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Abstract 

Background Ideally, health services and interventions to improve dental health should be tailored to local target 
populations. But this is not the standard. Little is known about risk clusters in dental health care and their evalua‑
tion based on small‑scale, spatial data, particularly among under‑represented groups in health surveys. Our study 
aims to investigate the incidence rates of major oral diseases among privately insured and self‑paying individuals 
in Germany, explore the spatial clustering of these diseases, and evaluate the influence of social determinants on oral 
disease risk clusters using advanced data analysis techniques, i.e. machine learning.

Methods A retrospective cohort study was performed to calculate the age‑ and sex‑standardized incidence rate 
of oral diseases in a study population of privately insured and self‑pay patients in Germany who received dental 
treatment between 2016 and 2021. This was based on anonymized claims data from BFS health finance, Bertels‑
mann, Dortmund, Germany. The disease history of individuals was recorded and aggregated at the ZIP code 5 level 
(n = 8871).

Results Statistically significant, spatially compact clusters and relative risks (RR) of incidence rates were identified. By 
linking disease and socioeconomic databases on the ZIP‑5 level, local risk models for each disease were estimated 
based on spatial‑neighborhood variables using different machine learning models. We found that dental diseases 
were spatially clustered among privately insured and self‑payer patients in Germany. Incidence rates within clus‑
ters were significantly elevated compared to incidence rates outside clusters. The relative risks (RR) for a new dental 
disease in primary risk clusters were min = 1.3 (irreversible pulpitis; 95%‑CI = 1.3–1.3) and max = 2.7 (periodontitis; 95%‑
CI = 2.6–2.8), depending on the disease. Despite some similarity in the importance of variables from machine learn‑
ing models across different clusters, each cluster is unique and must be treated as such when addressing oral public 
health threats.

Conclusions Our study analyzed the incidence of major oral diseases in Germany and employed spatial methods 
to identify and characterize high‑risk clusters for targeted interventions. We found that private claims data, combined 
with a network‑based, data‑driven approach, can effectively pinpoint areas and factors relevant to oral healthcare, 
including socioeconomic determinants like income and occupational status. The methodology presented here 
enables the identification of disease clusters of greatest demand, which would allow implementing more targeted 
approaches and improve access to quality care where they can have the most impact.
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Background
One in two adults in the EU (European Union) suffers 
from at least one oral disease [1]. Oral diseases, most of 
which are chronic and progressive in nature, can cause 
pain, infection and low quality of life, because they impede 
essential functions, such as eating and speaking. However, 
they may also affect psychosocial and general health, and 
prevent individuals from participating in society [1].

Periodontitis, caries, pulp diseases, and tooth loss are 
the most important oral diseases in Europe and world-
wide. Many oral diseases are largely preventable at an 
early stage [2]. Although recent improvements in oral 
health have been observed [3], oral diseases remain 
highly prevalent. A significant part of the disease burden 
is associated with socioeconomic status, age, and lifestyle 
behavior, as is the case for many chronic conditions (dia-
betes, obesity, heart disease, etc.) [2].

In 2021, the World Health Assembly approved a his-
toric WHO resolution on oral health, mandating all 
member states to address key risk factors of oral dis-
eases, enhance the capacity of oral health professionals 
to deliver consistent and high quality care, foster the shift 
from a traditional curative approach towards a preventive 
approach, and better integrate strategies on oral health 
promotion, prevention and treatment [4].

Surveys to measure the prevalence and incidence of 
oral diseases and their impact on quality of life are key 
to many public health systems. They aid policy makers in 
making decisions on priority areas and the allocation of 
resources to address those priorities. However, it is well 
established that certain community groups in some areas 
suffer a higher burden of disease [2]. These groups are 
usually under-represented in surveys and a closer exami-
nation is necessary in order to facilitate the work of pol-
icy makers and service planners in targeted approaches 
[5]. While dental care in Germany is good, there is still 
insufficient attention paid to how and where dental dis-
eases arise.

In general, the neighborhood in which people live 
profoundly influences social and health behaviors [6]. 
Spatial epidemiology focuses explicitly on analyz-
ing spatial aspects of health-related data, taking into 
account demographic, environmental, socioeconomic, 
genetic, and behavioral risk factors to describe spatial 
distributions, discover patterns of spatial association 
(also known as spatial clustering), and detect spatial 
instability and atypical observations. The detection of 
spatial associations (clustering) enables the derivation of 

local or neighborhood spatial associations (clusters) [6]. 
The basic approach to spatial epidemiology goes back to 
Tobler’s First Law of Geography, in which he describes 
that “everything is related to everything else, but near 
things are more related than distant things” [7].

Although spatial cluster analysis in health care research 
has been used in some studies [8–10] and Nayak et  al. 
[11] have described its potential applications, the use of 
these methods have remained uncommon in oral health 
care research. Most studies have been conducted in 
Brazil, where spatial patterns of tooth decay and dental 
treatment needs in 5–12-year-old schoolchildren [12], 
DMFT (decayed missing filled teeth) index of 12-year-old 
schoolchildren [13], gender differentials in the distribu-
tion of dental caries and restorative treatment in 11- and 
12-year-old girls and boys [14], and oral cancer [15] were 
examined. These studies revealed that dental health ser-
vices are less used in neighborhoods with a poorer socio-
economic status. Importantly, specific neighborhoods 
could be identified for oral public health interventions. 
A study from Braunschweig, Germany, identified spatial 
disparities in the DMFT index of children aged 3–6 years 
visiting a daycare center between 2009 and 2014. Signifi-
cant spatial clustering of DMFT was assessed and spatial 
clusters were identified on a city district level. In a spatial 
lag model, sociodemographic characteristics, particularly 
the proportion of unemployed persons and proportion of 
persons with a migration background, were significantly 
associated with a higher DMFT index [16].

While these studies provide relevant insight into spe-
cific age groups and gender-related differences in oral 
diseases, evidence on small-scale spatial disparities 
and of the social determinants of health that describe 
spatial- and population-specific needs in dental care 
remains rare. Additionally, many studies in health care 
focus on publicly insured patients. However, in Ger-
many, 12% of the entire population are not publicly 
insured. Moreover, in dental care, there is also a con-
siderable number of publicly insured self-payers (the 
revenue of dental practices from privately insured indi-
viduals and self-payers in Germany amounts to 50%), 
who are also excluded from, e.g. secondary data analy-
sis. Nowadays, new options for data analysis are avail-
able, but the possibilities of applying such technologies 
to the analysis of claims data in oral health research and 
practice still needs to be established and promoted.

Here, we aimed to explore the incidence rate of the oral 
diseases periodontitis, severe caries, irreversible pulpitis, 



Page 3 of 20Völker et al. BMC Oral Health          (2024) 24:205  

and tooth loss in treated patients (privately insured and 
self-payers) in Germany from 2016 to 2021 using data 
from a leading private provider of financial services in the 
healthcare sector. We further investigated whether oral 
diseases are spatially clustered in Germany, and whether 
their clustering can be explained by neighborhood socio-
economic determinants.

The following null hypotheses were addressed:

1) the incidence rates of privately insured and self-pay-
ers with the oral diseases periodontitis, severe caries, 
irreversible pulpitis, and tooth loss in Germany in the 
period between 2016 and 2021 are not comparable to 
other studies on incidence rates of these diseases;

2) spatial dimension is not an important determinant of 
the oral diseases, and oral diseases are not spatially 
clustered in Germany;

3) primary oral disease risk clusters cannot be explained 
by social determinants of health using machine 
learning models.

Accordingly, the objectives of our study were deline-
ated as follows:

1) Investigation of incidence rates among privately 
insured and self-paying individuals: This objective 
entails assessing and comparing the incidence rates 
of key oral diseases  -  namely periodontitis, severe 
caries, irreversible pulpitis, and tooth loss  -  among 
privately insured and self-paying populations in Ger-
many over the period from 2016 to 2021.

2) Examination of the spatial distribution of oral dis-
eases across Germany: This aspect of the study 
focuses on analyzing the spatial dimension as a 
potential determinant in the distribution of oral dis-
eases. It aims to ascertain whether conditions like 
periodontitis, severe caries, irreversible pulpitis, and 
tooth loss demonstrate any spatial clustering within 
Germany.

