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Introduction
Bruxism refers to the phenomenon of involuntary con-
traction of the masticatory muscles under non-physio-
logical conditions, resulting in intermittent masticatory 
movements [1]. It is divided into awake bruxism and 
sleep bruxism. Awake bruxism occurs in a conscious state 
and is usually associated with emotions such as mental 
tension, anxiety, stress, anger, or depression. However, 
sleep bruxism occurs at night and is usually caused by 
sleep apnea or related to sleep disorders. Research have 
shown that bruxism is common in all age groups and has 
become an important factor for dental health. It can lead 
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Abstract
Background In the classification of bruxism patients based on electroencephalogram (EEG), feature extraction is 
essential. The method of using multi-channel EEG fusing electrocardiogram (ECG) and Electromyography (EMG) signal 
features has been proved to have good performance in bruxism classification, but the classification performance 
based on single channel EEG signal is still understudied. We investigate the efficacy of single EEG channel in bruxism 
classification.

Methods We have extracted time-domain, frequency-domain, and nonlinear features from single EEG channel to 
classify bruxism. Five common bipolar EEG recordings from 2 bruxism patients and 4 healthy controls during REM 
sleep were analyzed. The time domain (mean, standard deviation, root mean squared value), frequency domain 
(absolute, relative and ratios power spectral density (PSD)), and non-linear features (sample entropy) of different 
EEG frequency bands were analyzed from five EEG channels of each participant. Fine tree algorithm was trained and 
tested for classifying sleep bruxism with healthy controls using five-fold cross-validation.

Results Our results demonstrate that the C4P4 EEG channel was most effective for classification of sleep bruxism that 
yielded 95.59% sensitivity, 98.44% specificity, 97.84% accuracy, and 94.20% positive predictive value (PPV).

Conclusions Our results illustrate the feasibility of sleep bruxism classification using single EEG channel and provides 
an experimental foundation for the development of a future portable automatic sleep bruxism detection system.
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to rapid tooth wear, resulting in pulpitis, narrowing of the 
occlusal surface, temporomandibular joint disease, ner-
vous system disease, and muscle pain [2]. The prevalence 
of sleep bruxism in adults ranges from 8 to 16%, whereas 
in children, it can be as high as 40% [3, 4]. Unfortunately, 
the etiology of bruxism is complex and the pathogen-
esis is unclear [5]. Therefore, it is of great significance to 
detect sleep bruxism as early as possible in order to select 
the most appropriate treatment method.

Polysomnography (PSG) is considered the gold stan-
dard for diagnosing bruxism, but it requires many sen-
sors that increases the complexity causing discomfort 
to patients. However, electroencephalogram (EEG) pro-
vides information related to brain activities that helps 
to understand relationship between bruxism and brain 
function. In literature, various physiological signals such 
as electrocardiogram (ECG), Electromyography (EMG), 
and EEG have been used in the detection of sleep brux-
ism. Based on ECG, heart rate variability was used to 
assess sympathetic cardiac activity in patients with 
bruxism. Research indicates that patients with bruxism 
exhibit higher sympathetic cardiac activity compared to 
healthy controls [6, 7]. Facial EMG can be used to record 
the potential activity of the patient’s masseter and tempo-
ral muscles at night, and the potential value and activity 
of the EMG can be used to determine whether bruxism 
occurs [8, 9]. Research has shown that combining ECG 
and EMG to achieve classification of nocturnal bruxism 
has also achieved good results [10]. In addition, video 
capture can also be used to detect the occurrence of 
bruxism [11], or magnetic resonance imaging for brux-
ism examination [12]. In addition, EEG is a non-invasive 
signal, which can be easily obtained from the electrode. It 
can record neural activity in sleep through different fre-
quency bands. This technology has been widely used as 
a standard to quantify potential neural activity in sleep 
research [13, 14]. Researchers have found that most 
patients with bruxism have significant signs of increased 
electrical activity in the cerebral cortex during tooth 
grinding [1]. Sleep bruxism detection has also been con-
ducted by analyzing EEG signals [15–18]. The research 
of Dakun Lai et al. [10]. shows that the power Spectral 
density (PSD) of EEG channels in patients with bruxism 
is significantly higher than that in normal people dur-
ing rapid eye movement (REM) and awake sleep. Their 
research also shows that on the basis of the power spec-
trum characteristics of EEG signals, the fusion of EMG1 
and ECG channel signals can achieve better results in the 
recognition of sleep bruxism patients. Bin Heyat et al. 
also demonstrate the effectiveness of EEG in detecting 
sleep bruxism [16]. In addition, the theta activity is also 
believed to be associated with the occurrence of bruxism 
[18].

