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Abstract 

Background Dental caries diagnosis requires the manual inspection of diagnostic bitewing images of the patient, 
followed by a visual inspection and probing of the identified dental pieces with potential lesions. Yet the use of arti-
ficial intelligence, and in particular deep-learning, has the potential to aid in the diagnosis by providing a quick 
and informative analysis of the bitewing images.

Methods A dataset of 13,887 bitewings from the HUNT4 Oral Health Study were annotated individually by six dif-
ferent experts, and used to train three different object detection deep-learning architectures: RetinaNet (ResNet50), 
YOLOv5 (M size), and EfficientDet (D0 and D1 sizes). A consensus dataset of 197 images, annotated jointly by the same 
six dental clinicians, was used for evaluation. A five-fold cross validation scheme was used to evaluate the perfor-
mance of the AI models.

Results The trained models show an increase in average precision and F1-score, and decrease of false negative rate, 
with respect to the dental clinicians. When compared against the dental clinicians, the YOLOv5 model shows the larg-
est improvement, reporting 0.647 mean average precision, 0.548 mean F1-score, and 0.149 mean false negative rate. 
Whereas the best annotators on each of these metrics reported 0.299, 0.495, and 0.164 respectively.

Conclusion Deep-learning models have shown the potential to assist dental professionals in the diagnosis of caries. 
Yet, the task remains challenging due to the artifacts natural to the bitewing images.

Keywords Caries detection, Bitewing, Digital dentistry, Deep learning, Object detection

Introduction
As reported in the WHO Global Oral Health Status 
Report in 2022 [1], globally 3.5 billion people are afflicted 
by some form of oral disease, and 2 billion suffer from 
caries in permanent teeth. Furthermore, untreated den-
tal caries in permanent teeth is the most common dental 
health condition. Diagnosis of such lesions requires both 
the inspection of clinical images e.g., X-ray (bi-dimen-
sional images) or cone beam computed tomography (tri-
dimensional images), as well as the visual examination 
and probing of the affected tooth or teeth. This procedure 
is time consuming, and requires a high level experience 
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when analysing the clinical images. The two main image 
modalities used to assist and support the examination 
of caries are bitewing (BW) and panoramic radiography 
(OPG) [2, 3]. Caries, particularly proximal caries, a type 
of carious lesion located on the surfaces between adja-
cent teeth, are difficult to detect manually or visually (i.e. 
using radiographic X-ray images) due to artifacts. Also, 
poor angulation can hinder the correct identification of 
the lesions or even occlude lesser grade caries.

Since 2008, the research on the application of artificial 
intelligence (AI) and, more specifically, deep learning 
(DL) convolutional neural networks (CNN) models for 
the analysis of dental has noticeably increased [4–13]. 
However, research on this field is still limited compared 
to other clinical areas. Data availability and reliable anno-
tations [8, 13] are the main bottlenecks in the develop-
ment of machine learning (ML) methods in dentistry. 
A large portion of the published work uses a dataset of 
fewer than 300 images, only few studies have access to 
large datasets [8] with more than 1,000 images like [11, 
14, 15]. Of these publications, the work presented in [4–
6, 11, 15] focus on object detection, which is the scope 
of the present study. Object detection or object recogni-
tion refers to the task of localising and classifying objects 
in a picture [16]. The localisation is usually marked using 
axis-aligned bounding boxes, surrounding the outermost 
boundary of the item of interest.

In Devito  et  al.  [4], a multi-layer perceptron with 51 
artificial neurons (25 in the input layer, 25 in the hidden 
layer, and one in the output layer) is used to detect proxi-
mal caries on BW images, using a dataset of 160 images 
annotated by 25 experts. Whereas in Srivastava et al. [11], 
a caries detector built using a tailor designed fully con-
nected neural network was trained with 3,000 annotated 
BW images. In Singh et al. [6], hand-crafted features for 
X-ray images are built using Radon and discrete cosine 
transformations, and further classified using an ensemble 
of ML techniques such as random forest. Park et al. [15] 
proposed an ensemble of U-Net and Fast R-CNN for car-
ies detection in colour image, trained with 2,348 RGB 
intraoral photographic images. Even though, the work 
done by Cantu et al. [14] focuses on image segmentation, 
it is worth mentioning because of the dataset used: 3,686 
BW images, with caries segmentation annotations, to 
train a U-Net model for segmentation.

