEA analysis revealed that T and B cells significantly influence the development of MS and periodontitis.

Conclusions FAM46C, SLC7A7, LY96, CFI, DDIT4L, CD14, C5AR1, and IGJ were the most important crosstalk genes 
between periodontitis, and MS. Further studies found that CFI, DDIT4L, and FAM46C were potential biomarkers in 
periodontitis and MS.
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Introduction
Periodontitis is a common chronic infectious and inflam-
matory disease affecting people worldwide. Its etiology 
mainly includes the direct damage of the periodontal 
tissues by bacteria and the immune disorder of the host 
caused by bacteria [1]. Periodontitis is distinguished 
by enduring inflammation of the tissues that support 
the teeth, destruction of the periodontal ligaments, and 
progressive loss of alveolar bone around the teeth [2]. 
Recently, it has been shown that periodontitis can lead 
to several systemic illnesses. This may be due to the pro-
inflammatory cytokines or bacteria in the mouth through 
the blood or triggering the body’s immune response and 
other related mechanisms [3].

Multiple sclerosis (MS) is an autoimmune disease that 
causes inflammatory demyelinating lesions of white 
matter in the central nervous system [4]. Even though 
the cause of MS is unclear, current findings suggest that 
environmental and genetic variables contribute to the 
disease’s development [5]. Several environmental fac-
tors, such as infection, latitude, vitamin D deficiency, 
and smoking, contribute to the development of MS [6]. 
Research has shown that bacterial infection may be a cru-
cial factor in the etiology of MS. They were found to be 
pathogenic environmental factors in the pathogenesis of 
MS [13]. In addition, some pathogenic or symbiotic bac-
teria can mediate MS by activating Th17 cells to produce 
inflammatory factors. Studies have shown that Porphy-
romonas gingivalis (P. gingivalis) is significantly elevated 
in patients with MS, and P. gingivalis is also one of the 
main causative agents of periodontitis [7]. Also, people 
with periodontitis are more susceptible to MS, and peri-
odontal infections may worsen MS symptoms [8]. These 
findings suggest that there could be links between peri-
odontitis and MS. However, the molecular mechanisms 
and pathological interactions between the two remain 
unclear.

As microarray and high-throughput sequencing tech-
nologies continue to advance quickly, bioinformatics 
techniques are frequently used to investigate the cross-
talk between diseases in order to reveal the connections 
between the cellular and molecular mechanisms of dis-
eases. In this study, we explored potential crosstalk genes 
between periodontitis and MS through bioinformatics 
methods. We analyzed the interactions between these 
genes and immune cells to acquire a greater compre-
hension of potential mechanisms of interaction between 
periodontitis and MS. Additionally, three candidate 
biomarkers for periodontitis and MS were identified by 
using bioinformatics tools, which were further validated 
by qPCR and immunohistochemical staining techniques, 
suggesting that they may be biomarkers for predicting 
the occurrence of periodontitis and MS.

Materials and methods
Data download
Gene expression data for periodontitis and MS were 
downloaded from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/). In the 
periodontitis dataset, GSE16134 (based on the GPL570 
platform) was used as a test cohort with 310 gingival 
papillae (241 “diseased” and 69 “healthy”), and GSE1334 
as a validation cohort with 247 gingival papillae with 
183 “diseased” and 64 “healthy.” The MS dataset con-
tains GSE108000 (based on the GPL13497 platform) and 
GSE135511 (based on the GPL6883 platform), and we 
combined GSE108000 and GSE135511 into a new data-
set by using the “SVA” R package to remove batches. The 
combined dataset includes 20 healthy controls and 70 
MS samples. In addition, to assess the effectiveness of the 
diagnostic process, we downloaded the GSE38010 data-
set (based on the GPL570 platform), which contains 2 
healthy controls and 5 MS samples.

Identification of DEGs
To normalize the datasets, R (4.2.3) software was used. 
Afterward, we identified differentially expressed genes 
(DEGs) from the GSE16134 and a combined dataset of 
the GSE108000 and GSE135511 by using the R package 
“limma” with adjusted P values < 0.05 and |log FC|≥0.8.