Although the effectiveness of EEG signals has been 
proven in previous studies, there are problems obtaining 
EEG signals with too many electrodes causing difficulty 
in installation and makes patients discomfort. Therefore, 
identifying the neural correlates of bruxism via single-
channel EEG may be of high clinical significance in man-
aging the adverse consequences of sleep bruxism.

The goal of this study is to fully extract the PSD features 
of EEG in patients with sleep bruxism, thereby attempt-
ing to obtain the most effective single channel EEG for 
identifying bruxism. We propose a new data processing 
algorithm based on the fusion of multiple EEG frequency 
band signal features. The algorithm first extracts the PSD 
values of different EEG frequency bands in REM sleep 
stage, and then extracts 28 features of these frequency 
bands in time domain, frequency domain and nonlinear. 
On the basis of fully extracting the features of EEG sig-
nals, the machine learning algorithm is used to identify 
patients with bruxism. After integrating these features, 
the classifier can obtain sufficient reference information, 
providing a reliable basis for the training and accurate 
classification using machine learning algorithms. The 
remaining sections of the paper are structured as fol-
lows: Section II covers data preparation, data processing, 
feature extraction, and statistical analysis. Subsequently, 
machine learning algorithm is applied to classify patients 
with bruxism. Section III presents the results from data 
analysis. In Section IV, the research results are thor-
oughly discussed and compared with existing methods 
and findings. Section V presents conclusions and pros-
pects for future work.

Materials & methods
To accurately describe the classification process of brux-
ism, we designed a data processing flow as shown in 
Fig. 1. Data processing flow description:

Data processing and feature extraction
EEG Signal Reading: Read the EEG signals from the REM 
sleep stages of the subjects. Wavelet Decomposition: Uti-
lize the DB5 wavelet to decompose the EEG signals into 
delta, theta, alpha, and beta frequency bands. Relative 
PSD Calculation: Calculate the relative PSD for each fre-
quency band, capturing time-domain, frequency-domain, 
and non-linear features.

Statistical analysis
Normality Test: Perform a normality test on the extracted 
features to ensure their distribution is suitable for statis-
tical analysis. Statistical Test Selection: Determine the 
appropriate statistical test (e.g., t-test, Mann-Whitney 
Rank-Sum test) based on the distribution. P-value Calcu-
lation and Significance Analysis: Carry out the selected 
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statistical test, calculate the p-value, and determine the 
significance of the features.

Classification and result statistics
Classifier Selection: Choose an appropriate classification 
algorithm based on the features. Classification and Result 
Collection: Utilize the selected classifier to classify the 
data and collect the classification results. Optimization 
and Validation: Iterate over multiple rounds of experi-
mentation and comparison to identify the optimal EEG 
channel and classify the data effectively.

Through these three key processing steps, we aim to 
extract significant features from the EEG signals, perform 
statistical analysis to identify significant features, and 
utilize these features for effective classification of sleep 
bruxism. The end result would be the identification of the 

optimal EEG channel for classification and the resulting 
classification outcomes.

Experimental protocol
The data was acquired from cyclic alternating pattern 
(CAP) sleep database of PhysioNet [19, 20]. It provides 
representative PSG records of 108 participants with vari-
ous pathophysiological backgrounds, including 16 con-
trols, 2 bruxism patients, 9 Insomnia, 5 Narcolepsy, 40 
Nocturnal frontal lobe epilepsy, 10 Periodic leg move-
ments, 22 REM behavior orders, and 4 Sleep disordered 
breathing. Each record includes three or more EEG sig-
nals, as well as EMG, airflow, respiratory effort, SaO2, 
and ECG signals, and each record has been carefully 
reviewed by expert neurologists for sleep stage and CAP 
annotations. The healthy controls who participated in the 
study exhibited no neurological disorders and were not 

Fig. 1 The block diagram of this study
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taking any medications that could affect the central ner-
vous system. All the bipolar EEG channels were sampled 
at 512  Hz and placed according to 10–20 international 
electrode placement system [21].