Study goals
In this study we compare three state-of-the-art deep 
learning architectures for object detection on the task of 
proximal caries detection, namely RetinaNet, YOLOv5, 
and EfficientDet. By using an extensive and annotated 
dataset, we hypothesised that AI object detection mod-
els can perform in equal or better terms than dental 

clinicians. Hence, in this study we trained the aforemen-
tioned architectures in detection and classification of 
enamel caries, dentine caries, and secondary lesions, in 
BW images. Then, the models were compared to human 
annotators in order to test our hypothesis. In addition, 
a novel processing pipeline for merging multi-observer 
object detection annotations, based on Gaussian Mixture 
Models, is proposed.

Methods
Dataset
The bitewing images used in this study were collected as 
part of the HUNT4 Oral Health Study on the prevalence 
of periodontitis in a Norwegian population, a sub-study 
of the fourth phase of the HUNT study [17]. The HUNT4 
Oral Health Study is a collaborative study between several 
Norwegian institutes including: the HUNT research cen-
tre, the Kompetansesenteret Tannhelse Midt (TkMidt), 
the Norwegian University of Technology (NTNU), the 
University of Oslo (UiO), the Tannhelsetjenestens Kom-
petansesenter Øst (TkØ), and the Norwegian National 
Centre for Ageing and Health.

The data collected consisted of clinical and radio-
graphic oral examination, which took place between 2017 
and 2019. A total of 7,347 participants were invited to 
participate in the study, out of a population of 137,233 
people (2017) [18]. Only 4,933 participants where 
included in the Oral Health survey study, out of which, 
4,913 completed both clinical and radiographic examina-
tion [18, 19]. A total of 19,210 BW and 4,871 OPG images 
where collected from the participants. The demographics 
of the dataset showed a distribution of 2,759 ( 56% ) female 
and 2,174 ( 44% ) male participants, with ages ranging 
from 19 to 94 years ( 51.8± 16.6 years on average)  [18]. 
For this study, only the BW images were considered.

The following subsections will further describe the 
steps of the workflow followed in the present study, 
which is depicted in Fig. 1.

Data annotation
The data was annotated by six dental clinicians with 
extensive experience in the diagnosis of proximal car-
ies, using the open-source annotation tool Annota-
tionWeb  [20]. The caries were classified in five different 
categories shown in Table 1. Further details of the anno-
tation procedure can be found in Section 1 of the Addi-
tional Materials 1.

To clean the annotations so as to get a ground truth 
to train the AI models, a novel object detection multi-
observers annotations combination strategy was envi-
sioned for this project. First, the annotated bounding 
boxes were grouped based on the intersection over 
union (IoU) score, a metric which describes how well the 
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boxes overlap. Then, a Gaussian distribution was fitted to 
each bounding box in the group, along the vertical and 
horizontal axes. A mixture density function (MDF) of a 
Gaussian Mixture Model in which all distributions have 
the same weight, was obtained by combining the prob-
ability density functions of the fitted Gaussian distribu-
tions.The common bounding box was then obtained from 
the MDF given a probability threshold (p), as detailed in 
Algorithm 2, in the Additional Materials 1. Alternatively, 
the non-maximum suppression (NMS) algorithm can 
be used to find the best fitting bounding box. However, 
since all the annotations had the same level of confi-
dence, unlike the predictions done by an AI model, NMS 
will be biased towards the first bounding box selected as 

a reference. Lastly, the label of the common bonding box 
was determined based on the most voted class among 
the bounding boxes in the group. In case of tie, the most 
severe class was chosen e.g., dentine caries over enamel 
caries.

A total of 13,887 images were annotated by one to six of 
the dental clinicians (see Fig. 2), having a total of 13,585 
images annotated by more than one dental clinician.