3) Evaluation of the role of social determinants in oral 
disease risk clusters: The final objective is centered 
on employing machine learning models to scrutinize 
the extent to which social determinants of health can 
explain the formation of primary oral disease risk 
clusters in the German population.

Methods
Data sources and study population
This study is a retrospective cohort analysis utilizing 
anonymized claims data from privately insured and 
self-pay individuals who underwent dental treatment in 
Germany over a six-year period, from January 1, 2016, 
to December 31, 2021. The data was sourced from BFS 

health finance, a division of Bertelsmann, located in 
Dortmund, Germany, which is a leading provider of 
financial services in the healthcare sector.

For each participant in the study, we meticulously 
extracted and analyzed a range of data points. These 
included detailed information on disease-specific dental 
treatments received, the dates of these treatments, the 
age of the patient at the time of their last disease-specific 
treatment, and their five-digit postal code (ZIP-5) at the 
time of both the first and last treatments. This ZIP-5 cod-
ing system is crucial in providing a granular geographical 
context for our analysis, enhancing the spatial dimension 
of our study.

To ensure precise identification and categorization of 
treatments, we relied on the figures from the German 
dental fee schedule (Gebührenordnung für Zahnärzte, 
GOZ). This fee schedule is a comprehensive system used 
in Germany to standardize dental treatment charges and 
is crucial for identifying specific types of dental treat-
ments in a consistent and systematic manner. To further 
bolster the reliability and accuracy of our disease estima-
tion, we established specific inclusion and exclusion cri-
teria based on this fee schedule. These criteria, detailed 
in the Appendix of our report, serve as a robust frame-
work for accurately assessing the prevalence and charac-
teristics of oral diseases among the study population.

There was a distortion in the distribution of individu-
als according to ZIP-5, which necessitated the use of 
an empirical Bayesian smoothing technique [17]. Local 
Empirical Bayesian Smoothing uses the population in a 
region as a measure of the confidence in the data, with 
higher populations in a given area lending a higher con-
fidence to the estimated number of events in that loca-
tion. Based on a rook neighborhood network, estimates 
for areas with low margins of error were left out, but esti-
mates in regions with high margins of error were nudged 
closer to the global average of the event rate.

Computation of incidence rates
The incidence rate is a measure of the frequency at 
which new cases of a condition occur in a population 
over a specified period of time. In this manuscript the 
terms incidence rate and treatment incidence rate are 
used interchangeably. To calculate the incidence rates, 
the global and local incidence rates for each oral disease 
was assessed based on the study population. This was 
achieved by dividing the number of new cases of oral dis-
ease treatment during the entire study period by the time 
each person was observed (person-time), summed for all 
persons. Person-time was calculated for each individual, 
accounting for persons lost to follow-up or who died 
during the study period. Individuals were aggregated at 
the ZIP-5 level (n = 8871). For each year and the entire 
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study period, incidence rates were calculated globally and 
locally at the ZIP-5 for each oral disease.

The exact Poisson 95%-Confidence Interval for the true 
diseases incidence rates was used [18]. Based on the link 
between the chi-square distribution and the Poisson dis-
tribution, exact Poisson confidence limits were calculated 
as the Poisson means divided by person-time, for distri-
butions with the observed number of events and prob-
abilities relevant to the confidence level (Eq. 1 and 2).

where Y is the observed number of events, Yl and Yu are 
lower and upper confidence limits for Y, respectively, χ2

v,a 
is the chi-square quantile for upper tail probability on v 
degrees of freedom.

To calculate standardized rates, direct age and sex 
standardization was applied [19] to the 2013 European 
Standard Population [20] using 5-year age bands up to 
90 years of age. Population data from the German Cen-
sus 2011  1km2 grid-cells [21], were used to create popu-
lation-weighted centroids for each ZIP-5. The raster cells 
were grouped by ZIP code areas and the arithmetic cen-
troid was calculated from the average X and Y values of 
their geometric centroid and weighted by population in 
the raster cells according to Eq. 3.

where Xω and Y ω represents the weighted X and Y coor-
dinates of the ZIP code district, n represents the number 
of grid cells within the ZIP code district, xi and yi repre-
sents the X and Y coordinates of the geometric centroid 
of the grid cell in question, and ωi represents the popula-
tion size of the grid cell.

Detection of spatial risk clusters
To detect spatial risk clusters, we first calculated global 
Moran’s I to assess whether the incidence rates (per 1000 
population) for each oral disease in German ZIP-5 neigh-
borhoods displayed a tendency to cluster together, and 
to measure the extent of the correlation among neigh-
boring observations. Global Moran’s index is used to 
examine the absence or presence of spatial autocorrela-
tion in disease diffusion processes by comparing location 
and attribute similarities in the area [22, 23]. The global 

(1)Yl =
χ
2
2Y ,α/2

2

(2)Yu =
χ
2
2(Y+1),1−α/2

2

(3)Xω =

n
i=1 ωixi
n
i=1 ωi

,Y ω =

n
i=1 ωiyi
n
i=1 ωi

Moran’s I value must demonstrate a clustering distribu-
tion pattern in order to determine high or low-risk clus-
ters for further analysis [24]. The formula for calculating 
global Moran’s I index is shown in Eq. 4:

where Zi and Zj represents the incidence rate of each oral 
disease variations in neighborhood i and j, respectively, 
wij refers to the elements in the spatial weights matrix 
neighborhood i and j at study period, S0 = Σi Σjwij, wij as 
the sum of all weights, and n represents the number of 
observations.

The calculated global Moran’s I can range between 
− 1.0 and + 1.0, where a positive value suggests the pres-
ence of a positive spatial correlation, while a negative 
value suggests a negative correlation. Positive spatial 
autocorrelation means that geographically nearby values 
of a variable tend to be similar on a map, i.e. high values 
tend to be located near high values, medium values near 
medium values, and low values near low values [25]. Val-
ues close to 0 indicate a lack of spatial autocorrelation 
and that the distribution of data is random [26].

The local Moran’s I, a local indicator of spatial associa-
tion (LISA), was then used to evaluate the local level of 
spatial autocorrelation or dependency of spatial data, and 
to visualize possible high-risk or low-risk clusters [27] 
based on incidence rates of each oral disease in the differ-
ent neighborhoods.

The formula [27] for calculating local Moran’s index Ii 
is shown in Eq. 5:

where xi and xj represents the incidence rates of each oral 
disease in neighborhood i and j respectively, wij is the 
spatial weights matrix.

Global and local Moran’s I tests were performed using 
the first-order queen’s contiguity spatial weights matrix, 
which considers the values from all first-order neighbor-
hoods to assess the degree of spatial autocorrelation by 
determining whether an area has a higher or lower mean 
compared to neighboring areas. The local Moran’s I 
divided the neighborhood polygons into four categories: 
high-high (hotspots), low-low (coldspots), high-low, and 
low-high, based on the type of spatial autocorrelations 
[27]. The high-high and low-low areas represent spatial 
clusters, whereas the high-low and low-high areas rep-
resent discordant patterns. For each point, the intensity 
value was calculated to indicate the degree of clustering 
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(5)Ii = xi
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j
wijxj
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of similar values around the given point. The local 
Moran’s I results, showing local spatial autocorrelation 
of oral disease incidences in the German ZIP-5 neigh-
borhoods, were presented as cluster maps and Moran 
scatterplots [28]. Additionally, Bonferroni correction 
was performed to assess the robustness of the findings. 
However, with application of the Bonferroni bounds, no 
low-low and high-high clusters were found to be signifi-
cant. As our goal was to test if further local cluster inves-
tigations were applicable rather than implementing the 
most stringent tests, we chose to employ the traditional 
p-value cut-off of 0.05.