Since the EEG channels collected by each subject in 
the database are different, we can only select data from 
4 health controls (participants: n3, n5, n10, and n11) and 
2 bruxism patients (participants: brux1 and brux2) with 
the same EEG channels (F4C4, C4P4, Fp1F3, F3C3, and 
C4A1) in this study. According to the annotations made 
by neurologists, the length of each REM sleep segment 
was determined to be 30 s. In this study, the total num-
ber of REM sleep events is 1295 segments (duration is 
38,850 s), including 276 segments of data from bruxism 
patients. Demographic information for the participants, 
along with REM sleep events, is presented in Table 1.

Data processing
First, the “edfread” function is used to read each polysom-
nographic record, which helps to obtain the identification 
and specific data of each channel, providing a founda-
tion for subsequent analysis. Then, the “ScoringReader” 
function is executed to obtain the identification code 
and duration of each sleep stage. This information is 
crucial for accurately determining an individual’s sleep 
state. Finally, EEG data from the REM sleep stage are 
extracted, which prepare for further in-depth research. 
After preparing the REM segment of the EEG signal, the 
next step is to calculate its PSD. First, the REM segment 
of the EEG signal is decomposed into different frequency 
bands using the DB5 wavelet, including (δ, 1–4 Hz), theta 
(θ, 4–8 Hz), alpha (α, 8–13 Hz), and beta (β, 13–30 Hz). 
Next, the PSD was calculated using Welch estimate with 
Hamming window size of 128 samples with 50% overlap 
and 256 discrete Fourier transform points for each fre-
quency bands. Finally, the absolute PSD (APSD) were 
calculated.

 
RPSDn =

PSDn

PSDδ + PSDθ + PSDα + PSDβ
× 100% , (n ∈ [δ, θ, α, β]) (1)

The relative PSD on each frequency band was obtained 
from the ratio of absolute power of each four frequency 
bands to the total power within the spectrum of 1–30 Hz 
[13]. The delta band is chosen beyond 1  Hz to mini-
mize low frequency head movement and ocular artifacts 
below 1 Hz. The PSD analysis within the frequency band 
1–30  Hz is chosen since EEG information relating to 
sleep relies within this spectrum.

In order to conduct subsequent statistical analysis and 
obtain significant feature indicators for characterizing 
bruxism, we performed subsequent processing. Vari-
ous features were extracted by time domain, frequency 
domain, and sample entropy (SampEn) for each REM 
sleep epochs from healthy controls and bruxism patients. 
For time domain features, Mean value, Standard Devia-
tion (SD), and Root Mean Square (RMS) were calcu-
lated for each of the frequency bands [22]. For frequency 
domain features, the relative power spectral density 
(RPSD) including RPSD (δ), RPSD (θ), RPSD (α), RPSD 
(β), and ratios including (θ + α)/β, α/δ, α/θ, and α/β were 
computed as the additional features [23]. For nonlinear 
features, the Shannon entropy (SampEn) was calculated 
with default parameters (the maximum template length is 
5 and the matching threshold is 0.2). Finally, a total of 28 
features including 12 time domain features, 12 frequency 
domain features, and 4 non-linear analysis features were 
extracted.

Statistical analysis
The statistical analysis is performed to compare differ-
ences in EEG features from five EEG bipolar electrodes 
(channels) among healthy controls and bruxism patients. 
A Shapiro-Wilk test is used to examine the normality of 
data and a suitable parametric or non-parametric test is 
adopted based on the data distribution [24]. Since the 
data samples are independent, either two sample t-test as 
a parametric test for normalized data or Mann-Whitney 
Rank-Sum test as a non-parametric test for non-normal-
ized data can be performed to obtain statistical compari-
son among two groups: healthy controls and bruxism 
patients.

Table 1 The participant’s demographic information with the period of rem sleep events obtained from hypnogram. (Note: brux 
stands for bruxism patients and n stands for normal controls. The number at the suffix corresponds to the participant in the Physionet 
dataset label.)
Participants Age in Years Gender REM Sleep Events Sleep epoch (sec) Total time (sec)
brux1 34 M 67 30 2010

brux2 23 M 209 30 6270

n3 35 F 188 30 5640

n5 35 F 232 30 6960

n10 23 M 218 30 6540

n11 28 F 381 30 11,430

29.7 ± 5.3 1295 180 38,850
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Classification and cross-validation
The systematic empirical evaluation of various machine 
learning algorithms shows that Decision tree (Fine Tree) 
algorithm is the optimal algorithm for the classification 
of bruxism in CAP database. Therefore, unless stated 
otherwise, all the data discussed in this paper is the out-
put of the Fine Tree classifier.