The distribution of labels in Fig. 3 shows a higher vol-
ume of secondary lesions than all the other grades. After 
discussion with the dental clinicians, it was agreed to 
merge the grade one and two under the label of “enamel 
caries”, and grades three to five under the group of “den-
tine caries”. Secondary caries and unknown grade groups 
were kept as separate label groups.

In addition, 197 images were annotated by consensus 
agreement among all the expert annotators, so as to build 
a test set for evaluation purposes. To create this data-
set, hereafter consensus test set, all annotators (dental 
clinicians) were brought together in the same room and 
agreement was achieved by consensus on the annotation 
of the images. The images in the consensus test set had 
previously been annotated by all annotators individu-
ally, with a considerable time gap between the individual 
annotations and the creation of the consensus agreement 
annotations, so that the annotations could be considered 
independent of each other.

Fig. 1 Data workflow. The HUNT4 Oral Health Study bitewings were stored on a dedicated server, and made available to the expert dentists 
and dental hygienists for annotation, resulting in the annotated data and the consensus test set. The resulting annotations were merged to build 
the datasets used in this study. The training dataset was further split following a K-fold (in this study K = 5 ) cross-validation (CV), and pre-processed. 
The AI models were trained and evaluated on both the CV test set and the consensus test set

Table 1 Definition of the classes used to annotate the dataset

Label name Description

Grade 1 Radiolucent in outer half of the enamel [21, 22]

Grade 2 Radiolucent in the inner half of the enamel, 
but not in the dentine [21, 22]

Grade 3 Radiolucent in the outer third of the dentine [21, 22]

Grade 4 Radiolucent in 2/3 of the dentine [21, 22]

Grade 5 Radiolucent in the inner third of the dentine [21, 22]

Secondary lesion Caries related to sealants or restorations

Unknown grade Caries whose grade cannot be clearly identified
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Object detection models
Three state of the art object detection architectures were 
evaluated for caries detection: RetinaNet (Keras imple-
mentation)  [23] (ResNet50 backbone), YOLOv5  [24] 
(size M), and EfficientDet  [25] (pretrained D0 and D1). 
All the models used transfer learning, which is a common 
strategy when adapting object detection models to a par-
ticular dataset, by loading the weights of models trained 
on a larger dataset set e.g., ImageNet or COCO datasets. 
RetinaNet was initialised with the weights of ResNet50 
trained on ImageNet dataset, YOLOv5 loaded the weights 
pretrained on COCO dataset (provided in the origi-
nal repository https:// github. com/ ultra lytics/ yolov5), 
and EfficientDet pretrained weights were obtained from 
https:// github. com/ rwigh tman/ effic ientd et- pytor ch. For 
better comparison of the architectures, Table  2 shows 
the number of parameters for each architecture. Due to 
time restrictions, not all the versions of YOLOv5 and 
EfficientDet are included in the current results. The pre-
processing and post-processing were kept the same for all 
models and experiments. Preliminary experiments were 
conducted with the contrast limited adaptive histogram 

equalization (CLAHE) method, inspired by Georgieva 
et al. [26], but these experiments were eliminated before 
the final round of cross-validation because they did not 
lead to any improvement in the scores. Only intensity 
standardisation to the range [0,  1], and horizontal and 
vertical flipping were used to augment the training data-
set, both being applied with a probability of 0.5.

The training was done on a dedicated server running 
Ubuntu 20.04. The machine featured a NVidia Quadro 
RTX 5000 GPU with 16 GB VRAM, a Intel Core i7-9700 
CPU, 32 GB RAM, 1 TB SSD, and 8 TB HDD. The training 

Fig. 2 Distribution of annotated images in the annotated dataset. In the legend, the number of annotated images for each interval is shown 
within brackets

Fig. 3 Distribution of annotations in the dataset annotated by the six dental clinicians. Enamel proximal caries (Grades 1 and 2, total 19,995 
annotations) are pictured in light green, dentine lesions (Grade 3 to 5, total 17,903 annotations) are in orange, secondary lesions are depicted 
in pink, and caries of uncertain grade have been highlighted in white. Image free of lesions (No caries) are shown in dark blue, here the number 
of annotations matches the number of images