Kulldorff’s scan statistic method [29] was used to iden-
tify spatial clusters for each oral disease between January 
2016 and December 2021 in German ZIP-5 neighbor-
hoods. Neighborhoods were represented by the popu-
lation weighted centroids of each ZIP-5. Kulldorff’s 
retrospective space permutation method identifies the 
most significant and likely cluster in a study area, which 
is called the primary cluster [29]. The test also provides 
evidence for the presence of secondary non-overlapping 
clusters with significantly large likelihood ratios com-
pared to the primary cluster. As the disease cases in our 
data set followed a Poisson distribution, we chose a dis-
crete Poisson probability model for the clustering analy-
sis. After conducting a preliminary test, the spatial and 
temporal scanning windows were defined to include a 
minimum of 0.5% and a maximum of 10% of the popula-
tion at risk, in order to ensure a cluster size amenable to 
public health interventions.

In the current study, disease risks across various parts 
of Germany were compared. Thus, a conditional scan 
statistic was applied. Given the observed total number 
of cases (C), the spatial scan statistic (S) is the maximum 
likelihood ratio over all possible circles (Z), as calculated 
with the equation (Eq. 6):

where L(Z) is the likelihood of observing the number of 
cases cz within circle Z, given the total number of cases 
C, the population within Z (nz), and the total population 
N. The denominator L0 represents the likelihood function 
under the null hypothesis.

Clusters were tested for significance using 999 Monte 
Carlo simulations. For each simulation the maximum 
likelihood ratio statistic was calculated. Clusters with a 
p-value < 0.01 were considered significant high-risk clus-
ters. The neighborhoods within the significant high-risk 
clusters were identified as high-risk neighborhoods. The 
relative risk (RR) [29, 30] of each oral disease for a clus-
ter was calculated using the ratio of observed to expected 

(6)S =
maxZL(Z)

L0
= maxZ

L(Z)

L0

cases, comparing the risk within a cluster to that outside 
the cluster. Each possible cluster was thus assigned an 
RR-value for each oral disease as defined in Eq.7:

where o is the number of cases in the cluster, and e is the 
expected number of cases in the cluster, O is the total 
number of cases in the dataset.

Assessing social determinants of health via machine 
learning algorithms
Selection of social determinants of health
To assess the impact of social determinants on health, 
all ZIP-5 neighborhoods were enriched via a data link-
age process to include key independent variables such 
as socioeconomic status, burden of oral diseases, oral 
care accessibility, attitudes and beliefs, population struc-
ture, and urbanity. The predicted outcome in our study 
was the classification of a ZIP-5 code as belonging to a 
high-risk cluster. Data on socioeconomic status, popu-
lation structure and urbanity were purchased from the 
company Panadress, data on attitudes and beliefs from 
the company Nexiga, and for oral care from the company 
Adressendiscount. For each variable, data processing was 
operationalized for consistency and reproducibility.

Socioeconomic status For socioeconomic status, three 
dimensions, i.e. education, occupation, and income, were 
assessed according to the weights proposed by Kroll 
et al. [31]. For each dimension, a higher score indicated 
a higher socioeconomic status, whereas a lower score 
indicated a lower status. Data were z-standardized for 
comparison before weighting and dimension calculation. 
The dimension “education” was constructed from two 
variables: the percentage of inhabitants who did not com-
plete their schooling, weighted by − 0.33, and the per-
centage of inhabitants with a university degree, weighted 
by + 0.66. The dimension “occupation” was scored using 
the unemployment rate (weight = − 0.61), disposable pur-
chasing power (weight = + 0.27), and employment quota 
(weight = + 0.5). The dimension “income” was calculated 
using debtor quota (weight = − 0.41) and net household 
income (weight = + 0.52).

Attitudes and beliefs We used the percentage of inhab-
itants within the four most conservative Sinus-Milieus® 
(©2021 Nexiga GmbH), i.e. “conservative upscale”, “nos-
talgic middle-class”, “precarious”, and “traditional”, to 
assess the attitudes and beliefs of each neighborhood.

(7)RR =
o/e

(O − o)/(O − e)
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Population structure and urbanity The number of 
inhabitants per household and the number of inhabitants 
per square kilometer were used to describe population 
structure and urbanity, respectively.
Oral care accessibility Oral care was operationalized by 
calculating the number of dentists per 1000 inhabitants.

Burden of Oral diseases Finally, for each oral disease, 
the burden of oral diseases was calculated from the mean 
incidence rates of the other three oral diseases investi-
gated in the study.

Machine learning modeling
After cleaning and preprocessing, the data was used to 
train and test 5 different models based on supervised 
machine learning algorithms, namely Logistic Regres-
sion (LR), Decision Tree (DT), Random Forest (RF), Sup-
port Vector Machines (SVM), and Neural Network (NN). 
For each oral disease, we selected the algorithm with 
the highest performance for primary model generation 
to accurately detect high-risk neighborhoods (based on 
ZIP-5), as well as test, via permutation, the importance 
of each independent variable assessed above in explain-
ing disease risk.

With logistic regression (LR), we calculated the prob-
ability that the output variable (primary high-risk neigh-
bourhood for a specific disease yes/no) belonged to the 
appropriate category based on neighborhood socioeco-
nomic and other variables. A probability > 0.5 was classi-
fied as “yes” and a probability of ≤0.5 as “no”.

Decision Tree (DT) allows each node to weigh possi-
ble actions against one another based on their benefits, 
costs, and probabilities. A DT generally starts with a 
single node that branches out into several possible out-
comes. Each outcome leads to additional nodes that in 
turn branch off into other instances, generating a tree-
like shaped map or flowchart of all possible outcomes of a 
series of related choices. DT’s target is to maximize infor-
mation gain [32].

As the name implies, the random forest (RF) algorithm 
generates a “forest” by assembling many decision trees. It 
is a supervised classification algorithm and an attractive 
classifier due to its high execution speed [33]. The predic-
tions of each component tree are averaged, enabling bet-
ter predictive accuracy than with a single decision tree. 
In general, the more trees in the forest, the more robust 
the forest looks.

Support Vector Machines (SVMs) are a frequently 
used machine learning algorithm for classification prob-
lems. In our dataset, the number of instances (ZIP-5 

neighborhoods) was larger than the number of features. 
Therefore, we applied the non-linear Radial Basis Func-
tion (RBF) Kernel (11) to transform the non-linear prob-
lem into a linear one in a higher-dimensional space. To 
optimize model performance, a tuning grid was used to 
best determine the influence of single training points 
(gamma) and margin classification (cost), and to avoid 
overfitting.

Artificial neural networks (NNs) are deep-learning 
models used to achieve high accuracy in larger data-
sets. We applied a Feed-Forward Neural Network [34] 
to address non-linearity in the data and perform binary 
classification. The Feed-Forward Neural Network con-
sists of an input layer, one or more hidden layers, and an 
output layer, and operates by accepting multiple inputs, 
each with its own particular weight, that are fed forward 
in a single direction. The network was run in machine 
mode to return a class label probability with one hidden 
layer and 5 or 6 neurons.

For model training, testing and evaluation, the datasets 
for each oral disease were randomly partitioned into 10 
equal parts. Eight parts (80%) were used as the training 
dataset, and the remaining 20% served as the test data. 
The parameters of each model were optimized dur-
ing the training process to better fit the data. Due to the 
high imbalance between positive and negative values for 
each oral disease, the Random Over Sampling Examples 
(ROSE) method was applied to balance the training data 
set for classification modeling. This approach generates 
artificial data based on sampling and smoothed boot-
strapping methods [35], which can avoid high accuracy 
but low precision in predicting negative ZIP-5 neighbor-
hoods. The models were trained to achieve both high 
accuracy and high precision in detecting variables impor-
tant for each primary oral disease cluster.

We evaluated the performance of the various trained 
models using the test data. Moreover, the efficiency of 
all machine learning classification models was validated 
using various evaluation metrics as calculated based on 
the confusion matrix given below.