Decision tree is a basic method of classification and 
regression. It achieves classification by dividing input fea-
tures into different subsets layer by layer. The core idea of 
decision tree classifier is to determine the decision rules 
for classification by systematically dividing features, thus 
facilitating data classification. Due to its resemblance to 
the branches of a tree, this decision graph is called a deci-
sion tree. During the decision tree classification process, 

instances are segmented based on features and assigned 
to distinct categories. The main advantages of this 
method are model readability, easy to understand, fast 
classification, fast modeling, and prediction [25].

Result
The normality test in the data have exhibited mixed 
behavior and the samples are independent between the 
two groups. Therefore, Mann-Whitney Rank-Sum test 
is used to test the significant difference. The significance 
level is set at the alpha criterion α = 0.05. The relative PSD 
in five EEG channels during REM sleep stage among 
healthy controls and bruxism patients are compared and 
their trends (mean ± SE) are illustrated in Fig. 2.

Fig. 2 The relative spectral power distributed (mean ± SE) in four EEG frequency bands between two groups: healthy controls and bruxism patients 
with five EEG bipolar channels: F4C4, C4P4, Fp1F3, F3C3, and C4A1 during REM sleep. The ‘*’ represents alpha levels: p < 0.05 correspond to significant 
differences
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The statistical analysis comparing healthy controls and 
bruxism patients revealed a significantly lower relative 
delta power (p < 0.05) in three channels (F4C4, Fp1F3, 
and F3C3), as well as a significant decrease in relative 
theta power across all five channels. In contrast, the rela-
tive alpha and beta power exhibited a significant increase 
(p < 0.05) in all five channels for bruxism patients. The 
overall results depicted decrease in low frequency band 
power (delta and theta bands) and increase in high fre-
quency band power (alpha and beta bands) for bruxism 
patients. In low frequency bands, the profound lower rel-
ative power was observed in theta band and more domi-
nant in C4A1 and C4P4 channels whereas, the profound 

higher in relative power was observed in beta band for 
high frequency bands and more dominant in Fp1F3 and 
F4C4 channels. Among four frequency bands, relative 
beta power had most significant differences for sleep 
bruxism patients.

The significance of 28 features from each channel was 
compared between healthy controls and individuals 
with bruxism. As an instance, Tables 2, 3, 4 and 5 com-
pare all the features of participants under healthy con-
trols and bruxsim for C4P4 channel. The Shapiro-Wilk 
test was used to observe the normality of data distribu-
tion and the result showed mixed behavior due to lim-
ited sample size. Therefore, Wilcoxon rank sum test was 

Table 2 The comparison of p-values from 6 participants with 12 time domain features under two psychological states (healthy 
controls and bruxsim) for C4P4 channel
SN Features Healthy controls (mean ± SD) (mV) Bruxism (mean ± SD) (mV) p-value
1 Mean(δ) 0.018 ± 0.006 0.064 ± 0.045 0.566

2 Mean(θ) -1.021E-5 ± 1.092E-5 -2.336E-±5.055E-5 0.989

3 Mean(α) 2.955E-6 ± 1.991E-6 -2.198E-6 ± 1.238E-5 0.842

4 Mean(β) 1.106E-6 ± 7.875E-7 5.211E-7 ± 5.211E-6 0.959

5 SD(δ) 8.280 ± 0.233 6.976 ± 0.708 <=0.001**

6 SD(θ) 0.944 ± 0.009 1.576 ± 0.063 <=0.001**

7 SD(α) 0.309 ± 0.005 0.835 ± 0.033 <=0.001**

8 SD(β) 0.135 ± 0.004 0.608 ± 0.052 <=0.001**

9 RMS(δ) 8.281 ± 0.233 6.981 ± 0.710 <=0.001**

10 RMS(θ) 0.944 ± 0.009 1.576 ± 0.063 <=0.001**

11 RMS(α) 0.309 ± 0.005 0.835 ± 0.033 <=0.001**

12 RMS(β) 0.135 ± 0.004 0.608 ± 0.052 <=0.001**
The ‘*’ and ‘**’ represent alpha levels: p = 0.05, and p = 0.001 correspond to significant differences, respectively

