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Abstract 

Background Dental age is crucial for treatment planning in pediatric and orthodontic dentistry. Dental age calcula-
tion methods can be categorized into morphological, biochemical, and radiological methods. Radiological methods 
are commonly used because they are non-invasive and reproducible. When radiographs are available, dental age can 
be calculated by evaluating the developmental stage of permanent teeth and converting it into an estimated age 
using a table, or by measuring the length between some landmarks such as the tooth, root, or pulp, and substituting 
them into regression formulas. However, these methods heavily depend on manual time-consuming processes. In 
this study, we proposed a novel and completely automatic dental age calculation method using panoramic radio-
graphs and deep learning techniques.

Methods Overall, 8,023 panoramic radiographs were used as training data for Scaled-YOLOv4 to detect dental 
germs and mean average precision were evaluated. In total, 18,485 single-root and 16,313 multi-root dental germ 
images were used as training data for EfficientNetV2 M to classify the developmental stages of detected dental germs 
and Top-3 accuracy was evaluated since the adjacent stages of the dental germ looks similar and the many variations 
of the morphological structure can be observed between developmental stages. Scaled-YOLOv4 and EfficientNetV2 
M were trained using cross-validation. We evaluated a single selection, a weighted average, and an expected value 
to convert the probability of developmental stage classification to dental age. One hundred and fifty-seven pano-
ramic radiographs were used to compare automatic and manual human experts’ dental age calculations.

Results Dental germ detection was achieved with a mean average precision of 98.26% and dental germ classifiers 
for single and multi-root were achieved with a Top-3 accuracy of 98.46% and 98.36%, respectively. The mean abso-
lute errors between the automatic and manual dental age calculations using single selection, weighted average, 
and expected value were 0.274, 0.261, and 0.396, respectively. The weighted average was better than the other meth-
ods and was accurate by less than one developmental stage error.

Conclusion Our study demonstrates the feasibility of automatic dental age calculation using panoramic radiographs 
and a two-stage deep learning approach with a clinically acceptable level of accuracy.
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Introduction
Growth and development assessment in children is 
essential for making appropriate diagnosis and treatment 
decisions in orthodontic and pediatric dentistry [1]. Den-
tal age and chronological age are different ways of meas-
uring a person’s developmental stage. Chronological age 
refers to a person’s actual age based on their date of birth. 
This is the most commonly used way of measuring age 
and is used to determine when a person reaches certain 
developmental stages. Dental age, on the other hand, is 
an estimate of a person’s age based on the development of 
their teeth. While chronological age is just a fixed num-
ber that does not change, dental age can vary depending 
on a person’s growth and thus provide more important 
and individual information. In addition, dental age is use-
ful in deciding when to initiate orthodontic treatment 
or whether a child’s dental development is delayed or 
advanced since chronological age is not always equal to 
dental age [2, 3].

The various dental age calculation methods can be cat-
egorized as morphological methods, biochemical meth-
ods, and radiological methods [4, 5]. Morphological 
methods are based on measurement of actual teeth and 
regression formulas are used for calculation. Biochemi-
cal methods are based on the racemization of amino 
acids [6]. Radiological methods are commonly used since 
they are non-invasive and reproducible compared to 
other methods [7–11]. Estimating dental age is feasible 
when radiographs are available, by assessing the growth 
stage of permanent teeth and converting this stage into 
an estimated age using a lookup table, or by measuring 
the distance from landmarks such as the tooth, root, or 
pulp, and inputting these values into regression equa-
tions [4, 7].

However, these processes are predominantly manual 
and require considerable time. The average time for 
manually calculating dental age is 10 min [12], making it 
inconvenient to be performed for every patient in daily 
clinical practice. Therefore, automatic dental age calcu-
lation is expected to save time in treatment planning by 
eliminating time-consuming but crucial routine tasks 
and increasing the interaction time between dentists and 
patients [13].