Table 2 Number of parameters of each architecture

Architecture Number of 
parameters 
(millions)

YOLOv5 M 21.2M

RetinaNet (ResNet50) 36.4M

EfficientDet D0 3.9M

EfficientDet D1 M 6.6M

https://github.com/ultralytics/yolov5
https://github.com/rwightman/efficientdet-pytorch
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parameters for each model are summarised in Table 3. In 
the case of YOLOv5 and RetinaNet, the learning rate was 
monitored using a learning rate scheduler. For YOLOv5, 
the OneCycleLR scheduler from PyTorch was used with a 
maximum learning rate of 10−1 . Whereas for RetinaNet, 
a step learning rate scheduler was used with the patience 
set to 10 epochs. For both RetinaNet and EfficientDet, an 
early stopper was used to prevent overfitting. A patience 
of 20 and minimum loss increment of 5× 10−3 was con-
figure for RetinaNet, and a patience of 50 and minimum 
increment of 10−1 for EfficientDet.

Validation protocol
After removing the images rejected by the annota-
tors (980), images with unknown grade annotations 
(4,565), and those in the consensus test dataset (197), the 
remaining 8,342 images were split into five folds to per-
form a cross-validation (CV) study. Random sampling 
without replacement was used to build the folds. The 
cross-validation training and evaluation was performed 
with a three-way-split, i.e. for each iteration, three folds 
were used for training, one fold was used for validation 
during training, to avoid overfitting; and the final fold 
was kept aside as a test set for the final performance 
evaluation.

To test our hypothesis on the performance of AI mod-
els, both the trained models in each fold and the anno-
tators were evaluated against the consensus test set. 
However, due to time constraints, one of the annotators 
did not complete the individual annotation task, missing 
one image, and thus the resulting metrics of this anno-
tators are not strictly comparable to those of the models 

and other annotators. This annotator is marked with an 
asterisk (*) in Table 7.

Performance evaluation
As aforementioned, the models described in “Object 
detection models” section and the annotators were evalu-
ated on the consensus test set. The metrics used in the 
evaluation were the standard metrics for evaluating 
object detection model performance: average precision 
(AP) for each of the classes, the mean average preci-
sion (mAP) across classes, the F1-score (F1) for each of 
the classes, the mean F1-score (mF1), as a surrogate for 
the recall and precision, the false negative rate (FNR) for 
each class, and the average across classes (mFNR). These 
three metrics are in the range [0, 1].

Bootstrap confidence intervals ( 95% ) were computed 
for the test results of both the models and the annotators, 
to compare the performance of these. For this compar-
ison, the models trained on the  5th  fold were used. The 
intervals were computed using the bias-corrected and 
accelerated bootstrap algorithm [27], with 1,000 itera-
tions for confidence interval. Significance in score differ-
ences between annotators and models were determined 
based on overlap of the confidence intervals.

Results
The evaluation results on the consensus test set for the 
five-fold cross-validation can be found in Tables  4, 5 
and 6 (the results per fold can be found in Table  1  in 
Section  4 of the Additional Material 1). The metrics 
were computed using the PASCAL VOC metrics imple-
mented in [28], with an IoU thresholds of 0.3. The 
threshold was deemed an adequate trade-off between 

Table 3 Training parameters for each model

Architecture Batch size Learning rate Max. epochs Optimiser Framework

YOLOv5 M 8 10
−2 180 SGD PyTorch

RetinaNet 4 10
−5 200 Adam Keras

EfficientDet D0 8 10
−4

10
6 AdamW PyTorch

EfficientDet D1 8 10
−4

10
6 AdamW PyTorch

Table 4 Average precision (AP) results (mean and standard deviation) of the five-fold cross-validation evaluated on the consensus test 
set. The best metrics are highlighted in bold