Table 3 The comparison of p-values for 6 participants in frequency domain features in (RPSD and ratios) under two psychological 
states (healthy controls and bruxsim) for C4P4 channel
SN Features Healthy controls (mean ± SD)(%) Bruxsim

(mean ± SD)(%)
p-value

1 RPSD(δ) 65.26 ± 0.422 65.302 ± 0.597 0.677

2 RPSD(θ) 20.619 ± 0.158 17.480 ± 0.317 <=0.001**

3 RPSD(α) 8.424 ± 0.185 9.931 ± 0.348 <=0.001**

4 RPSD(β) 5.696 ± 0.140 7.287 ± 0.197 <=0.001**

5 (θ + α)/β 8.246 ± 0.289 4.721 ± 0.199 <=0.001**

6 α/δ 0.159 ± 0.005 0.169 ± 0.009 <=0.001**

7 α/θ 0.382 ± 0.008 0.633 ± 0.029 <=0.001**

8 α/β 1.601 ± 0.017 1.434 ± 0.032 <=0.001**
The ‘*’ and ‘**’ represent alpha levels: p = 0.05, and p = 0.001 correspond to significant differences, respectively

Table 4 The comparison of p-values for 6 participants in frequency domain features (APSD) under two psychological states (healthy 
controls and bruxsim) for C4P4 channel
SN Features healthy controls (mean ± SD)

(mV2/Hz)
Bruxsim
(mean ± SD)
(mV2/Hz)

p-value

1 APSD(δ) 83.048 ± 16.083 129.720 ± 65.344 <=0.001**

2 APSD(θ) 16.698 ± 2.191 17.517 ± 5.569 <=0.001**

3 APSD(α) 3.885 ± 0.111 7.135 ± 2.170 <=0.001**

4 APSD(β) 2.367 ± 0.059 4.292 ± 1.203 0.188
The ‘*’ and ‘**’ represent alpha levels: p = 0.05, and p = 0.001 correspond to significant differences, respectively
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used for statistical analysis [22]. The test result at p ≤ 0.05 
was considered significant. The results showed that SD 
(α), SD (β), RMS (α), RMS (β), SampEn (α), SampEn (β), 
RPSD (δ), RPSD (θ), RPSD (α), (θ + α)/β, α/δ, α/θ, α/β, 
and APSD (α) had significant differences between healthy 
controls and bruxism patients, demonstrating that these 
features are effective for classification. Most of the fea-
tures used for the classification task were found to be 
significant.

To visually illustrate the behavior of each feature across 
different channels, Fig. 3 displays all 28 features of partic-
ipants from both healthy controls and bruxism patients 
for the C4P4 channel, as an example. Upon observing 
Fig. 3, it can be inferred that, in comparison to other fre-
quency bands, the delta frequency band exhibits signifi-
cant amplitude values on all features, except for a smaller 
amplitude on the SampEn feature. There were signifi-
cant differences in SD, RMS, SampEn and four ratio PSD 

characteristics between healthy controls and bruxism 
patients. Features related to the theta, alpha, and beta fre-
quency bands exhibited distinct behavioral patterns, with 
some of them also demonstrating statistical significance.

All the above mentioned 28 features (see Tables  2, 3, 
4 and 5 for detail) can provide basis for correct identi-
fication of bruxism patients from different aspects. By 
utilizing these features, we evaluated various machine 
learning algorithms and ultimately concluded that Fine 
Tree is the optimal algorithm for bruxism classification 
in the CAP database. Fine Tree classifier with default 
parameters, in MATLAB (Mathworks Inc., MA, USA), 
was used for classification. Table  6 lists the sensitivity, 
specificity, accuracy, and positive predictive value (PPV) 
obtained from all the five channels in the parietal region 
using five-folds cross validation. It showed the C4P4 
channel achieves the highest classification performance 

Table 5 The comparison of p-values for 6 participants with 4 sample entropy features under two psychological states (healthy 
controls and bruxsim) for C4P4 channel
SN Features healthy controls (mean ± SD) Bruxsim (mean ± SD) p-value
1 SampEn(δ) 0.530 ± 0.002 0.572 ± 0.006 <=0.001**

