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Abstract
Background  The grading of oral epithelial dysplasia is often time-consuming for oral pathologists and the results 
are poorly reproducible between observers. In this study, we aimed to establish an objective, accurate and useful 
detection and grading system for oral epithelial dysplasia in the whole-slides of oral leukoplakia.

Methods  Four convolutional neural networks were compared using the image patches from 56 whole-slide of 
oral leukoplakia labeled by pathologists as the gold standard. Sequentially, feature detection models were trained, 
validated and tested with 1,000 image patches using the optimal network. Lastly, a comprehensive system named 
E-MOD-plus was established by combining feature detection models and a multiclass logistic model.

Results  EfficientNet-B0 was selected as the optimal network to build feature detection models. In the internal 
dataset of whole-slide images, the prediction accuracy of E-MOD-plus was 81.3% (95% confidence interval: 71.4–
90.5%) and the area under the receiver operating characteristic curve was 0.793 (95% confidence interval: 0.650 to 
0.925); in the external dataset of 229 tissue microarray images, the prediction accuracy was 86.5% (95% confidence 
interval: 82.4–90.0%) and the area under the receiver operating characteristic curve was 0.669 (95% confidence 
interval: 0.496 to 0.843).

Conclusions  E-MOD-plus was objective and accurate in the detection of pathological features as well as the grading 
of oral epithelial dysplasia, and had potential to assist pathologists in clinical practice.
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Background
Oral leukoplakia (OLK) is defined as white plaques or 
patches that cannot be wiped out of oral mucosa hav-
ing excluded other known diseases by histopathology 
examination [1]. OLK is one of the most common oral 
potentially malignant disorders (OPMDs) and OLK 
has an appropriate malignant transformation rate of 
1.1%∼40.8% [2]. One of the most important indicators 
of the malignant transformation of OLK is oral epi-
thelial dysplasia (OED) [3]. OED is a pathology term 
which is defined as abnormal architectural and cyto-
logical changes within mucosal epithelium of the oral 
cavity [4]. The presence of OED in OLK correlates with 
an increased risk of progression to carcinoma, and the 
higher degree of OED, the higher risk of progression 
[4]. Most of the time, the severity of OED is divided 
into three levels (mild, moderate and severe dysplasia) 
according to the World Health Organization (WHO) cri-
teria (2022 version) [5]. Although there is a binary grad-
ing system mentioned by the criteria, the validation of 
this system against malignant transformation remains 
outstanding, limiting its application [6, 7]. The 3-tiered 
grading criteria focus on the range or affected layers of 
certain pathological features, including architectural and 
cytological features [5]. There were significant changes of 
pathological features from the 2017 to the 2022 version 
[5, 8, 9]. Notably, the 2017 version included 16 features, 
whereas the 2022 version had 11 additional features [5, 
8]. The added features were “altered keratin pattern 
for oral sub-site”, “verrucous or papillary architecture”, 
“extension of changes along minor gland ducts”, “sharply 
defined margin to changes”, “multiple different patterns 
of dysplasia”, “multifocal or skip lesions”, “expanded pro-
liferative compartment”, “basal cell clustering/nesting”, 
“single cell keratinization”, “apoptotic mitoses”, “increased 
nuclear size” [5]. If there is no presence of OED in OLK, 
the diagnosis of OLK is often given as hyperplasia or 
nondysplasia [10]. Currently, the detection and grading 
of OED severity is poorly reproducible between observ-
ers. One more obstacle that makes OED grading difficult 
is that visual inspection of tissue slides is a repetitive and 
time-consuming task for pathologists [11]. With the need 
of precision medicine increasing, early detection and 
grading of OED in OLK patients has become critical [12]. 
A more objective OED detection and grading approach 
could be beneficial to oral pathologists and OLK patients.

Deep learning algorithms, especially convolutional 
neural networks (CNNs), can extract basic features of 
images that contain rich information, for example, from 
whole-slide images (WSIs). Therefore, CNNs have been 
used in a wide range of medical image analysis tasks, 
especially in cancer diagnosis [11, 13–15], molecular sub-
type classification [11, 16–19] and survival prediction 
[16, 20–23]. In recent years, several studies have explored 

the effect of deep learning algorithms on the prediction 
of OED from OPMD whole-slide images. One of the 
studies focused their work on predicting the severity of 
OED using only one CNN model and the accuracy of 
their CNN model reached 89.3% in an internal test data-
set, at the patch-level [24]. A similar work compared two 
CNNs, DeepLabv3 + and UNet++, revealing that Deep-
Labv3 + achieved an accuracy of 93.3% [25]. In a related 
study, seven CNNs were utilized on OED datasets anno-
tated with binary grading system, resulting in EfficientB0 
having comparable metrics and the lowest loss among all 
CNNs [26]. However, the pathological features of OED, 
which are of great importance to OED grading, were 
ignored in previous studies. In a recent work, peri-epi-
thelial lymphocytes were used to predict the malignant 
transformation of OED [27], but those features were still 
not taken into account. Furthermore, there is no conve-
nient application that could assist pathologists in clinical 
practice.