Recently, deep learning with Convolutional Neural 
Networks (CNN) and Artificial Intelligence (AI) in com-
puter vision has been developed, which can automatically 
extract imaging features with original pixel information 
as input data. In previous studies, deep learning methods 

for object detection, image classification, and image seg-
mentation were widely used in dentistry [14–19]. Fur-
thermore, the field of chronological age calculation has 
seen a growing interest in applying these techniques [20–
23]. Studies have demonstrated that CNN models can 
surpass the accuracy of manual methods in classifying 
chronological age based on dental images. However, few 
studies included multiple deep learning techniques and 
addressed germ detection or developmental stage clas-
sification. In addition, those methods have been devel-
oped for chronological age calculation, not for dental age 
calculation.

This study aimed to fill the gaps between classical man-
ual calculations and modern AI technologies in the field 
of dental age calculation. We proposed a novel and com-
pletely automatic dental age calculation method using 
panoramic radiographs and two-stage deep learning 
combined with object detection and image classification, 
trained with voluminous images. Additionally, we evalu-
ated its accuracy by comparing automatic and expert 
manual calculations and whether our proposed method 
could be clinically acceptable.

Materials and methods
Dataset
This study was retrospective and observational in nature. 
All images used in this study were obtained from patients 
who received dental treatment between January 2000 
and December 2018 at Osaka University Dental Hospi-
tal, Department of Pediatric Dentistry, Osaka, Japan. All 
images were anonymized and had no metadata such as 
patient name, chronological age, sex, dentition, or disease 
due to ethics. Roughly speaking, the datasets contained 
a relatively high number of images that showed healthy 
dentition. Our proposed process is illustrated in Fig. 1.

Germ detection
We utilized Scaled-YOLOv4 [24] as our germ detec-
tor, which is an improved version of YOLOv4 [25] and 
has achieved state-of-the-art object detection. Scaled-
YOLOv4 has performed well with larger models and 
input image sizes [24]; therefore, we used the second 
largest model, Scaled-YOLO v4 P6, for germ detection 
with an input size of 1280 × 1280 pixels, as much as our 
computational resource allowed.

To train Scaled-YOLOv4, 8023 panoramic radiographs 
were used as training data. These images included pri-
mary, mixed, and permanent dentitions. Four pediatric 
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Fig. 1 Our pipeline processes for automatic dental age calculation and evaluation methods
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dentists were presented with panoramic radiographs 
and instructed to draw box boundaries around all den-
tal germs and class-label those boxes. The class labels 
were based on a palmer system [26]. The correspond-
ence between number and tooth; 1 was the central inci-
sor, 2 was the lateral incisor, 3 was the canine, 4 was 
the first premolar, 5 was the second premolar, 6 was the 
first molar, 7 was the second molar, and 8 was the third 
molar. We added upper case prefixes “U” and “L” to iden-
tify the upper and lower tooth, respectively. For instance, 
U1 denotes the upper central incisor, and L6 denotes the 
lower first molar.

Our model’s performance was evaluated using aver-
age precisions with a 0.5 Intersection over Unit thresh-
old, which is a common metric in object detection deep 
learning models, including the YOLO families [24, 25, 
27–31], known as  AP50. We performed the 5-fold cross-
validation to assess the generalization of our model and 
prevent overfitting [32]. The training datasets were split 
into five, and Scaled-YOLOv4 was trained using four of 
them. The remaining fold was used to calculate the  AP50 
of the trained model. We replicated this five times and 
evaluated the average of the out-of-fold predictions.

Developmental stage classification
In total, 18,485 single- and 16,313 multi-root dental germ 
images were prepared using our germ detector and used 
as the training dataset. Four pediatric dentists were pre-
sented with dental germ images and instructed to clas-
sify developmental stages in Japanese children as Cr1/2 
(1/2 crown formation), Cr3/4 (3/4 crown formation), Crc 
(crown complete), R1/4 (1/4 root formation), R1/2 (1/2 
root formation), R3/4 (3/4 root formation), Rc (complete 
root formation), and Ac (apex closed) [8]. Ci (initial cal-
cification) and Cco (coalescence of cusps) were excluded 
because the images were too few to train the model. 
Each of the four pediatric dentists annotated the distinct 
images once and did not re-annotate any image anno-
tated by the other dentists.