2 SampEn(θ) 0.822 ± 0.001 0.810 ± 0.005 0.695

3 SampEn(α) 0.977 ± 0.003 0.957 ± 0.007 0.01*

4 SampEn(β) 1.378 ± 0.006 1.303 ± 0.013 <=0.001**
The ‘*’ and ‘**’ represent alpha levels: p = 0.05, and p = 0.001 correspond to significant differences, respectively

Fig. 3 The 28 features distributed (mean ± SD) in four EEG frequency bands: δ, θ, α, and β between two groups: healthy controls and bruxism patients 
with channel C4P4 during REM sleep. ‘*’ represent the alpha level (p < 0.05) for significant difference
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with sensitivity (95.59%), specificity (98.44%), accuracy 
(97.84%), and PPV (94.20%) in C4P4 channel.

Discussion
The purpose of this study was to comprehensively inves-
tigate the utility of single EEG channel for classification 
of bruxism patients from healthy controls in REM sleep. 
Literature relies primarily on PSD changes in the EEG 
frequency bands, including delta, theta, alpha, and beta 
to estimate the characteristics of neural activities in the 
brain [7, 10, 15]. However, in this study, in order to obtain 
sufficient signal features, we combined time domain, fre-
quency domain, and nonlinear features from the EEG 
signals.

The artifacts in EEG signals are highly complex and 
can appear in any frequency bands. The effective iden-
tification and filtering of artifacts such as swallowing, 
yawning, jaw alignment, snoring, or apnea is challenging 
that requires further in-depth research. However, in our 
database, the recordings were annotated by expert neu-
rologists with information on sleep stages (wakefulness, 
S1-S4 sleep stages, REM, and body movements), body 
position (left, right, prone, or supine), and duration (sec-
onds). Among all these annotated EEG signals, we only 
extracted the REM segment of interest, and this data 
segment already excluded body movements and body 
positions. Further, to remove slow frequency motion arti-
facts, we used DB5 wavelet transform to decompose the 
single-channel EEG signals into multi-frequency bands 
and then obtained the EEG signals at selected frequency 
bands within 1–30  Hz. This further filter out slow fre-
quency artifacts below 1  Hz and higher frequency arti-
facts above 30 Hz.

Since EEG signals can directly reflect the neural activi-
ties of the human brain and more directly reflect the 
influence and characteristics of bruxism at the neural 
level, it is of great importance in the analysis of bruxism. 
In the present study, we used statistical methods to ana-
lyze EEG frequency bands to compare the PSD dynamics 
from EEG among bruxism patients and healthy controls 
during REM sleep. Since there are many EEG channels, 
it will be beneficial if the channels and frequency bands 
reflecting the occurrence of bruxism are selective that 
simplifies the design of EEG acquisition instrument 

having improved classification accuracy. Therefore, in 
this paper, we analyzed five different EEG channels and 
revealed the most effective frequency band of EEG chan-
nel in characterizing sleep bruxism.

Tang Jin Cheng et al. [26] made important achieve-
ments in the research of brain-computer interface by 
extracting the mean, standard deviation, root mean 
square value and other time-domain features of EEG 
signals, revealing that these time-domain features are 
helpful to understand the data distribution character-
istics of different EEG frequency bands. By conducting 
experiments on multiple channels of EEG signals, it was 
found that the standard deviation and variance features 
were the most significant [26]. Hayat [16] and Lai [10] 
analyzed the average, maximum, and minimum values of 
the average normalized power spectrum using two EEG 
channels, revealing the effectiveness of power spectrum 
in the detection of sleep bruxism. Among time-domain 
features, mean, SD, and RMS were typical approaches 
to measure the amplitude of EEG [27–29]. Therefore, 
we also attempted to extract the relevant time-domain 
features of EEG signals and evaluate their role in the 
identification of bruxism. In this study, we conducted 
statistical analysis on the time-domain features of PSD 
(mean, SD, and RMS) in each frequency bands of EEG 
and found that SD(δ), SD(θ), SD(α), SD(β), RMS(δ), 
RMS(θ), RMS(α), and RMS(β) had significant differ-
ences (p < 0.001) between bruxism patients and healthy 
controls.