Empty Cell Predicted No (0) Predicted Yes (1)

Actual No (0) TN FP

Actual Yes (1) FN TP

where, FP = False Positive, FN = False Negative, 
TN = True Negative, and TP = True Positive. Eqs.  8.1 to 
8.7 were used to calculate various performance measures 
for each classification method:

(8.1)Accuracy =
(TP+ TN)

(TP+ TN + FN + FP)
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We combined both accuracy and F1 score metrics into 
a single index for selecting the primary analytic model for 
each oral disease. Accuracy highlights the performance 
of the classifier and is calculated as the proportion of 
true positive and true negative events to the sum of all 
observations. The F1 score represents the harmonic aver-
age of precision (Eq.  8.3) and recall (Eq.  8.4). Receiver 
Operating Characteristic (ROC) curves were plotted and 
the area under the ROC curve (AUC) was calculated for 
each model as a metric of the performance of each classi-
fier. Moreover, precision and recall metrics were used for 
further model evaluation. The precision (or sensitivity) 
determines the ability of the model to correctly detect 
high-risk neighborhoods based on ZIP-5, whereas recall 
measures the ability to find all high-risk neighborhoods. 
Precision-Recall (PR) curves were plotted, to address the 
high imbalance of the dataset [36]. Specificity, negative 
predictive values (NPV) and positive predictive values 
(PPV) were used as secondary affirmation of model selec-
tion, with specificity measuring the ability of the model 
to determine the non-risk neighborhoods correctly, PPV 
representing the likelihood of a neighborhood being truly 
at high-risk in case of a positive result, and NPV indicat-
ing the likelihood of a neighborhood being truly not at 
high-risk in case of a negative result.

Finally, an important aspect of machine learning is 
understanding which variables have the greatest impact 
on the predicted outcome. Many machine learning algo-
rithms incorporate their own unique methods of quanti-
fying the relative impact of each variable (i.e. coefficients 
for linear models, impurity for tree-based models), while 
others (e.g. support vector machines) do not, making it 
difficult to compare variable importance across multiple 

(8.2)Specificity =
(TN)

(TN + FP)

(8.3)Precision =
(TP)

(TP+ FP)

(8.4)Recall =
(TP)

(TP+ FN)

(8.5)NPV =
(TN)

(TN + FN)

(8.6)PPV =
(TP)

(TP+ FP)

(8.7)F1 Score =
2 ∗ (Precision ∗ Recall)

(Precision + Recall)

models. To overcome this, we used a permutation-based 
method that is model agnostic and therefore independent 
of the algorithm used. This methodology involves remov-
ing the effect of a variable through random reshuffling of 
the data [37] and comparing the performance of the ini-
tial model with the modified one. For each full model, the 
root mean squared error (RMSE) loss function was com-
puted as shown in Eq. 9:

where L0 represents the value of the loss function for the 

original data, Λ
(

ŷ
−

,X
−
, y
−

)

 represents the loss function 

that quantifies goodness-of-fit of the model f() based on 
log-likelihood, X

−
 is the matrix with the observed values 

of the explanatory variables for all observations in rows, y
−

 
refers to the column vector of the observed values for the 
dependent variable Y, and ŷ

−

 denotes the corresponding 
vector of predictions for y

−

 for model f().
For each explanatory variable Xj, the following steps 

were repeated in each model. A matrix X
−

∗j was created 
by permuting the vector of observed values of Xj 10 
times. Then the model predictions ŷ

−

∗j were computed 
based on the modified data X

−

∗j and the loss function of 
the modified data was calculated (Eq. 10):

where L∗j represents the value of the loss function.
Finally, the importance of Xj was quantified, calculating 

vip
j
Diff = L∗j − L0 . The variable importance was recorded 

and presented graphically for better model comparison.
The study methodology is presented in Fig.  1. Study 

findings are reported in accordance with the using 
Strengthening the Reporting of Observational Studies 
in Epidemiology (STROBE) [38] and REporting of stud-
ies Conducted Observational Routinely-collected health 
Data (RECORD) recommendations [39]. We used R (ver-
sion 4.2.1) to perform statistical analyses and ArcGIS Pro 
3.0 for mapping.

Results
Incidence rates of oral diseases
We analyzed anonymized data from 4.5 million privately 
insured and self-pay individuals who received dental treat-
ment between 2016 and 2021 in Germany. Of the study 
population, 52.7% were female and 28% were identified 
as self-payers. The mean age was 46.5 years (SD = 21.6). 
Table  1 lists the incidence rates of the four oral diseases 

(9)L0 = Λ

(

ŷ
−

,X
−
, y
−

)

(10)L∗j = Λ

(

ŷ
−

∗j ,X
−

∗j , y
−

)
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analyzed in this study. We calculated an incidence rate of 
24.5 new cases per year per 1000 inhabitants for periodon-
titis, 22.0 new cases for severe caries, 44.8 cases for irre-
versible pulpitis, and 19.6 cases for tooth loss. Adjusting the 
raw rates for age and sex resulted in lower incidence rates 

for each disease, i.e. 21.2 for periodontitis, 15.6 for severe 
caries, 35.9 for irreversible pulpitis and 11.0 for tooth loss.

The spatial distribution of raw and smoothed inci-
dence rates for each oral disease is shown in Fig. 2. For 
periodontitis, higher incidence rates were recorded 

Fig. 1 Flowchart of the study methodology to detect local oral disease risk clusters and detect neighborhood‑based variables determining 
the clusters
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in Western Brandenburg/Saxony-Anhalt, Bavaria, 
and Eastern North Rhine Westphalia. The maximum 
smoothed incidence rate (max = 429) was observed in 
ZIP-5 = 17493, Mecklenburg-Western Pomerania. For 
severe caries, incidence rates were among the highest 
in Western Brandenburg/Saxony-Anhalt and Thuringia, 
with the maximum (max = 57) detected in ZIP-5 = 72189, 
Baden Wuerttemberg. In all east German states (Meck-
lenburg-Western Pomerania, Saxony-Anhalt, Branden-
burg, Berlin, Saxony and Thuringia), higher incidence 
rates for irreversible periodontitis could be seen, with the 
highest rate (max = 580) detected in ZIP-5 = 02733, Sax-
ony. Compared to the other oral diseases, ZIP-5 neigh-
borhoods with higher incidence rates for tooth loss were 
less likely to be surrounded by other neighborhoods with 
similarly high incidence rates. With the exception of Ber-
lin and Bremen, incidence rates in the highest category 
(> 31.3) were seen in all states, with the highest incidence 
rate (max = 398) recorded in ZIP5 = 09548, Saxony. For 
each oral disease, there was more than one ZIP-5 neigh-
borhood with an incidence rate of min = 0.

Spatial risk cluster analysis
Global spatial autocorrelation
Before implementing the spatial cluster analyses, we 
examined the global Moran’s I statistic to evaluate the 
presence of spatial autocorrelation in the study area 
(Fig.  3). The outcome variables (incidence rates of peri-
odontitis, severe caries, irreversible pulpitis and tooth 
loss) demonstrated a positive spatial autocorrelation 
suggesting a strong clustering pattern with a statisti-
cally significant Moran’s I value for all oral diseases. 
For periodontitis we detected I = 0.47 (p-value < 0.001, 
z-value = 68.6), for severe caries I = 0.25 (p-value < 0.001, 
z-value = 37.4), for irreversible pulpitis I = 0.39 (p-value 
< 0.001, z-value = 58.1), and for tooth loss I = 0.23 (p-value 
< 0.001, z-value = 34.6). The results indicate that the dis-
tribution of the incidence rates of each oral disease had 
a significant positive correlation with the incidence rate 
of the nearest neighborhoods during the study period. 
Comparing the standardized z-value, periodontitis and 
tooth loss showed the highest and lowest tendencies 
towards clustering, respectively, among all oral diseases.

The results of the Moran scatterplots (Fig. A1) showed 
a clear tendency towards classifying spatial autocorrela-
tion into four types. Although this classification as such 
does not imply significance, it points to the presence of 
high incidence rate clusters for each disease, as evidenced 
by several cases of positive spatial association in the 
upper right quadrant. However, the presence of deviant 
associations in the upper left, as well as the deviation of 
points from the linear regression line suggest the need 
for additional measures besides spatial autocorrelation 
measures, and highlight the limitations of using a single 
global measure for the analysis of spatial association in 
the data [40].