In this study, we aimed to apply computational pathol-
ogy methods including deep learning algorithms to OED 
detection and grading in OLK whole-slide images, in 
order to establish an objective, accurate and useful com-
putational detection and grading system for OED.

Methods
Data acquisition
This study was approved by the Ethics Committee of 
West China Hospital of Stomatology, Sichuan Univer-
sity (WCHSIRB-D-2022-006). In this observational 
study, we collected diagnostic slides of OLK patients 
from oral medicine department of West China Hospi-
tal of Stomatology between 2013 and 2018. The patients 
were included based on the following criteria: (a) age > 18 
years; (b) suspicion of OLK through clinical examination; 
and (c) confirmation of OLK through histopathological 
examination. There were 56 WSIs of 56 OLK patients 
that were included in this study. Additionally, we col-
lected four OLK tissue microarrays (TMAs) from Chi-
nese Academy of Medical Sciences Research Unit of Oral 
Carcinogenesis and Management. The TMAs included 
229 samples of 93 OLK patients between 2004 and 2014, 
since some patients had multiple OLK lesions and all 
available tissue samples from different lesions of the same 
patient were included in this study. Slide preparations 
were completed in oral pathology department of West 
China Hospital of Stomatology and Chinese Academy of 
Medical Sciences Research Unit of Oral Carcinogenesis 
and Management, respectively. All slides were crafted 
from formalin-fixed paraffin-embedded tissue, and were 
hematoxylin & eosin stained. Whole-slide images were 
scanned using Leica APERIO VERSA 8 FL scanner and 
Aperio ImageScope software.
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Dysplasia annotations were performed on the 56 WSIs 
and 229 tissue microarray images and were completed by 
two oral pathologists with 20-year experience who were 
blind to any clinical information of the patients, follow-
ing the WHO criteria (2017 version) [8]: mild dysplasia 
can be defined by cytological changes limited to the basal 
third, moderate dysplasia by extension into the middle 
third, severe dysplasia by extension into the upper third, 

and the presence of architectural changes may increase 
the level. Any disagreement between the two observers 
was solved by an expert oral pathologist with 30-year 
experience. There were four labels given to 56 whole-
slide images: hyperplasia, mild dysplasia, moderate dys-
plasia and severe dysplasia. A typical example of these 
labels is shown in Fig. 1A.

Fig. 1  Example images of this study. (A) hyperplasia, mild dysplasia, moderate dysplasia, severe dysplasia in oral leukoplakia; (B) 12 pathological features 
of oral epithelial dysplasia which were included in this study
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Annotations with “yes” or “no” to 16 OED pathologi-
cal features were also completed by two oral pathologists 
with 20-year experience who were blind to any clini-
cal information of the patients, following WHO criteria 
(2017 version). Any disagreement between two observ-
ers was solved by an expert oral pathologist with 30-year 
experience. There were 1,000 image patches (images 
originated from whole-slides) with annotation for each 
pathological feature. Pathological features which had a 
positive frequency less than 5 were excluded. Four patho-
logical features were removed: abnormally superficial 
mitotic figures, keratin pearls within rete ridges, atypical 
mitotic figures, increased number and size of nucleoli. A 
typical example of these pathological features is shown in 
Fig. 1B.

Image preprocessing
We applied non-overlapping image tiling to the slides 
and microarrays to split images into patches with Python 
module Openslide 1.1.1. Patches that contained over 50% 
background pixels (brightness > 220/255) were excluded 
[11]. To test the effect of differently scaled image inputs, 
we attempted to train networks using two different reso-
lutions (224 pixels & 512 pixels) [16, 21] and two differ-
ent magnifications. (10× & 20×) [16, 28] Through this 
process a total number of approximately 208,000 image 
patches were generated (approximately 161,000 WSI 
patches and approximately 47,000 TMA patches) (details 
are shown in Supplementary Table 1). The patches were 
labeled using the same labels as the parent slides. The size 
of 1000 images with pathological feature annotation was 
224 pixels.

Model training and validation
Two sorts of deep learning models were trained and vali-
dated: OED grading models and OED feature detection 
models.

For OED grading models, we evaluated four CNNs: 
ResNet-50 [29], Inception-V4 [30], ShuffleNet-V2 [31] 
and EfficientNet-B0 [32], to select the best network 
for OED grading. Grid search strategy was applied to 
the model selection procedure [33]. All networks were 
trained from scratch using randomized initial weights, 
with a mini-batch size of 80. The maximum number of 
epochs was set to 100 for every model. A model was 
selected only if it reached the lowest cross entropy loss in 
the validation dataset. The RMSprop (root mean squared 
propagation) optimizer was used as the optimizer of sto-
chastic gradient descent algorithm and the learning rate 
was set to 1 × 10− 4 [34]. The patches were divided into a 
train set of 60% patches, a validation set of 15% and a test 
set of 25%.