WGCNA network construction and module identification
The co-expression network of periodontitis (GSE16134) 
and MS (a merged dataset of GSE108000 and 
GSE135511) was constructed using the WGCNA pack-
age in R. The network is ensured to be a scale-free net-
work by using a soft threshold, which is advantageous 
for subsequent network generation. Gene modules were 
identified using hierarchical clustering trees, while gene 
modules with strong connections were constructed 
using hierarchical clustering based on topological over-
lap matrix (TOM). Pearson’s correlation coefficient was 
calculated to analyze relationships between the various 
modules and diseases. The module showing the highest 
correlation with the disease was selected, and the genes 
within this module were obtained.

Identification of shared genes and pathway enrichment
By drawing Venn diagrams, the shared genes identified 
by WGCNA and DEG were obtained. Then, we explored 
functions and pathways associated with these genes 
through Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) using “clusterProfiler” and 
“org.Hs.eg.db” packages [9–12].

https://www.ncbi.nlm.nih.gov/geo/
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Feature selection by the least absolute shrinkage and 
selection operator
To discover hub genes with the best diagnostic efficacy 
among the shared genes identified above between peri-
odontitis and MS, we utilized the “glmnet” package in 
R to conduct the least absolute shrinkage and selection 
operator (LASSO) regression.

Candidate biomarker expression levels and diagnostic 
value
We utilized the “ggplot2” package in R software to test 
expression levels of the hub genes in periodontitis and 
MS samples. To assess the diagnostic efficacy of poten-
tial biomarkers on periodontitis (GSE16134) and MS (a 
merged dataset of GSE108000 and GSE135511) data-
sets, we used receiver operating characteristic curves 
(ROCs) using the “pROC” package in R. Furthermore, 
we verify the diagnostic efficiency of potential biomark-
ers using two external datasets including GSE10334 and 
GSE38010.

ssGSEA
We analyzed the infiltration of immune cells in diseased 
and healthy samples through ssGSEA using the “GSVA” R 
package. Then, we explored links between potential bio-
markers and infiltrating immune cells through the Spear-
man method.

Gingival biopsy and peripheral blood collection
10 human gingival tissues, including 5 cases and 5 con-
trols, were obtained from healthy volunteers and patients 
with periodontitis. In addition, our study also included 
individuals with 5 MS samples and 10 healthy volunteers, 
and we obtained peripheral blood from multiple sclerosis 
patients and healthy people, respectively, for the extrac-
tion of peripheral blood mononuclear cells (PBMCs). 
Inclusion criteria included patients diagnosed and 
treated for the first time, patients with complete medi-
cal records, and patients without systemic disorders. All 
studies were approved by the Ethics Committee of the 
Affiliated Stomatology Hospital of Anhui Medical Uni-
versity and the First Affiliated Hospital of Anhui Medical 
University.

RNA collection and qRT-PCR
A Ficoll (Histopaque; Sigma–Aldrich, Zwijndrecht, 
The Netherlands) density gradient was used to extract 
PBMCs through centrifugation. RNA from gingival tissue 
and PBMCs was extracted using TRIzol reagent (Invi-
trogen). cDNAs was synthesized from 2  µg total RNA 
according to instructions of cDNA Reverse Transcription 
Kit (Takara, Tokyo, Japan). Subsequently, qRT-PCR was 
performed using the Stratagene Mx3000P system (Agi-
lent Technologies, USA) and SYBR Green Master Mix 

(11,701, Accurate Biology). GAPDH was used to nor-
malize the gene’s expression levels, and the comparative 
Ct method with Formula 2−ΔCt was used to compute the 
expression value. All experiments were repeated more 
than three times. Supplementary Table S1 contains a list 
of primers.

Immunohistochemical staining of gingival tissue
The collected gingival tissues were preserved using 4% 
paraformaldehyde and then embedded in paraffin. The 
paraffin-embedded tissue was sliced into serial Sect.  4 
micrometers thick and then deparaffinized for antigen 
extraction. Subsequently, these slides were treated with 
goat serum and then incubated with antibodies. After 
that, 3,3’-diaminobenzidine tetrahydrochloride (DAB) 
and hematoxylin were used to stain the sections. Micro-
scope images were captured and processed using image-
processing software (ImageJ v 1.48).

Statistical analysis
We utilized GraphPad Prism 8.0 for both conducting sta-
tistical analysis and creating visual representations. All 
results are expressed as mean ± standard deviation. The 
method chosen for statistical analysis was the unpaired 
t-test (P < 0.05).