The frequency domain features can represent the pro-
portion of components in different frequency bands, thus 
representing the activity of cranial nerves [30, 31]. Stud-
ies have also found that some ratios of different bands, 
which includes following derived indices (θ + α)/β and 
α/β [32], and (θ + α)/(α + β) and θ/β [23] are useful for 
EEG features analysis. In this study, the RPSD includ-
ing RPSD (δ), RPSD (θ), RPSD (α), RPSD (β), and ratios 
including (θ + α)/β, α/δ, α/θ, and α/β were computed. 
We found that many frequency domain features have 
significant differences (p < 0.001) that includes RPSD(θ), 
RPSD(α), RPSD(β), α/δ, α/θ, α/β, APSD(δ), APSD(θ), and 
APSD(α).

The nonlinear feature (Shannon entropy, SampEn) is 
a measure of the complexity of a system, and it is very 
effective for the analysis of short-length time series. The 
SampEn of EEG signal can be used to reveal the potential 
regularity and periodicity of data, which has been proven 
to accurately distinguish patients diagnosed with depres-
sion from the control group, which can serve as a highly 
sensitive and clinically relevant marker [33]. Mahshid 
Dastgoshadeh et al. also showed that the SampEn feature 
of EEG signals is a good tool for detecting epilepsy [34]. 
Richman et al. have revealed that SampEn is more suit-
able for the study of biological time series signals [35]. 

Table 6 Comparison of bruxism classification with five-folds 
cross-validation for respective EEG channels
Channel Sensitivity 

(%)
Specificity 
(%)

Accuracy 
(%)

PPV(%)

F4C4 86.11 97.22 94.75 89.86

C4P4 95.59 98.44 97.84 94.20
Fp1F3 91.70 96.80 95.75 88.04

F3C3 91.82 97.17 96.06 89.49

C4A1 88.64 96.67 94.98 87.68
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In this study, we found that the behavior of SampEn (δ), 
and SampEn (β) had significant differences (p < 0.001) 
and SampEn(α) also had significant differences (p < 0.05) 
between bruxism patients and healthy controls.

In order to maximize the extraction of EEG frequency 
band features, we extracted 28 time-domain, frequency-
domain, and nonlinear features (SampEn). Then statis-
tical methods were used to compare the ability of each 
feature in classifying bruxism. The statistical results show 
that most of the features are effective to identify brux-
ism patients from healthy controls, especially in the high 
frequency bands (theta, alpha, and beta) that vary signifi-
cantly. This variation in the high frequency bands might 
be due to the activation of neural activities involved in 
clenching teeth [1]. Mastication is controlled by central 
nervous system of brain [5, 36] and the cause of involun-
tary clenching during sleep bruxism is mostly unknown. 
The relative increase in high power around the frontal 
and central EEG channels in our results indicates high-
frequency neural oscillations in the fronto-central brain 
regions, contributing to involuntary teeth grinding dur-
ing sleep bruxism. Certainly, further analysis with larger 
sample size needs to be performed to support the claim 
with higher confidence level.

Table  7 shows the comparison between the classifica-
tion performance of this study and previous studies. In 
the literature, among the detection methods of brux-
ism patients, EMG, ECG and EEG have been used by 
researchers. The accuracy of identifying bruxism patient 
based on EMG can reach 82.8% [9]. However, after com-
bining EEG, EMG and ECG signals, the bruxism recog-
nition accuracy reached 97.21% [10]. This method needs 
to collect EEG, EMG and ECG signals at the same time 
that increases the difficulty in signal acquisition and 
signal processing, and is not suitable for using portable 
devices to identify bruxism patients. Therefore, research-
ers began to study the strategy of only using EEG to 
identify bruxism, but the recognition rate of bruxism 
was not ideal. When utilizing only time-domain features 
(maximum, minimum, and mean) of PSD, even with the 
fusion of features from two EEG channels, the accuracy 
of bruxism classification can only achieve 81.25% [16]. 
Due to the correlation between EEG channels, even using 
channel fusion does not effectively improve classifica-
tion accuracy. However, if the features of a single channel 
EEG signal can be fully extracted, it may help to improve 

classification accuracy. Based on this assumption, we 
used the same database as in literature [10, 16, 17] for 
our study. Our experimental results showed that when 
using 28 time domain, frequency domain, and nonlinear 
features, we could achieve higher accuracy (97.84%) from 
single EEG channel (C4P4). Our results demonstrated 
bruxism detection using single channel EEG.