Local Moran’s I
To further explore the relationship between global and 
local spatial autocorrelation, we extended our analyses 
using Local Moran’s Indicators of spatial associations 
(LISA) to identify oral disease clusters with a significance 
level of 5% among the German ZIP-5 neighborhoods. 
The results revealed distinct, statistically significant 
high-high clustering or ‘hotspots’ in the eastern part of 
Germany for all oral diseases (Figs. 3 and 4). For perio-
dontitis, major hotspots were identified in an area west 
of Berlin, encompassing regions of Brandenburg and Sax-
ony-Anhalt, at the border between Brandenburg and Sax-
ony, and in areas of Bavaria and Baden-Wuerttemberg. 
Smaller hotspots could be detected in all states, with 
the exception of Saarland and Hamburg. For severe car-
ies the largest cluster could be detected along the border 
between Brandenburg and Saxony-Anhalt, with smaller 
hotspots in all other states, except for Berlin, Hamburg 
and Saarland. Larger clusters were detected in Mecklen-
burg-Western Pomerania, Saxony-Anhalt, Brandenburg, 
Saxony, Thuringia, and Bavaria for irreversible pulpitis, 
and in Saxony-Anhalt, Thuringia, Saxony, and Bavaria for 
tooth loss. For each disease, there was no neighborhood 
detected that had a p-value of > 0.001, indicating the need 
for additional methods to detect local clusters. Neverthe-
less, the analysis enabled the identification of significant 
local clusters, allowing the application of more targeted 
approaches, which helped to address the severe short-
comings of the Local Moran’s I methodology, such as the 

Table 1 Incidence rates of selected oral diseases of privately insured and self‑payer persons 2016–2021 1Adjusted for age and gender; 
2exact Poisson 95%‑CI

Oral disease Cases Controls Total person-years 
at risk

Incidence rate raw per 1000 
(95%-CI2)

Incidence rate adj.1 
per 1000 (95%-CI2)

Periodontitis 221,548 4,241,453 9,034,205 24.5 (24.4–24.6) 21.2 (21.1–21.3)

Caries (severe) 199,367 4,263,634 9,059,976.5 22.0 (21.9–22.1) 15.6 (15.6–15.7)

Irreversible Pulpitis 395,879 4,067,122 8,832,383.5 44.8 (44.7–45.0) 35.9 (35.7–36.0)

Tooth Loss 180,494 4,282,506 9,206,381 19.6 (19.5–19.7) 11.0 (10.9–11.0)
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multiple testing problem and inappropriate weighting 
matrices.

Spatial scan statistics
Using spatial scanning methods, we identified spatial 
clusters of each of the four oral diseases in different parts 
of Germany (Fig. 5). Table 2 presents space-time cluster 
characteristics for each oral disease, including Cluster ID, 
total number of neighborhoods, observed and expected 
number of cases, incidence rate in and outside the clus-
ter, p-values, and the relative risk rates for each primary 
cluster. High-risk clusters varied in terms of size, mag-
nitude of relative risk, and total number of neighbor-
hoods affected. Moreover, significant secondary clusters 
could be identified for each oral disease investigated: 7 
each for periodontitis and severe caries, 4 for irreversible 
pulpitis, and two for tooth loss, respectively. The highest 
relative risk (RR = 2.7) was recorded for periodontitis in 
the eastern part of Germany, spanning the states Saxony-
Anhalt, Brandenburg, and Berlin. The primary cluster 
for severe caries overlapped with the primary cluster 
for periodontitis and additionally extended to parts of 

Mecklenburg-Western Pomerania and Lower Saxony 
with a RR = 1.6. The irreversible pulpitis primary cluster 
was located in Eastern Germany, in the states of Saxony, 
Brandenburg, Berlin, and Saxony-Anhalt (RR = 1.3). The 
primary cluster for tooth loss was located in western 
Germany, in the state of North Rhine-Westphalia, in the 
northern Ruhr area.

Identifying important variables for primary cluster 
detection
To develop models for each of the four oral diseases, 
ZIP-5 neighborhood data was enriched to include key 
independent variables of social determinants of health. 
We applied five different machine learning algorithms to 
generate models to predict ZIP-5 neighborhood primary 
risk clusters for each oral disease. The performance of 
each model was then evaluated based on several metrics, 
as listed for each disease in Table 3.

For periodontitis, the RF model showed the high-
est values for accuracy and F1 score, but returned the 
lowest scores for precision and AUC (ROC) (Fig. A2) 
among all models. In comparison, the LR model had 

Fig. 2 Raw (A‑D) and smoothed (E‑H) incidence rates of oral diseases 2016–2021 among privately insured and self‑payer patients in Germany. A & 
E: periodontitis = Pr, B & F: caries (severe) = Cr, C & G: irreversible pulpitis = Plp, D & H: tooth loss = TL
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the highest scores for precision and AUC (ROC). For 
severe caries, SVM had the highest accuracy and high-
est F1 score (together with NN). LR showed the high-
est precision, and SVM the highest AUC (ROC). NN 
showed the best performance regarding accuracy and 
F1 score (together with RF) for irreversible pulpitis. LR 
had the highest precision, and LR and SVM the high-
est AUC (ROC). PR curves showed RF and DT to per-
form better than the other models. Regarding tooth loss 
LR had the highest accuracy and was the only model to 
have an accuracy above 90%. LR had the highest F1 score. 
No difference between the models were detected regard-
ing precision, while SVM had the highest AUC (ROC) 
score. Generally, the models for tooth loss had lower PR 

curve scores compared to all other diseases (Fig. A3). 
PR curves showed SVM to perform better than all other 
models for periodontitis, severe caries and tooth loss. DT 
showed the best performance for irreversible pulpitis. 
Based on these metrics, we determined SVM to be the 
best performing model for periodontitis and severe car-
ies, whereas NN and LR performed best for irreversible 
pulpitis and tooth loss, respectively.

Having identified the best-performing model for each 
disease, we used a model-agnostic permutation-based 
method for calculating variable importance, identify-
ing those variables with the greatest impact in detecting 
primary risk clusters for each disease (Fig. A4). For both 
periodontitis and severe caries, the best model (SVM) 

Fig. 3 Results of the Local Moran’s I Test (LISA) for the four oral diseases. A: periodontitis, B: caries (severe), C: irreversible pulpitis, D: tooth loss
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revealed that affiliation to the primary cluster was deter-
mined by several factors, including a rural location, low 
income, and a preference for traditional cultural values 
independent of status (Table  4). Moreover, there were 
tendencies towards a lower incidence of other oral dis-
eases, and reduced access to dental health care. Addition-
ally for severe caries, a lower education level was also an 

important determinant. In the best-performing model of 
irreversible pulpitis (NN), the primary risk cluster was 
associated with higher education levels, smaller house-
hold size, a rural living environment, a less-favorable 
occupation status, and a preference for traditional values 
and health behavior (i.e. as associated with the nostalgic 
middle-class milieu). Finally, the LR model for tooth loss, 

Fig. 4 P‑values of the Local Moran’s I Test (LISA) for the four oral diseases. A: periodontitis, B: caries (severe), C: irreversible pulpitis, D: tooth loss

Table 2 Description and relative risks (RR) of primary risk clusters of oral diseases detected in spatial scan statistics

Primary Cluster No. of ZIP-5 neigh-bor-hoods Obs. no. of 
cases

Exp. no. of 
cases

Incidence rate in 
cluster per 1000

Incidence rate 
outside cluster 
per 1000

RR (95%-CI) p-value

Periodontitis 370 13,348 4996 47.6 20.5 2.7 (2.6–2.8) <  0.001

Caries (severe) 288 7240 4560 24.7 16.2 1.6 (1.5–1.6) <  0.001

Irreversible Pulpitis 441 18,549 14,074 49.1 38.0 1.3 (1.3–1.3) <  0.001

Tooth Loss 50 2745 1833 17.4 12.6 1.5 (1.4–1.6) <  0.001
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highlighted key variables to be a smaller household size, 
a more urban living area, lower income, and a precari-
ous and nostalgic attitude towards health. There was also 
a tendency towards higher incidences of other oral dis-
eases, as well as a less-favorable occupation status.