Results
Identification of DEGs
In GSE16134, a total of 315 DEGs with 217 upregulated 
and 98 downregulated, were found, while the combined 
dataset of GSE108000 and GSE135511 showed 227 
DEGs, 150 of which were upregulated and 77 down-
regulated. The top 100 DEGs of these two diseases were 
shown in heatmaps (Fig. 1a, b), and expression patterns 
of the DEGs in these diseases were displayed in volcano 
maps (Fig. 1c, d). Ten genes (FAM46C, COL4A1, SLC7A7, 
LY96, CFI, DDIT4L, CD14, C5AR1, IGJ, NEFL) differently 
expressed in both MS and periodontitis were revealed 
by combining the upregulated and downregulated genes 
(Fig. 1e).

WGCNA network construction and module identification
By clustering samples to check the outliers, neither 
GSE16134 nor a combined dataset of GSE108000 and 
GSE135511 deleted the samples (Fig.  2a, b). To ensure 
the creation of a scale-free network, a power of β = 12 
was used for GSE16134, while the β value was 3 for the 
combined GSE108000 and GSE135511 datasets. The 
co-expression network generated by periodontitis sam-
ples consisted of 7 modules, whereas the network con-
structed using MS samples contained 9 modules (Fig. 2c, 
d). The Pearson correlation coefficient was applied to 
calculate the associations of modules with disease. In 
GSE16134, the turquoise module had the largest positive 
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Fig. 1 identification of genes with variable expression. The periodontitis database GSE16134’s top 100 DEGs are depicted in a heatmap in Figure (a). (b) 
In a combined dataset of GSE108000 and GSE135511 in MS, a heatmap of the top 100 DEGs. (c) A DEG volcano graphic from the GSE16134 periodontitis 
database. (d) A volcano plot of DEGs in the MS dataset created by merging GSE108000 and GSE135511. (e) A Venn diagram showing an overlap of 10 
DEGs between periodontitis and MS. Control is a negative; MS is multiple sclerosis. Differentially expressed genes, or DEGs
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Fig. 2 Analysis of coexpression for genes with differential expression. (a) Sample dendrogram and trait heatmap in the periodontitis database GSE16134. 
(b) Sample dendrogram and trait heatmap in a merged dataset of GSE108000 and GSE135511 in MS. (c) Heatmap of the module-trait relationships in 
the periodontitis database GSE16134. (d) Heatmap of the module-trait connections in the combined GSE108000 and GSE135511 dataset in MS. (e) Venn 
diagram shows that 151 genes overlap in MS and periodontitis modules. MS: Multiple sclerosis
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correlation with periodontitis (r = 0.67), while the blue 
module showed the most significant negative correla-
tion (r = -0.41). In a combined dataset of GSE108000 
and GSE135511, the blue module had the largest positive 
association for MS (r = 0.51), whereas the pink module 
had the most significant negative correlation (r = -0.45). 
There were 151 overlapping genes obtained by intersect-
ing genes in the most obvious positive correlation and 
negative correlation modules (Fig. 2e).

Identification of shared genes and pathway enrichment
Venn diagrams revealed that there were eight shared 
genes (FAM46C, SLC7A7, LY96, CFI, DDIT4L, CD14, 
C5AR1, and IGJ) that overlapped between periodonti-
tis and MS which were screened by WGCNA and DEGs 
(Fig.  3a). The GO analysis indicated that these shared 
genes were most significantly associated with response 
to molecule of bacterial origin, positive regulation of 
response to external stimulus, and positive regulation of 
cytokine production (Fig.  3b). According to the KEGG 
analysis, these genes were primarily enriched in alcoholic 
liver disease (ALD), pertussis, complement and coagula-
tion cascades, staphylococcus aureus infection, NF-κB 
signaling pathway, Toll-like receptor signaling path-
way, lipid and atherosclerosis, and salmonella infection 
(Fig. 3c).

Identification of potential shared diagnostic genes by least 
absolute shrinkage and selection operator
A LASSO regression method was utilized to identify 
the diagnostic gene common to both disorders. Four 
core cross-genes were found in the periodontitis data-
set GSE16134 (Fig.  4a, b), and four core cross-genes 
were found in the MS dataset merged in GSE108000 
and GSE135511 (Fig.  4c, d). Three overlapping genes 
(FAM46C, CFI, and DDIT4L) were identified as the most 
effective diagnostic biomarkers for both periodontitis 
and MS by using a Venn diagram (Fig. 4e).