We utilized EfficientNetV2 to classify dental germ 
images [33]. EfficietNetV2 is an improved version of 
EfficientNet [34] and a CNN-based image classifica-
tion model that achieves state-of-the-art performance 
on the ImageNet dataset with better accuracy and effi-
ciency than previous famous models, such as ResNet 
[35], DenseNet [36], and Xception [37]. EfficientNetV2 
scales up from EfficientNetV2-S to EfficientNetV2-M/L, 
and classification performance also improves as the 
model scales up. However, the computational complex-
ity increases exponentially as EfficientNetV2 scales up; 
therefore, we chose the intermediate EfficientNetV2-M 
as our germ classification model. All germ images were 
resized to 480 × 480 pixels to train EfficientNetV2-M. We 

performed 5-fold stratified cross-validation so that each 
fold could have the same proportion of developmental 
stages. The classification accuracy of out-of-fold predic-
tions was evaluated using the same procedure as germ 
detection. We evaluated the Top-1 accuracy and Top-3 
accuracy. The former is a metric of model prediction 
performance that must match the single developmen-
tal stages. The latter is the classification correctness, in 
which the top three highest probabilities of model pre-
dictions matched the target developmental stages.

It is also crucial to know the decision-making process 
of AI for interpretability and explainability [38, 39]. We 
applied Gradient-weighted Class Activation Mapping 
(Grad-CAM) [40] to analyze how our model could clas-
sify dental germs and whether the procedure was similar 
to that used by dentists.

Dental age calculation
In the germ classification stage, we obtained the prob-
ability of each dental germ’s developmental stage. We 
evaluated a single selection, a weighted average, and an 
expected value to convert the probability to dental age. 
The Ac stage was excluded from calculation because 
this stage refers to the end of dental germ development 
and does not have a dental age [8]. The single selection 
chooses one developmental stage with the highest prob-
ability and converts it to the respective dental age [8]. The 
weighted average considers the probability of each devel-
opmental stage. We used the three highest probabilities 
to calculate the weighted average, as follows:

where p1, p2, and p3 are the top three probabilities of the 
dental germ’s developmental stage, as obtained using the 
germ classifier, and x1, x2, and x3 are the dental ages of the 
corresponding developmental stages. The expected value 
considers all probabilities and was calculated as follows:

where n is the number of developmental stages used for 
calculation, pi are the probabilities of the dental germ’s 
developmental stage, and xi are the dental ages of the cor-
responding developmental stages.

After converting the probability to dental age, the sim-
ple average of the dental age of each dental germ was 
regarded as the overall dental age of each panoramic 
radiograph [41]. To analyze the accuracy of the over-
all dental age, 157 panoramic radiographs that were not 
included in previous training datasets were used, and 
automatic dental age calculation was performed using 

weighted average =
x1p1 + x2p2 + x3p3

p1 + p2 + p3

expected value =
n
i=1

xipi
n
i=1

pi
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one of the 5-fold cross-validated germ detector and germ 
classifier models. Four pediatric dentists manually calcu-
lated the overall dental age using the same radiographs, 
and the mean absolute errors between the experts’ and 
the automatic calculation were evaluated. Since all the 
images used in this study were anonymized and had no 
metadata in terms of sex, we calculated dental age of 
males and females from the same panoramic radiograph 
and evaluated an average of both.

Results
The germ detector’s performance is presented in 
Table 1. Scaled-YOLOv4 P6 with an input image size of 
1280 × 1280 achieved detection accuracy with an  AP50 of 
98.26%. Examples of germ cell detection with and with-
out congenitally missing teeth are presented in Figs. 2, 3, 
and 4. Notably, the dental germs were correctly detected. 
Primary tooth conditions, such as healthy, caries, com-
posite filling, metal crown, root canal filling, and ortho-
dontic materials, did not affect detection performance. 
Examples of germ detection failures are illustrated in 
Fig. 4. Most dental germs were accurately detected; how-
ever, some dental germs were not.

The performance of the germ classifier for single- or 
multi-root dental germ images with 5-fold cross-vali-
dation is summarized in Table 1. The germ classifier for 
single- and multi-root dental germs achieved the highest 
Top-1 classification accuracies of 68.31 and 71.54% and 
the Top-3 accuracies of 98.46 and 98.36%, respectively. 
The confusion matrices for germ classification are pre-
sented in Fig.  5. The germ classifier tended to misclas-
sify the actual stages as adjacent stages. The Grad-CAM 
images of the germ classifier are illustrated in Fig. 6. The 
germ classifier can recognize the shape or form of the 
dental germ like human experts.