Discussion
Descriptive statistics of incidence rates
Our study analyzes the incidence rates of the oral dis-
eases periodontitis, severe caries, irreversible pulpitis 
and tooth loss over a 6-year period in Germany, based on 
data from ~ 4.5 million privately insured and self-payers, 
and thus represents one of the largest collections of data 
on oral diseases to date.

Validating our analyses against independent data 
sources is important to verify our results. However, this 
is confounded by the scarcity of studies reporting on 

the incidence rates of oral diseases. In our review of the 
literature, we found only a limited number of studies 
focusing on incidence rates compared to those focusing 
on prevalence, an issue that is also discussed in a system-
atic review by Kassebaum et al. [41]. Additionally, in our 
study, the calculated incidence rates are based on second-
ary claims data, making a direct comparison with results 
from the literature more difficult. Most studies rely on 
individual assessments of diseases by trained profession-
als for disease detection, which is considered to be more 
accurate than those based on claims data. However, such 
studies often do not include a large number of partici-
pants, thereby limiting their utility for external validation 
of results. For example, a Japanese study reported an inci-
dence rate of 19.0 for periodontitis in a 6-year follow-up 
study of older adults [42]. While this rate is similar to the 
incidence rate we report here of 21.2, also considering the 

Fig. 5 Significant primary and secondary risk clusters for incidence rates of oral diseases in Germany 2016–2021 detected by spatial scan statistic. A: 
periodontitis, B: caries (severe), C: irreversible pulpitis, D: tooth loss
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socioeconomic and health care similarities between Japan 
and Germany, the Japanese study only included 374 indi-
viduals, thereby limiting its generalizability. Other studies 
include a 24-year follow-up study of self-reported peri-
odontitis in ~ 35,000 male health professionals between 
the ages of 40 and 75 years in the USA, which reported an 

incidence rate of 5.3, lower than what we detected here. 
However, we assume that health professionals are more 
likely to seek attention for health and dental issues early, 
and a self-report is a weak measure of actual oral dis-
ease, especially regarding periodontitis. In one review, an 
age-standardized incidence rate of 0.7 per 1000 persons 

Table 4 Root‑mean square error (RMSE) loss for independent variables of best performing ML models, including the direction of 
association, to detect primary cluster ZIP5 neighborhoods for each oral disease. Values of variables over 0.01 RSME loss are shown in 
bold

Variable Periodontitis (SVM) Caries (severe) (SVM) Irreversible Pulpitis (NN) Tooth Loss (LR)

Baseline 0.059 0.051 0.092 0.013

Education 0.004 0.007 0.011 0.002

Inhabitants per household 0.003 −0.003 −0.022 −0.019
Inhabitants per  km2 −0.020 −0.023 −0.012 0.011
Incidence other oral diseases −0.005 0.000 −0.001 0.003

Income −0.011 −0.016 −0.004 −0.010
Occupation −0.001 0.004 −0.008 −0.006

Conservative upscale milieu 0.009 0.009 0.000 0.005

Nostalgic middle‑class milieu 0.004 0.003 0.039 0.009

Precarious milieu 0.004 0.003 0.002 0.018
Traditional milieu 0.019 0.017 0.008 −0.004

Dentists per 1000 inhabitants −0.001 − 0.001 0.000 0.003

Table 3 Metrics of the five Machine Learning Models to predict ZIP‑5 neighborhood primary risk clusters of the four oral diseases

Accuracy [%] Specificity[%] Precision[%] Recall[%] NPV [%] PPV [%] F1 Score AUC (ROC)

Periodontitis

 Logistic Regression 86.8 91.9 99.8 86.7 13.8 99.8 0.93 0.97

 Decision Tree 87.3 73.0 99.3 87.7 12.1 99.3 0.93 0.80

 Random Forest 93.5 59.5 99.0 94.2 19.3 99.0 0.97 0.77

 Support Vector Machine 92.1 75.7 99.4 92.5 18.9 99.4 0.96 0.95

 Neural Network 88.2 78.4 99.4 88.5 13.6 99.4 0.94 0.95

Caries (severe)

 Logistic Regression 83.2 75.9 98.9 83.5 14.5 98.9 0.91 0.85

 Decision Tree 78.4 63.8 98.3 78.9 10.0 98.3 0.88 0.71

 Random Forest 88.0 62.1 98.5 89.0 17.1 98.5 0.93 0.76

 Support Vector Machine 89.2 62.1 98.5 90.2 18.9 98.5 0.94 0.86

 Neural Network 88.1 62.1 98.5 89.1 17.3 98.5 0.94 0.80

Irreversible Pulpitis

 Logistic Regression 88.6 96.6 99.8 88.2 31.7 99.8 0.94 0.95

 Decision Tree 87.8 93.2 99.6 87.5 29.8 99.6 0.93 0.90

 Random Forest 90.1 86.4 99.1 90.3 33.6 99.1 0.95 0.88

 Support Vector Machine 89.8 87.5 99.2 90.0 33.2 99.2 0.94 0.95

 Neural Network 91.5 70.5 98.2 92.7 35.4 98.2 0.95 0.91

Tooth Loss

 Logistic Regression 90.5 90.0 99.9 90.5 5.5 99.9 0.95 0.96

 Decision Tree 82.6 90.0 99.9 82.6 3.1 99.9 0.90 0.86

 Random Forest 86.2 100.0 99.9 86.1 4.3 99.9 0.93 0.93

 Support Vector Machine 84.8 100.0 99.9 84.7 3.9 99.9 0.92 0.98

 Neural Network 73.6 100.0 99.9 73.5 2.3 99.9 0.85 0.95
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per year for severe periodontitis in Western Europe was 
calculated [41], but included only persons with a gingi-
val pocket depth ≥ 6 mm. There are also studies reporting 
higher incidence rates, including a 4-year follow-up study 
that assessed gingival recession in 402 adults ≥35 years in 
Brazil, which reported an incidence rate of 359 per 1000 
per year [43]. Differences in oral health care services and 
dental health status between Germany and Brazil, as well 
as the inclusion of younger individuals in our study, could 
account for the differences in reported incidence rates. 
In terms of study design, study population characteris-
tics, and sample size, the recent study of Rädel et al. [44] 
was most similar to our study here, and thereby allows a 
meaningful comparison with our results. Rädel et al. used 
claims data of ~ 9 Mio. publicly insured persons in Ger-
many. Diseases were defined based on figures from the 
dental fee schedule for publicly insured patients (BEMA). 
Of note, this study calculated an incidence rate of 19 for 
the year 2019, corroborating the results of our study.

There is limited research on the incidence rates of 
severe caries, including direct or indirect pulp capping. 
A study from Mexico found a maximum incidence rate 
of 31.5 for new lesions in 88 schoolchildren over a 5-year 
period. However, the exact dates of occurrence of the 
lesions were not reported [45]. In this present study, we 
calculated a general caries incidence rate of 194.1, which 
also includes smaller lesions not affecting the pulp. Con-
sidering our results, other studies generally show compa-
rable incidence rates. A systematic review of data from 
291,170 people from 37 countries worldwide found an 
age-standardized incidence rate of 272.6 for 2010. Two 
studies reported a higher incidence rate: a 3-year fol-
low-up study of individuals > 50 years of age in Canada 
reported an incidence rate of 570 [46], and a 2-year fol-
low-up study from Florida, USA, reported an incidence 
rate of 670 [47]. The study by Rädel et al. [44] calculated 
an incidence rate of 261, which is comparable to the 
incidence rate we calculated here for caries in general. 
However, there remains a large gap in our knowledge 
regarding the incidence rates of severe caries.