Candidate biomarker expression levels and diagnostic 
value
Further studies found that three candidate biomark-
ers (FAM46C, CFI, and DDIT4L) expression levels were 
all upregulated in both periodontitis and MS samples 
(Fig.  5a, b). ROC curves were employed to evaluate the 
diagnostic efficacy of these potential biomarkers. In 
GSE16134 (Fig.  5c), the diagnostic value of these three 
biomarkers was high: FAM46C (AUC = 0.896), CFI (AUC 
= 0.830), and DDIT4L (AUC = 0.795). In a dataset merged 
from GSE108000 and GSE135511 (Fig.  5d), CFI (AUC 
= 0.775) and DDIT4L (AUC = 0.820) exhibited greater 
diagnostic utility for MS, while FAM46C demonstrated 
an almost flawless diagnostic value (AUC = 0.946). Then, 
two external datasets (GSE10034 and GSE38010) were 

further used to verify the prediction accuracy of CFI, 
DDIT4L, and FAM46C. All three showed strong predic-
tive performance (Supplementary Fig. S1).

Immune infiltration analysis
Furthermore, we explored the infiltration of immune cells 
in different samples. Both results of heatmaps (Fig. 6a, b) 
and violin plots (Fig.  6c, d) showed significant changes 
in a variety of immune cells in the periodontitis dataset 
GSE16134 and the MS dataset merged by GSE108000 
and GSE135511, especially T cells and B cells. Addition-
ally, analysis of the correlation between immune cells 
and candidate biomarkers revealed a positive association 
between regulatory T cells, natural killer cells, mast cells, 
immature dendritic cells and gamma delta T cells with 
CFI in both periodontitis samples and MS samples. In 
MS and periodontitis samples, there was a positive cor-
relation between immature dendritic cells and DDIT4L. 
In samples with periodontitis and MS, type 1 T helper 
cells, T follicular helper cells, regulatory T cells plasma-
cytoid dendritic cells, natural killer T cells, natural killer 
cells, MDSCs, mast cells, macrophage, immature B cells, 
gamma delta T cells, activated B cells, activated dendritic 
cells, activated CD4 T cells and activated CD8 T cells 
showed a positive correlation with FAM46C (Fig. 6e, f ).

CFI, DDIT4L and F4AM6C were upregulated in patients with 
periodontitis and MS compared with healthy controls
To further validate the diagnostic values of three candi-
date markers, qPCR and immunohistochemical stain-
ing were used to verify their expressions in periodontitis 
and MS samples. qRT-PCR results indicated that mRNA 
levels of the pro-inflammatory cytokines (IL-1, IL-6, and 
IL-8) (Fig. 7a) and also CFI, DDIT4L, F4AM6C (Fig. 7b) 
were upregulated in patients with periodontitis com-
pared with healthy controls. Similarly, qRT-PCR results 
(Fig.  7c) indicated that the mRNA levels of the CFI, 
DDIT4L, and F4AM6C were upregulated in patients with 
MS compared with healthy controls. Results of immuno-
histochemical staining revealed that CFI, DDIT4L, and 
FAM46C were upregulated in periodontitis samples com-
pared with healthy controls (Fig. 7d).