Model Enamel caries Dentine caries Secondary lesion mAP

YOLOv5 M 0.597 ± 0.034 0.622 ± 0.029 0.681 ± 0.022 0.633 ± 0.025
RetinaNet 0.371 ± 0.023 0.333 ± 0.024 0.412 ± 0.034 0.372 ± 0.017

EfficientDet D0 0.310 ± 0.048 0.278 ± 0.017 0.267 ± 0.017 0.285 ± 0.012

EfficientDet D1 0.340 ± 0.029 0.387 ± 0.032 0.377 ± 0.028 0.368 ± 0.027
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precision and recall for the current application, where 
detection of potential caries is preferred. The YOLOv5 
model reached the highest AP scores for all classes, 
as well as the highest F1-scores for two out of three 
classes, and the lowest FNR for all classes.

The confidence intervals for the means of the distri-
butions of the performance metrics, calculated for each 
model and each annotator, can be found in Table 7. As 
described in “Performance evaluation”  section, these 
intervals were used to assess statistical significance 
between the different architectures, as well as between 
the models and the human expert rater performance. A 
graphical representation of these is show in Fig.  4, for 
ease of interpretation.

Overall, the scores of all of the object detection models 
were similar to or better than that of the human expert 
annotators. In terms of AP, the YOLOv5 model achieved 
significantly higher scores than all of the annotators, as 
well as the RetinaNet and the EfficientDet D0. The Reti-
naNet and EfficientDet models also achieved mAP-scores 
that were similar to or significantly better than the anno-
tators. Regarding F1, The YOLOv5 model achieved sig-
nificantly higher scores than the RetinaNet model and 4 
out of 6 annotators, but the difference with the Efficient-
Det models were not significant. The EfficientDet models 
achieved mF1-scores similar to or better than the anno-
tators, whereas the mF1-score of the RetinaNet model 
was significantly lower than most of the annotators. In 

Table 5 F1-score results (mean and standard deviation) of the five-fold cross-validation evaluated on the consensus test set. The best 
metrics are highlighted in bold

Model Enamel caries Dentine caries Secondary lesion mF1

YOLOv5 M 0.513 ± 0.011 0.588 ± 0.019 0.563 ± 0.029 0.555 ± 0.011
RetinaNet 0.234 ± 0.032 0.312 ± 0.015 0.228 ± 0.027 0.258 ± 0.013

EfficientDet D0 0.465 ± 0.055 0.459 ± 0.021 0.444 ± 0.006 0.456 ± 0.017

EfficientDet D1 0.533 ± 0.021 0.561 ± 0.020 0.507 ± 0.028 0.534 ± 0.019

Table 6 False negative rate (FNR) results (mean and standard deviation) of the five-fold cross-validation evaluated on the consensus 
test set. The best metrics are highlighted in bold

Model Enamel caries Dentine caries Secondary lesion mFNR

YOLOv5 M 0.153 ± 0.021 0.215 ± 0.032 0.160 ± 0.035 0.176 ± 0.025
RetinaNet 0.185 ± 0.060 0.364 ± 0.044 0.200 ± 0.045 0.250 ± 0.031

EfficientDet D0 0.606 ± 0.060 0.636 ± 0.020 0.533 ± 0.020 0.592 ± 0.025

EfficientDet D1 0.479 ± 0.018 0.524 ± 0.020 0.459 ± 0.021 0.487 ± 0.011

Table 7 Mean average precision (mAP), mean F1-score (mF1), and mean false negative rate (mFNR) evaluation of the models (trained 
on the fifth fold) and individual annotators on the consensus test set, with an IoU-threshold of 0.3. All metrics are reported as score 
over the whole test set, and a 95% confidence interval. The best results among the models and the annotators have been highlighted 
in bold letter. * annotators who did not complete the individual annotation task (see "Validation protocol")

Model / Annotator mAP mF1 mFNR

YOLOv5,  5th fold 0.647 [0.566, 0.707] 0.548 [0.506, 0.598] 0.149 [0.110, 0.203]
RetinaNet,  5th fold 0.407 [0.355, 0.458] 0.177 [0.154, 0.202] 0.210 [0.167, 0.262]