The mean absolute errors between the automatic and 
manual overall dental age calculations by the four experts 
using single selection, weighted average, and expected 

value to convert the probability of each dental germ’s 
developmental stage to each dental age are described in 
Table 2. The weighted average was better than the other 
methods for the conversion to dental age.

Discussion
In this study, our dental germ detector using Scaled-
YOLOv4 P6 with an input size of 1280 × 1280 achieved 
a very high  AP50 of over 98% by cross-validation, as pre-
sented in Table  1. The training data, which was much 
larger than that of previous studies [14, 15], was sufficient 
for our model to learn the features of images. Generally, 
there were two choices for object identification from 
the image: semantic segmentation and object detection. 
Since pixel-level annotation for semantic segmentation 
was costly and erroneous and object detection was better 
at handling overlapping objects [19], we selected object 
detection for germ detection.

In addition, since the method of obtaining panoramic 
radiography with optimal quality has been established 
[42], our models could achieve high performance by 
learning dental germ features, including background 
images, overlapping with other objects, or relative posi-
tion to other dental germs. Therefore, Scaled-YOLOv4 
or older YOLO families [25, 27] may have sufficiently 
detected dental germs, and the newest, but computation-
ally time-consuming models, such as YOLOv7 [43], were 
not necessary.

However, using state-of-the-art image models for 
dental germ-stage classification is important. Despite 
EfficientNet V2’s exceptional performance, the Top-1 
accuracy of our germ classifier was approximately 70%, 
as presented in Table 1. This might be because overlap-
ping with other objects or background images, thought 
to be good for germ detection models, negatively affects 
the germ classification model. Therefore, we utilized one 
of the state-of-the-art but computationally expensive 
models for germ classification. Our germ classification 
models are considered to be similar to human experts 
and are clinically applicable with reasonable accuracy. 
Our models focus on the crown shape or root formation 
of the dental germ to classify developmental stages, as 
illustrated in Fig. 6 like human experts. In addition, our 
model tends to misclassify adjacent stages using the con-
fusion matrix in Fig.  5. This tendency was observed in 
previous research and also in real-world dentists because 
the adjacent stages of the dental germ looks similar and 
the many variations of the morphological structure can 
be observed between developmental stages [8, 44]. This 
is why we achieved an exceptional Top-3 accuracy of 
98%. It is also the reason we adopted the Top-3 weighted 
averages to calculate dental age, which reduced the 
mean absolute error between the automatic and manual 

Table 1 Average precisions of our germ detector and accuracy 
of the developmental stage classifier

Fold Germ detection Developmental stage classification

Single-root Multi-root

AP50 Top-1 Top-3 Top-1 Top-3

1 98.32 66.68 98.32 72.35 98.16

2 98.38 68.43 98.54 71.61 98.62

3 98.14 68.23 98.57 71.74 98.41

4 98.23 68.16 98.13 71.01 98.16

5 98.23 70.03 98.76 71.01 98.44

Average 98.26 68.30 98.46 71.54 98.36
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Fig. 2 Examples of germ detection without congenitally missing teeth. All germs were detected correctly
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Fig. 3 Examples of germ detection with congenitally missing teeth. Arrows indicate the points where dental germs are absent and not detected
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Fig. 4 Examples of germ detection with some failure. Some germs were not detected. Arrows indicate points where dental germs are present 
but not detected



Page 9 of 12Kokomoto et al. BMC Oral Health          (2024) 24:143  

Fig. 5 Results of germ classifier for single- or multi-root dental germ images obtained for each fold of cross-validation training. Those confusion 
matrices are normalized by the number of elements in each class to reveal each class’s accuracy
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calculations by experts, as presented in Table 2. The sin-
gle selection showed a similar mean absolute error, but 
the standard deviation was worse than the weighted aver-
age, indicating that the calculated value may spread out 
over a wide range and may be far from the actual dental 
age. The expected value showed the worst result, which 
suggested that using all data may be noisier than using 
Top-3 accurate values.

Our germ detection model achieved a high  AP50 of 
98%; nonetheless, a few dental germs were sometimes 
not detected, as illustrated in Fig.  4. However, this may 
not be critical as regards dental age calculation because 
we can still use over 20 dental germs and average them 
for calculation despite several germ detection failures. 
Thus, our automatic calculation method is robust against 
detection failures.