Discussion
Periodontitis, a chronic inflammatory disease, causes 
systemic inflammation and contributes to the develop-
ment of several neurodegenerative diseases, such as MS 
[8, 13]. However, the mechanisms remain to be revealed. 
Additionally, the lack of sufficient knowledge regard-
ing the pathogenesis of MS has impeded the progress of 
treatment options. Through the use of large-scale data, 
bioinformatics techniques offer a thorough knowledge 
of numerous illnesses at the molecular level [14, 15]. 
Moreover, it is also particularly important for identifying 
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Fig. 3 Identification of the shared genes and their KEGG pathway analysis and GO functional enrichment analysis. (a) Venn diagram showing that 8 genes 
were elected from the union set between DEGs and trait-module key genes in WGCNA. (b) GO analysis of the shared genes. (c) KEGG pathway enrich-
ment analysis of the shared genes. DEG: differentially expressed gene; WGCNA: weighted gene co-expression network analysis
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Fig. 4 Identification of potential shared diagnostic genes by the LASSO regression model. (a) Tenfold cross-validation to select the optimal tuning pa-
rameter log (lambda) in the the periodontitis database GSE16134 database. (b) LASSO coefficient profiles of diagnostic genes in the the periodontitis 
database GSE16134 database. (c) Tenfold cross-validation to select the optimal tuning parameter log (lambda) in a merged dataset of GSE108000 and 
GSE135511 in MS. (d) LASSO coefficient profiles of diagnostic genes in a merged dataset of GSE108000 and GSE135511 in MS. (e) Venn diagram showing 
the optimal diagnostic biomarkers
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Fig. 5 Expression pattern validation and diagnostic value. (a) Expression of CFI, DDIT4L and FAM46C in the periodontitis database GSE16134. (b) Expres-
sion of CFI, DDIT4L and FAM46C in a merged dataset of GSE108000 and GSE135511 in MS. (c) ROC curve of the shared diagnostic genes in the periodontitis 
database GSE16134. (d) ROC curve of the shared diagnostic genes in a merged dataset of GSE108000 and GSE135511 in MS. Con: control; MS: Multiple 
sclerosis. *P < 0.05; **P < 0.01; ***P < 0.001
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Fig. 6 Analysis of immune infiltration associated with periodontitis and MS. (a) A heatmap of the distribution of 28 immune cells in normal samples and 
periodontitis samples. (b) A heatmap of the distribution of 28 immune cells in normal samples and MS samples. (c) A violin plot of the distribution of 28 
immune cells in normal samples and periodontitis samples. (d) A violin plot of the distribution of 28 immune cells in normal samples and MS samples. (e) 
The relationship between diagnostic genes and immune cell infiltration in the periodontitis dataset GSE16134. (f) The relationship between diagnostic 
genes and immune cell infiltration in the MS dataset merged by GSE108000 and GSE135511. Con, control; MS: Multiple sclerosis

 



Page 11 of 15Wu et al. BMC Oral Health           (2024) 24:75 

Fig. 7 CFI, DDIT4L and FAM46C was upregulated in patients with periodontitis and MS compared with healthy controls. (a) qRT-PCR results show the 
mRNA expression of IL-1β, IL-6 and IL-8 in the gingivae of healthy and periodontitis (ncon=5, ncase=5). GAPDH was used for normalization relative to the 
control group. (b) qRT-PCR results show the mRNA expression of CFI, DDIT4L and FAM46C in the gingivae of healthy and periodontitis (ncon=5, ncase=5). 
GAPDH was used for normalization relative to the control group. (c) qRT-PCR results show the mRNA expression of CFI, DDIT4L and FAM46C in the periph-
eral blood of healthy and MS (ncon=10, ncase=5). GAPDH was used for normalization relative to the control group. (d) Immunohistochemistry staining of 
CFI, DDIT4L and FAM46C in the gingivae of healthy and periodontitis. Con, control; MS: Multiple sclerosis
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potential biomarkers for the diagnosis and prognosis of 
human diseases [16, 17]. Nevertheless, there were few 
reports on their utilization for screening potential bio-
markers in patients with periodontitis combined with 
MS.

In this study, we used WGCNA to look into the com-
mon pathways by combining the transcriptomes of MS 
and periodontitis. Meanwhile, we uncovered possible 
intersecting genes, common pathways, and infiltration 
of immune cells between periodontitis and MS through 
multiple methods. Results of our study discovered that 
the most significant crosstalk genes between periodonti-
tis and MS were FAM46C, SLC7A7, LY96, CFI, DDIT4L, 
CD14, and IGJ, which may be associated with response 
to molecules of bacterial origin. Then, it was discovered 
that CFI, DDIT4L, and FAM46C are useful diagnostic 
markers for periodontitis and MS. T cells and B cells are 
essential in developing MS and periodontitis, according 
to the results of immune infiltration.