The incidence rates reported for irreversible pulpitis 
vary in the literature. Rädel et al. reported an incidence 
rate of 52 in Germany for 2019, comparable to our inci-
dence rate (35.9) here. A study in Brazil showed an inci-
dence rate of 49 [48] in a 4-year follow-up assessment 
of root caries in adults. Two separate studies, reported 
similar incidence rates of 30 and 31.5, respectively, for 
retreatment and apicoectomy in endodontic proce-
dures in the USA [49], and endodontic interappointment 
emergencies (EIE) with necrotic pulp and retreatment in 
Singapore [50]. A 10-year follow-up US study reported 
an incidence rate of 105.9 for root canal therapy [51], 
whereas a 1-year follow-up study of dental surgery 

patients calculated an incidence rate of 78 for root canal 
filling, necrotic pulp, or irreversibly pulpitis [52]. These 
higher rates are consistent with the focus on specific 
high-risk cohorts in these studies.

Very few studies are available regarding incidence rates 
for tooth loss, with most focusing primarily on eden-
tulism [53]. A 6-year follow-up study of older adults in 
Japan calculated an incidence rate of 8.2 [42]. Rädel et al. 
reported an incidence rate of 82 for tooth loss in Ger-
many in 2019 [44]. We report a lower incidence rate here. 
A possible explanation for this is the likelihood that pri-
vately insured individuals and payers have better access 
to dental care [54]. This line of reasoning is supported by 
the fact that tooth extraction is considered to be the last 
treatment option for an oral disease.

In summary, our first null hypotheses could be rejected. 
Our study is comparable to other studies, especially for 
incidence rates of periodontitis and pulpitis, and can be 
regarded as representative for oral diseases in Germany. 
This also means that health data from private companies, 
in this case a private claims service provider, can be used 
to estimate disease burden and care needs in Germany 
[55–57]. In order to harness the full potential of health 
data, the findings from multiple data sources would have 
to be analyzed collectively.

Spatial clusters of oral diseases
Maps help us visualize complicated geographic informa-
tion. They help identify patterns in data that are otherwise 
abstract to the reader. The first step in taking public health 
action should be to map patient needs [6]. This can be 
accomplished by using claims data, as in our study, or clin-
ical data. Predicting the at-risk population, as well as their 
current and future specific needs, will aid in the design of 
interventions specific for the target population [58].

The results of our analysis of oral disease incidence 
show non-random spatial distribution patterns in Ger-
many. The spatial scan statistics could reveal overlapping 
clusters for periodontitis and severe caries in eastern 
Germany. The pathogeneses of these two diseases are 
different, as dental caries affects the enamel and dentin, 
whereas periodontitis that affects the gums. The data 
suggests that overall oral health in this region may be 
compromised in a variety of ways. Thus, cluster analysis 
can be used to identify potential areas of risk so that pre-
ventive measures can be taken. The aim should be to pro-
vide the right oral care at the right location.

Our results are in line with recent studies that found 
elevated risk of caries in specific areas. Strömberg et al. 
[59] could identify clusters in the Halland region in 
Sweden, with smoothed relative risks of up to 2.37 for 
preschool children. Antunes et al. [12] and Pereira et al. 
[13] found that caries risk was clustered in the outskirts 
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of Sao Paulo, Brazil. These studies highlight regions that 
warrant the attention and focus of public health prac-
titioners and policymakers. However, there is a lack of 
studies that consider spatial patterns (such as cluster-
ing and risk clustering) for other age groups and other 
oral diseases. Studies have shown that oral cancer, also 
appears to be spatially clustered [60]. In our study, we 
could detect spatial clusters for periodontitis, irrevers-
ible pulpitis, and tooth loss.

There were similarities and dissimilarities in the dis-
ease clusters detected by the two different clustering 
approaches. In this respect, it is important to note that 
local Moran’s I does not take multiple testing problems 
into account and does not calculate the magnitude of the 
risk, whereas the scan statistic does. The specific value of 
spatial scan statistics could be demonstrated in this study, 
because local Moran’s I methodology failed to detect 
the tooth loss cluster in Western Germany. Overall, the 
clusters identified by the scan statistic were more con-
centrated and localized, but were detected over a larger 
region than those identified by local Moran’s I. With local 
Moran’s I, clusters are identified in a strictly bounded 
area, where the correlation is assessed between the dis-
ease rate of a certain neighborhood and those of neigh-
boring areas as defined by the weights matrix [61]. Scan 
statistic may represent a more sensitive method, and 
compared to local Moran’s I, additionally provides more 
detail on the cluster’s characteristics, such as the num-
ber of cases, radius, and relative risks [62]. Furthermore, 
the exploratory nature of scan statistics helps to uncover 
hidden spatial structures that would otherwise remain 
undetected with conventional methods. For public health 
interventions and to ensure logical consistency of analy-
sis results, we advocate a combined approach that first 
uses local Moran’s I to test generally for the existence 
of local clusters, followed by the use of scan statistics to 
provide an in-depth understanding of the disease clus-
ters, risk assignments, and prioritization.

Thus, our second null hypotheses could be rejected. 
The spatial dimension is an important determinant of 
oral diseases, and oral diseases are spatially clustered in 
Germany.

Importance of social determinants of health in oral disease 
high risk cluster neighborhoods
Geographic correlation research assesses the relation-
ship between various socioeconomic, demographic and 
lifestyle factors and health outcomes, as measured on a 
geographic scale. Using machine learning algorithms, we 
aimed to generate disease models capable of detecting 
high-risk cluster ZIP-5 neighborhoods for each disease, 
and additionally identify variables significantly associated 
with these clusters. All models performed better than the 

random model, but generally, overall performance was 
considered to be moderate. As we aimed for high preci-
sion and accuracy in our models, the use of oversampling 
techniques during the training process was considered to 
be successful. All models, regardless of disease, had high 
precision scores and moderate to high accuracy scores.

For periodontitis, SVM scored high for accuracy, F1 
score, precision, and AUC (ROC). The PR curve addi-
tionally showed that precision was higher at low recall 
values compared to all other models. Recall, NPV, and 
PPV scores also supported the choice of SVM as the best-
performing model for periodontitis risk cluster detection. 
For severe caries, all models showed lower AUC (ROC) 
values when compared to the other diseases. Neverthe-
less, SVM performed consistently well in all metrics, 
including recall, NPV, and PPV, and was selected as the 
best model for variable significance detection. The over-
lapping clusters in both diseases may explain why the ML 
models showed similar results in explaining the primary 
clusters. In both diseases, SVM was determined to be the 
best-performing model.

For irreversible pulpitis, NN performed similarly to LR 
and SVM in terms of precision and AUC (ROC) scores, 
but showed the best performance in precision and F1 
score. NN was therefore selected as the best model for 
variable significance determination. All models for tooth 
loss performed comparatively poorer to the other dis-
eases, potentially due to the extreme imbalance and low 
number of cases in the data. Further research with differ-
ent oversampling techniques may yield better results. LR 
was selected as the best model for determining variable 
importance in detecting clusters of neighborhood risk 
because of its accuracy, F1 score, and high AUC (ROC).

We evaluated the importance of several variables in our 
ML models by analyzing RMSE after permutation. Vari-
ables with the largest RMSE were considered to be the 
most influential for each model, as their removal resulted 
in significant loss of accuracy. This method enabled us 
to identify variables that were important for all models, 
multiple models, or no models, additionally allowing us 
to assess whether the models picked up on unique pat-
terns in the data, or whether they used a common logic.

In our analyses of the four disease-specific models, we 
found the most important determinants for identifying 
primary clusters in ZIP-5 neighborhoods to be income, 
a traditional health behavior, and a higher rurality. Lower 
income was a significant factor in predicting primary risk 
clusters in periodontitis, severe caries and tooth loss. 
Several studies have confirmed lower socioeconomic 
status to be a key factor for developing an oral disease, 
especially caries [12, 13, 16]. Although income was not 
as important a factor for irreversible pulpitis as in other 
disease models, a poorer occupational status showed a 
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high correlation with disease risk. Thus, our results also 
highlight the importance of socioeconomic status in the 
development of irreversible pulpitis.

The importance of health behavior is evidenced in the 
literature. It is well-accepted that an “unhealthy” life-
style, which includes smoking, alcohol consumption, an 
unbalanced diet, stress, and missed preventive examina-
tions, is a primary and significant risk factor for develop-
ing disease [63]. Our analyses found a traditional attitude 
towards healthcare to be a key variable in predicting oral 
disease risk that was significant in all models, regardless 
of status. A traditional attitude to healthcare is more ori-
ented toward repair medicine than preventive measures, 
e.g. seeking dental care only in emergency situations [64]. 
The importance of this variable, however, may reflect 
a bias in the data, as only people who visited a dentist 
for disease-specific procedures during the study period 
could be included in the analyses.