Our automatic dental age calculation achieved a mean 
absolute error of 0.261 years (about 3 months) compared 
with human experts, raising the concern of this difference 

being clinically acceptable. Most previous studies have 
focused on chronological age estimation [20–23, 45], 
whereas our research aimed to evaluate dental age calcu-
lation. Therefore, our results are not directly comparable 
to those of previous studies. One potential metric to eval-
uate our results can be the difference in years between 
the developmental stages of the teeth. For each teeth, 
the minimum difference between each developmental 
stage and its adjacent stage is 0.4 years [8]. Our model has 
achieved better result of 0.261 years, indicating that our 
automatic dental age calculation is accurate by less than 
one developmental stage error and thus is acceptable for 
supporting dentists. Moreover, the automatic calculation 
can be performed in a few minutes, which is significantly 
faster than manual calculation [12] and is useful not only 
for pediatric or orthodontic dentists but also for general 
dentists and even students. We believe that our results 
will serve as a new benchmark for further research in 
dental age calculation.

Our method can easily be applied to other dental 
age calculation methods based on developmental stage 
assessment [9–11]. For those methods, first, determine 
the dental germs should be determined. Then the devel-
opmental stages should be classified to obtain den-
tal age, using the procedure described in our model. 
If another method is to be used, the model should be 
modified to change the calculation algorithm, includ-
ing the volume assessment of teeth, pulp-to-tooth ratio 
method, coronal pulp cavity measurement, and open 
apices method [4, 5, 7].

Our proposed model can be useful not only for den-
tal age calculation using various methods but also other 
clinically supportive applications. When there were con-
genitally missing teeth on the panoramic radiograph, the 
germ detector did not respond to the missing teeth’s loca-
tion, as shown in Fig. 3. This behavior can inform dentists 
about missing teeth, which is a crucial factor in treatment 
planning. Moreover, our germ classifier can help human 
experts improve their diagnostic skills for developmental 
stage classification by receiving feedback from the deci-
sion-making process illustrated in Fig.  6. In the future, 
human and AI collaboration in dentistry will be expected 
in academic education and clinical practice [13, 46, 47].

This study has some limitations. Although the number 
of training datasets in this study is much larger compared 
to that in previous studies in the field of dentistry, it is 
still small compared to that in other fields. For example, 
ImageNet consists of 14 million natural images [48], MS-
Celeb-1 M has 10 million face images [49], and RadIma-
geNet provides 1.35 million medical images [50]. There 
may be some room for further improvement of automatic 
calculation performance by training with a larger data-
set. Also, our datasets contain a relatively large number 

Fig. 6 Examples of representative dental germ images 
and corresponding Grad-CAM of germ classifier for interpretability 
and explainability. Germ classifier can recognize the shape or form 
of the dental germ

Table 2 The mean absolute errors between the automatic and 
manual overall dental age calculations

Calculation method Mean absolute error Standard 
deviation

Single selection 0.274 0.342

Weighted average 0.261 0.274

Expected value 0.396 0.588
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of healthy images. To reduce this bias and to overcome 
imbalanced datasets, adding the public datasets such as 
Tufts Dental Database [51] or federation learning across 
multiple medical institutions [52] could be solutions to 
be consider.

Another limitation is that our datasets lack metadata 
like chronological age or sex because of ethical reasons. 
In particular, since the metadata of sex and race are 
important factors for dental age estimation, they are nec-
essary to evaluate the difference between our results and 
further studies in which metadata are available. Addi-
tionally, if the metadata of age are available, our model 
can be modified to calculate not only dental age but also 
chronological age, which is useful in forensic science 
[45]. Thus, a large-scale dental image dataset, which has 
metadata and is annotated by experts, is expected to help 
in developing successful AI models in dentistry.

Conclusion
In this study, we achieved automatic dental age calcula-
tion with a clinically acceptable error compared to man-
ual calculation by human experts using two-stage deep 
learning with high accuracy in dental germ detection and 
developmental stage classification. Dental age is crucial 
for treatment planning in pediatric and orthodontic den-
tistry, and our method supports faster dental treatment 
planning than that with manual calculation.
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