EfficientDet D0,  5th fold 0.360 [0.290, 0.431] 0.522 [0.461, 0.588] 0.484 [0.422, 0.552]

EfficientDet D1,  5th fold 0.503 [0.421, 0.569] 0.503 [0.421, 0.569] 0.359 [0.306, 0.431]

Annotator 1* 0.284 [0.231, 0.347] 0.495 [0.447, 0.552] 0.480 [0.413, 0.552]

Annotator 2 0.250 [0.247, 0.285] 0.385 [0.346, 0.420] 0.309 [0.251, 0.374]

Annotator 3 0.242 [0.199, 0.320] 0.403 [0.343, 0.470] 0.631 [0.564, 0.686]

Annotator 4 0.299 [0.270, 0.353] 0.450 [0.411, 0.492] 0.237 [0.180, 0.292]

Annotator 5 0.288 [0.244, 0.356] 0.479 [0.423, 0.528] 0.444 [0.376, 0.515]

Annotator 6 0.261 [0.248, 0.301] 0.376 [0.346, 0.410] 0.164 [0.124, 0.217]
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terms of FNR, the YOLOv5 model was significantly bet-
ter (lower scores) than 4 annotators, and similarly, the 
mFNR of the RetinaNet was significantly better than 3 of 
the annotators. The EfficientDet models achieved mFNR 
scores that were similar to or significantly higher than the 
annotators, meaning that the performance was similar to 
worse than that of the annotators. The results per class 
can be found in Table  2  in Section  4 of the Additional 
Materials 1.

Discussion
In the presented study, three different object detection 
DL architectures were trained and evaluated on the task 
of detection of proximal caries in BW X-ray images. The 
caries were annotated by dental clinicians and classi-
fied into three groups: enamel, dentine, and secondary 
lesions. The predictive performance of the models was 
assessed in terms of the object detection metrics AP, 
F1-score, and FNR, and compared against the perfor-
mance of human expert annotators on a consensus test 
set. The main finding is that all model performances were 
on par with or better than the human annotators, with 
the best model achieving significantly higher scores than 
the human annotators for all metrics.

The dataset presented in this study features 13,882 
BW images, with carious lesions annotated by six dental 

clinicians. To the best of our knowledge, this is the larg-
est dataset presented so far for the task of training object 
detection models for caries detection, exceeding the 
size of the dataset described in [11] with 3,000 images, 
and in [14] with 3,686 BW images. A novel strategy for 
combining the annotations from multiple annotators on 
the same image was presented, creating robust ground 
truth annotations for training by combining the expert 
knowledge of all the annotators. In addition, a test set 
consisting of 197 images was jointly annotated by all the 
annotators by consensus agreement. The consensus test 
set was used to compare the model performances against 
the performance of the individual annotators, allowing 
for an assessment of the models usefulness by compari-
son against a baseline of human expert knowledge.

As detailed in “Validation protocol”  section, the per-
formance of each of the architectures was assessed using 
five-fold cross validation. The folds were built through 
random sampling of the images without replacement. 
This approach could lead to data leakage as the split was 
performed at image level instead of patient level. None-
theless, due to the size of the dataset, the augmentation 
during the pre-processing of the images, and the fact 
that those scans corresponding to a single patient show 
different regions of the denture, the risk of leakage is 
minimised. In addition, all of the models were evaluated 

Fig. 4 Bootstrap 95% confidence intervals for the metrics mAP, mF1 and mFNR, for the models and the annotators
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on the consensus test set, presented in Tables  4, 5 and 
6. The selected metrics, AP, F1-score, and FNR, were 
deemed appropriate for this experiment, as they sum-
marise the goodness of the models to correctly identify 
the caries (AP), the trade off between precision and recall 
(F1-score), and the rate at which the object detectors 
disregard the caries which are in the BW images (FNR). 
By using the PASCAL VOC implementation of the met-
rics, the AP precision is regressed using a larger amount 
of points, compared to the 11-point interpolation of the 
AP curve, used in the COCO implementation of AP 
[28]. This resulted in a better estimate of this metric, and 
was therefore considered adequate for this study. Lastly, 
to assess the statistical difference in performance of the 

models and the expert annotators, confidence intervals 
were estimated using the BCa algorithm [27].