The findings of this research imply that the primary 
genes involved in the cross-talk between MS and peri-
odontitis are linked to a bacterial molecular response. 
As we all know, periodontitis is an inflammatory disease, 
and bacteria play an important role in its pathogenesis 
[18]. Studies have demonstrated that the pathogens of 
periodontitis include a variety of bacteria, such as Acti-
nomyces aggregator, P. gingivalis, Forsetana, Treponema 
dentalis, and Clostridium nucleatus. These bacteria can 
cause gingival cell death and periodontal tissue dam-
age by secreting lipopolysaccharide (LPS) and a variety 
of toxic substances, producing a variety of inflamma-
tory factors. These cytokines can also spread through the 
blood, causing a systemic inflammatory response that 
triggers MS [8]. In addition to being transmitted through 
the blood, some bacteria can directly stimulate nerve 
immune cells to activate an inflammatory response. For 
instance, glial cells, the main immune cells in the nervous 
system, have been discovered to be stimulated by P. gin-
givalis and its products lipopolysaccharide to produce 
pro-inflammatory mediators such as nitric oxide (NO) 
and prostaglandin E2 (PGE2), leading to demyelination 
and aggravating MS [19]. These results imply that bacte-
rial factors are critical in developing MS and periodon-
titis and may account for part of the greater incidence 
of MS in patients with periodontitis. The KEGG enrich-
ment analysis revealed that these crosstalk genes are 
involved in ALD, the complement and clotting cascade, 
NF-κB signaling pathway, and Toll-like receptor signal-
ing pathways. Studies have indicated that P. gingivalis can 
worsen ALD by changing the composition of intestinal 
microbiota and the immune response of the host [20]. 
Moreover, ALD has an increased risk of MS development 
[21]. Meanwhile, the involvement of complement and 
coagulation cascade in the mechanisms of periodontitis 

and MS has been demonstrated [22–24]. NF-κB is a 
signaling pathway that plays a crucial role in regulat-
ing immune and inflammatory responses. Activation of 
NF-κB signaling pathway can enhance osteoclast differ-
entiation and exacerbate periodontitis by increasing the 
expression of IL-1β and various inflammatory factors [25, 
26]. Furthermore, activation of NF-κB signaling pathway 
can also impact MS by stimulating peripheral immunity 
and inflammatory responses in the central nervous sys-
tem [27]. Additionally, Toll-like receptor signaling path-
ways have also been shown to mediate the development 
of periodontitis and MS by regulating immune responses 
[28, 29].

This study explored the potential immunological con-
nection between MS and periodontitis in the preliminary 
stages. According to our findings, the immunological 
patterns of the MS and periodontitis groups were consid-
erably different from those of the control group, with the 
increase in B cells and T cells being particularly notice-
able. Multiple infections invading the host and setting off 
an immune response cause periodontitis. P. gingivalis, 
the main pathogenic bacterium responsible for periodon-
titis, has been identified to release a variety of virulence 
factors, which in turn trigger the production of pro-
inflammatory molecules, leading to an increase in the 
number of local B cells and T cells. Peripherally activated 
T-cell and B-cell interactions additionally trigger MS. 
It is generally known that B cells play important roles 
in the development of MS. For instance, B cells in MS 
patients may emit not only antibodies but also soluble 
toxic substances that, by their proliferation, harm oligo-
dendrocytes and neurons [30]. Meanwhile, many B-cell 
subtypes, including memory B-cells and plasma mother 
cells, have been observed in the cerebrospinal fluid (CSF) 
of MS patients, especially memory B-cells and plasma 
mother cells [31]. More importantly, the success of treat-
ing MS by depleting B cells using anti-CD20 antibodies 
strongly highlights the importance of B cells in MS [30]. 
Moreover, studies have shown that CD4 T lymphocytes, 
particularly helper T cells 1 (Th1) and 17 (Th17), can pass 
the blood-brain barrier in response to myelin antigens, 
infiltrate the central nervous system, and trigger inflam-
mation. Among them, Th1 and Th17 can aggravate MS 
by secreting IFN-γ and IL-17 [32]. It’s interesting to note 
that one study discovered that P. gingivalis infection can 
boost the impact of T lymphocytes on CNS autoantigens 
[19]. Therefore, periodontal disease may exacerbate MS 
by increasing the sensitivity of T and B cells to autoim-
mune antigens.