All four models appear to be largely influenced by rural-
ity (population per  km2). However, the direction of impact 
was different for periodontitis, severe caries, and pulpitis, 
in which rurality was a positive predictor of primary clus-
ters, than for tooth loss, wherein urbanity was identified as 
a negative predictor. Rurality has been validated as a pre-
dictor in other studies [12, 13] and may reflect the nega-
tive effects of poorer accessibility to dental care. This is also 
confirmed in our results by the trend towards lower dental 
care as a predictor of periodontitis and severe caries. The 
findings of urbanity may be of particular interest in the con-
text oral health diseases, and underscores the need for clus-
ter-specific interventions rather than a blanket approach 
which is not likely to be efficacious. That urban areas are 
susceptible to forming clusters has also been noted in pre-
vious studies [16]. Of note, urban areas also have socioeco-
nomically disadvantaged populations who cannot afford or 
have limited access to oral health care. Further investiga-
tion is needed to better understand the differences in oral 
health care between urban and rural areas.

Recent studies show a link between lower levels of 
social support and higher prevalence of oral diseases 
[65]. Results for the current study found that people liv-
ing in households with fewer individuals are at higher risk 
of being in a cluster for irreversible pulpitis or tooth loss. 
While this variable may not fully represent social support, 
it potentially reflects a lower number of social interactions 
in households with fewer people. There is also evidence 
that single status is a risk factor for mortality [66]. How-
ever, the impact of social interactions and social support 
in oral diseases requires further investigation, as these fac-
tors have generally not been considered in previous stud-
ies. Indeed, the socioeconomic factors contributing to oral 
diseases have not been fully elucidated in the literature.

Minor differences are noted in the importance of the 
variable “incidence of other oral diseases”. This variable 
is not a predictor of cluster risk in severe caries. This is 
potentially because caries is one of the first oral diseases 
that people develop. In contrast, irreversible pulpitis and 
tooth loss are often associated with treatment after the 
initial caries experience. Along this line, the significant 
impact of the (co-)incidence of other oral diseases to per-
iodontitis, could be a reflection of periodontitis patients 
having had other oral health problems in the recent past.

In general, our third null hypotheses was rejected. Our 
study could show that machine learning models pro-
duced plausible results, based on performance data and 
with regards to social determinants of health. The vary-
ing significance of variables across clusters indicates the 
need for tailored (i.e. cluster-specific) health measures. 
Despite some similarity in the importance of variables 
across different clusters, each cluster is unique and must 
be treated as such when addressing oral public health 
threats. Interventions must therefore be risk group-spe-
cific, disease-specific, and patient-centered. Recognizing 
spatial clusters is an essential first step to successfully 
delivering the right care at the right location.

Critical reception and outlook
It is important to note some methodological limita-
tions of the study. We calculated incidence rates based 
on uniquely identified individuals (self-payer or privately 
insured), adopting a public health perspective that made 
assumptions about the new cases of oral disease without 
focusing on the severity of the disease, such as the number 
of affected teeth. We assumed that if a disease presents in 
a person, there is a need for public health intervention, as 
conventional prevention measures failed to prevent the 
disease. In our study, we exclusively included patients who 
received dental treatment for their respective conditions. 
Consequently, individuals with oral diseases who did not 
undergo treatment were not represented in our sample, 
which could potentially skew the estimation of incidence 
rates. Nonetheless, studies employing claims data to com-
pute incidence rates have demonstrated the capability to 
yield representative outcomes [67].

The data used was not originally created to detect inci-
dence rates, but to reimburse medical services. Individu-
als already suffering from an oral disease, but who did 
not visit a dentist during the study period were therefore 
not included. Therefore the actual number of cases may 
be underreported. Additionally, there is a potential bias 
of misclassification, i.e. if an incorrect procedure was 
provided by the medical staff. This risk is likely to be low 
for privately-insured persons in the study, as such reim-
bursements are subject to rigorous verification proce-
dures by private health insurers. We addressed this risk 
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by focusing on procedures clearly linked to the specific 
oral diseases. The use of incidence rates in this study 
reflects the actual demand for medical services and does 
not account for individuals who might need medical 
attention, but have not sought it. Moreover, the calcula-
tion of incidence rate using person-time assumes that 
the likelihood of disease remains constant over the study 
period, so that observing 5 persons for one year is equiv-
alent to following one person for 5 years.

The spatial scan statistic uses a circular window to dis-
tinguish disease clusters and is unable to detect clusters 
irregular in shape [68]. However, on a national scale, the 
methodology should help to primarily detect geographic 
locations in need of further public health investigations. 
Moreover, we used a limited number of variables, selected 
from commercially available data at the ZIP-5 neighbor-
hood level, to describe the clusters. Future studies should 
include additional explanatory variables, e.g. smoking 
habits, nutrition, and dental hygiene, all known to impact 
oral disease incidence rates [2], to enable a more compre-
hensive description of the factors driving disease risk.

In Germany, oral health diseases pose a significant 
threat to public health at all ages. Several ongoing pre-
ventative measures are adopted by the German govern-
ment and local health authorities to control the spread of 
oral diseases. However, while studies report a decline in 
the number of cases [3], incidence rates of oral diseases 
still remain high. Spatial modeling of disease enables an 
understanding of the magnitude of the risk in different 
regions of the country. Some studies have emphasized 
the importance of early intervention strategies to miti-
gate oral disease risk [2]. Our study has several policy 
implications for mitigating the risk of oral diseases:

(i) it can serve as a spatial guideline for decision-makers, 
facilitating the formulation of mitigation strategies 
that focus on hotspot ZIP-5 neighborhoods;

(ii) it can provide explicit information about the spa-
tial drivers of oral diseases, enabling policymakers 
to establish targeted disease surveillance measures 
based on the specific socioeconomic risk determi-
nants of the neighborhoods;

(iii) it could aid in the development of plans for decreasing 
socioeconomic inequalities in high-risk neighborhoods;

(iv) it can identify areas where strategies to enhance public 
awareness and knowledge of oral diseases are needed;

(v) it may help identify areas for the development of 
practice-focused innovative health care solutions, 
treatments and therapy, as privately insured and 
self-payers are more likely to consume innovative 
health care solutions.

Oral health goals and policies should be based on high 
quality, up-to-date descriptive and analytical epidemiol-
ogy data. This study proposes a methodology for inde-
pendent and continued monitoring of oral health goals 
and objectives across all geographic areas, enabling com-
parisons over time that can be leveraged for effective and 
efficient policy development in oral healthcare.

Conclusions
This study aimed to analyze the incidence of the oral dis-
eases periodontitis, severe caries, irreversible pulpitis and 
tooth loss in Germany, spatially locate the demand for care, 
and identify and characterize high-risk clusters for targeted 
intervention. Our results show that private claims data can 
be used to highlight locations and variables relevant to oral 
healthcare. A network-based, data-driven approach, that 
includes the use of non-traditional data sets, holds great 
potential in supporting resource-based management in the 
health system. Using spatial methods to model oral disease 
incidence could improve current prevention and control 
strategies at the ZIP code level. Our study adopts multiple 
spatial models to garner deeper insight into the risk of oral 
diseases in Germany, identifying several high-risk clus-
ters across the country in need of cluster-specific, targeted 
interventions for effective, patient-centered disease control. 
Our results also highlight socioeconomic determinants of 
health, such as income and occupational status, as potential 
underlying factors contributing to disease risk, and under-
score the need to address these aspects for effective disease 
surveillance and control. People living in poorer socioeco-
nomic conditions are less likely to adhere to proper pre-
vention measures or avail of dental services. The findings 
of our study can inform policymakers and researchers in 
focusing on oral disease incidence and socioeconomic pre-
dictors to mitigate disease risk and improve oral health.
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