The YOLOv5 model achieved the best performance 
in terms of the metrics used in the study. Both the Effi-
cientDet D1 and YOLOv5 achieved significantly better 
performance than the RetinaNet in terms of mAP and 
mF1-score, even though the number of parameters for 
these models are lower than that of the of RetinaNet. 
Indeed, EfficientDet D1 is one fifth the size of Reti-
naNet, and yet it performed better in terms of mAP and 
F1. On the other hand, both the YOLOv5 and the Reti-
naNet achieved significantly lower FNR-scores than the 
EfficientDet models. In sum, all of the presented archi-
tectures exhibited different strengths and weaknesses, 

Fig. 5 Detail of bitewing images from the consensus test set with predictions given by the trained models. The ground truth is shown 
in the bottom row



Page 9 of 10Pérez de Frutos et al. BMC Oral Health          (2024) 24:344  

and an ensemble strategy of the models should be 
thus be considered, to improve the robustness of the 
predictions. Figure  5 shows an example of the predic-
tions given by each architecture on three different BW 
images, the ground truth is given for reference at the 
bottom row.

Compared to equivalent previously published stud-
ies, comparable in scope with the presented work, the 
performances of the models are lower than the values 
reported in [4, 5, 8–13, 15], although the values are not 
directly comparable as they are reported on different 
datasets. Unlike in these studies, the focus of this work 
was not to optimise and build a tailored object detection 
model, but to assess if the dataset was sufficient to obtain 
equivalent or better performance than dental clinicians, 
using state-of-the-art architectures. Indeed, as shown in 
“Results”  section, the trained models achieved signifi-
cantly higher performances in sum on all of the metrics. 
A combination of the models strengths and weaknesses 
could thus be a solid foundation for an assistive tool for 
carious lesion detection in clinical practice.

As introduced in “Introduction”  section, the exclusive 
use of BW images to identify carious lesions is under-par, 
as it requires a follow-up direct inspection and probing 
of the infected area. However, the presented deep learn-
ing models have the potential to improve the efficiency of 
the analysis of the bitewing images and aid in the detec-
tion of these lesions, helping to speed up and improve the 
detection and diagnosis of caries.

The architectures included in this study were not modi-
fied nor tailored for the used dataset or applications, 
unlike previously published works [4–13, 15]. Arranging 
the trained models in an ensemble fashion is expected to 
increase the overall performance, and the robustness of 
the predictions. Also, a patch-wise inference could fur-
ther boost the performance by exposing the network to a 
closer view of the dental pieces, instead of working on the 
whole picture. Other augmentation techniques should be 
considered, such as gamma and brightness augmenta-
tions. Explainable AI techniques could be considered to 
better comprehend the decision process of the trained 
models, e.g., the features detected for each class. Finally, 
future work should provide information regarding the 
inference runtime, so as to assess if it the detection mod-
els are suitable to be used in practice.

Conclusions
Detection and identification of caries on BW images 
entails several difficulties, including the monocular view 
of the dental structures, and hence, presence of artifacts 
due to the overlap of the dental pieces. Therefore, it is 
common practice to perform a visual inspection of the 

lesions found in the medical images. In this study, it has 
been shown how AI-powered object detectors can ease 
the task of finding these lesions in the images, with bet-
ter performance than dental clinicians. To support this 
statement, three state-of-the-art object detection archi-
tectures were trained on the HUNT4 Oral Health Study 
BW image dataset, and evaluated against expert den-
tal clinicians. Out of the three architectures, YOLOv5 
(medium size) yielded the best results, achieving sig-
nificantly higher scores than the expert annotators. A 
combination of the presented models can be used as 
an assistive tool in the clinic, to speed up and improve 
the detection rate of carious lesions. The usefulness of 
such a tool will be assessed in a future clinical validation 
study.
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