To improve the accuracy of testing biomarkers, we 
choose datasets with large sample sizes as much as pos-
sible. In our research, the periodontitis dataset GSE16134 
contained 310 samples of gingival tissue, while the MS 
dataset, which was created by merging GSE108000 and 
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GSE135511, contained 90 samples of brain tissue. The 
receiver operator curve (AUC) is employed to evaluate 
the diagnostic efficacy of biomarkers. ROC curve showed 
that the AUC values of CFI, DDIT4L, and FAM46C in the 
diagnosis of periodontitis were 0.830, 0.795, and 0.896, 
while the AUC values in the diagnosis of MS were 0.775, 
0.820, and 0.946. These results suggest that CFI, DDIT4L, 
and FAM46C have a high capacity to predict periodonti-
tis and MS.

Family with sequence similarity 46 member C 
(FAM46C), a non-standard poly(A) polymerase, was 
found to be a significant crosstalk gene between peri-
odontitis and MS. Previous evidence has shown that 
FAM46C can inhibit tumor growth through a variety of 
pathways [33]. In addition, emerging evidence has shown 
that FAM46C can regulate immune responses. M1/M2 
imbalance is one of the manifestations of periodontitis 
and MS [34, 35]. Studies have found that FAM46C can 
promote the polarization of M2 and alleviate the immune 
response [36]. This may be one of the mechanisms by 
which FAM46C participates in periodontitis and MS. The 
results of the ssGSEA study showed that FAM46C was 
significantly positively associated with macrophages in 
periodontitis and MS samples, which also jointly empha-
sized the involvement of FAM46C in these two diseases 
of pathology through a mediated immune response.

DNA-damage-inducible transcript 4 (DDIT4L) was 
found to be a gene that regulates autophagy and pro-
motes autophagy by inhibiting the mTOR signaling 
pathway [37]. As we know, autophagy plays a significant 
part in innate immunity and has been linked to many 
inflammatory diseases [38]. In the pathogenesis of peri-
odontitis, autophagy has been discovered to activate 
and regulate inflammation by promoting or inhibiting 
cytokines and lead to bone loss by disrupting the bal-
ance between osteogenesis and osteolysis [39, 40]. In 
addition, studies have shown that autophagy has a dual 
function in MS. On the one hand, myelin antigen presen-
tation by CD4 T cells can be enhanced by enhancing the 
process of autophagy, thus aggravating MS. On the other 
hand, defective autophagy leads to abnormal clearance 
of inflammatory bodies and myelin debris in microglia 
and promotes pro-inflammatory phenotypes [31]. The 
above evidence indicates that DDIT4L may play a role 
in periodontitis-mediated MS by regulating autophagy. 
However, further experiments are needed to confirm this 
speculation.

Complement Factor I (CFI), a family of soluble serine 
proteases, can regulate the complement system by inac-
tivating C3b and C4b [41]. However, less research has 
been reported on CFI in periodontitis and MS, and the 
evidence below suggests that CFI may participate in both 
diseases by regulating the complement system. Accumu-
lated evidence has demonstrated that the complement 

system is implicated in multiple neurodegenerative dis-
eases. It has been shown that the complement system is 
activated at the onset of MS, and the expression levels of 
C3 and C4 are increased [42]. In addition, the accumu-
lation of C3b can cause damage to neurons through the 
activation of C5a [43]. The expression of C3, C3b, and 
C4b was also discovered to be elevated in the gingival tis-
sue of individuals with periodontitis, and its expression 
was found to be positively connected with the severity of 
the condition. Meanwhile, using C3b/C4b inhibitors can 
alleviate alveolar bone loss in periodontitis [44]. These 
findings suggest that CFI may influence periodontitis-
mediated MS by regulating the transformation of C3b 
and C4b.

In summary, our study revealed a correlation between 
periodontitis and MS using bioinformatic analyses, sug-
gesting that MS can be prevented by improving oral 
hygiene and treating periodontitis, and providing guid-
ance for the treatment of patients with periodonti-
tis combined with MS. More importantly, FAM46C, 
SLC7A7, LY96, CFI, DDIT4L, CD14, C5AR1 and IGJ were 
the most significant crosstalk genes between periodonti-
tis and MS, and CFI, DDIT4L, FAM46C can be used as 
potential biomarkers for the diagnosis of periodontitis 
and MS. Immune responses driven by B cells and T cells 
are crucial in the pathogenesis of periodontitis and MS.
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