Conclusion
While previous studies have put several schemes for 
bruxism recognition, the utilization of multi-channel 
data acquisition has rendered the detection system more 
complex and unsuitable for portable devices. Some stud-
ies still have insufficient feature extraction and low recog-
nition rates. Our research findings will help explore the 
potential of designing a portable sleep bruxism detec-
tion system based on a single channel EEG. We propose 
a classification method for sleep bruxism using a single 
EEG channel combined with time domain, frequency 
domain, and nonlinear features. Experimental results 
showed that there are significant differences (p < 0.05) in 
all the 28 features except for Mean(δ), Mean(θ), Mean(α), 
Mean(β), RPSD(δ), APSD(β), SampEn(θ) between brux-
ism patients and healthy controls. Investigation on clas-
sification had also confirmed that these features were 
useful for classification.

Multi-channel EEG devices are inconvenient to place 
electrodes, while using a single channel EEG acquisition 
can effectively reduce the complexity of the detection 
device, facilitate the installation of the device, and reduce 
the discomfort caused by data acquisition. The results 
of our study also showed that the classification perfor-
mance of different channels of the brain were different. 
Among the channels, the C4P4 channel had the best clas-
sification results (the accuracy can reach 97.84%). In the 
10–20 international electrode placement system, C4P4 
is located on the right side of the Parietal and Central of 
scalp. Our experimental results suggest that placing elec-
trode in this area is conducive to the development of a 
single channel portable bruxism detection system.

Admittedly, our sample size is limited to 2 bruxism 
patients and 4 healthy controls. A larger sample size and 
more uniform population distribution (age, sex, and body 
weight) will give people more confidence in extending the 
results to the prediction and monitoring of patients with 
bruxism. Although the CAP sleep database of PhysioNet 

Table 7 Comparison classification performance between the proposed and previous works
Authors Signal Method Channel Sleep stage Accuracy (%)
E. O’Hare et al. [9] EMG Linear discriminant analysis EMG Awake 82.8%

Bin Heyat et al. [16] EEG Decision tree C4P4,C4A1 REM 81.25%

Bin Heyat et al. [17] EEG,EMG,ECG Hybrid Machine Learning Classifier ECG1,ECG2,C4P4,C4A1 REM 97%

D. Lai et al. [10] EEG,EMG,ECG Decision tree EEG,EMG,ECG1 REM 97.21%

Present EEG Decision tree (Fine Tree classifier) C4P4 REM 97.84%
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only has fewer patients with bruxism, it has a long record 
time for each subject, and expert neurologists anno-
tate the data, making it authoritative. The database has 
important academic research value and has been used 
by multiple groups for research on bruxism. In addition, 
EEG has been used to characterize sleep bruxism in this 
study, we have extracted more effective features, and 
achieved higher classification performance using single 
channel EEG. This finding not only further supports the 
previously reported findings, but also extends the ability 
of single channel EEG to recognize bruxism.

Indeed, the classification of bruxism in clinical research 
is a continuously evolving process that requires the com-
bination of various assessment methods to obtain more 
reliable results. Simply relying on database analysis is not 
sufficient for accurate classification of bruxism. Attempts 
have been made in the literature to use EMG, ECG, or 
EEG signals to characterize the features of bruxism 
occurrence [9, 10, 15]– [18]. Although these methods 
cannot fully replace the accurate judgments of doctors, 
they can serve as medical auxiliary equipment to provide 
monitoring and warnings to potential bruxism patients 
or assist dentists in diagnosis. These data and analysis 
methods still have certain reference value for the diagno-
sis of “bruxism”.

Additionally, we also need to clarify that the proposed 
method is only suitable for sleep bruxism recognition and 
is not a general bruxism classification system. Therefore, 
it is very important to comprehensively consider various 
data and analysis methods in the research and diagno-
sis of bruxism to improve the accuracy and reliability of 
classification. In the future, additional physiological sig-
nals such as ECG, EMG, and SaO2 will be analyzed across 
all five sleep stages. The study will also be expanded to 
assess the recognition ability of bruxism in different sleep 
stages.
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