Following CNN selection, we used the best CNN to 
train OED feature detection models from scratch. As the 

number of images with pathological feature annotation 
was relatively small, the maximum number of epochs was 
set to 200, and the learning rate of RMSprop was set to 
1 × 10− 6, to prevent gradient explosion [35]. The other 
parameters remained unchanged during the training of 
OED feature detection models. Image distribution was in 
concordance with OED grading models, as 60% for train, 
15% for validation and 25% for test.

Model training and validation were implemented on a 
workstation with four NVIDIA Tesla K80 graphics pro-
cessing units, using Python 3.6.8 with modules Tensor-
flow 2.1.0, Openslide 1.1.1, Scikit-learn 0.23.1 and relative 
dependencies.

Establishment of the comprehensive detection and 
grading system
The fully connected layers of OED feature detection 
models were removed, and the activation scores (range: 
0 ∼ 1) were extracted from them. These scores represent 
the probability of positive predictions of the pathological 
features at the patch-level. To better interpret the scores, 
we amplified them 100 times (range: 0 ∼ 100). Slide-level 
scores were calculated using an average of all the patch-
level scores included in a single whole-slide image. Slide-
level scores were used as the variables of a multiclass 
logistic model (ordinal logistic model) for OED grading:

	
logit

(
n∑

i=1

pi

)
= αn +

12∑

j=1

βj × Scorej � (1)

The performance of this model was evaluated in 56 OLK 
whole-slides as well as 229 TMA images, at the slide 
level. Additionally, the performance of this model was 
compared with 3 junior oral pathologists who have less 
than 5 years’ experience. The junior pathologists were 
assigned to conduct OED grading following the WHO 
criteria (2017 version) as well. The establishment of this 
comprehensive detection and grading system can be 
summarized in Fig. 2.

Development of a detection and grading application
We used PyQt5 to develop an application for OED grad-
ing and OED feature detection. To integrate the predic-
tion results, heatmaps were generated using the values 
of categorical softmax function. Then we assembled all 
foreground patches (background pixels < 50%) according 
to the original spatial coordinates.

Statistical analysis
The baseline information of OLK patients was tested 
using Kruskal-Wallis test (continuous variables) or Fish-
er’s test (categorical variables), two-tailed P value less 
than 0.05 was considered significant. The diagnostic 
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accuracy indicators including accuracy, sensitivity, speci-
ficity and area under the receiver operating characteris-
tic curve (AUC) in test datasets were used to assess the 
performances of trained networks. The confident inter-
vals (CIs) of these metrics were calculated using the 
bootstrapping method. As the labels had four categories, 
these metrics were calculated as averages. The accuracy 
and AUC were the primary criteria for evaluation. All the 
statistical analysis was performed with Python 3.6.8 and 
R 3.6.1.

Results
The baseline of OLK patients
Among OLK patients whose slide images were used 
for training, there were 22 male patients and 34 female 
patients; an average age of the patients was 56.9 (± 11.8) 
years; and the most frequently affected anatomic site was 
tongue, followed by buccal mucosa, gingiva and floor of 
mouth. Overall, the baseline information was in consis-
tence with the general clinical epidemiological profile of 

OLK, and the distribution was not significantly biased 
(Table 1). Among TMA cases, there were 42 male cases 
and 51 female cases; an average age of the cases was 58.5 
(± 11.8) years; and the most frequently affected anatomic 
site was buccal mucosa, followed by tongue, palate, gin-
giva and floor of mouth. The affected sites were absent in 
36 (15.7%) of 229 TMA images (Table 2).

Selection of CNNs
In the test datasets, four CNNs performed well when 
trained with 20×, 224-pixel patches. EfficientNet-B0 
trained with 20×, 224-pixel patches was the best model 
in comparison with others (average accuracy = 97.5%, 
Table  3). Furthermore, we calculated the AUCs of 16 
models, and found that EfficientNet-B0 trained with 20×, 
224-pixel patches outperformed others as well (average 
AUC = 0.993, Table  3). The best parameters of Efficient-
Net-B0 and Inception-V4 were 20×, 224 pixels, and the 
best parameters of ResNet-50 and ShuffleNet-V2 were 
10×, 224 pixels.

Fig. 2  The development of the OED grading system. OED: oral epithelial dysplasia
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Table 1  Baseline information of OLK patients
Hyperplasia Mild dysplasia Moderate dysplasia Severe dysplasia Total P

Number of slides 16 21 12 7 56
Sex 0.48
Male 8 (50.0%) 8 (38.1%) 5 (41.7%) 1 (14.3%) 22 (39.3%)
Female 8 (50.0%) 13 (61.9%) 7 (58.3%) 6 (85.7%) 34 (60.7%)
Age 53.7 ± 13.4 57.7 ± 10.0 57.2 ± 13.8 61.7 ± 9.8 56.9 ± 11.8 0.56
Site 0.65
Buccal mucosa 4 (25.0%) 8 (38.1%) 4 (33.3%) 4 (57.1%) 20 (35.7%)
Tongue 8 (50.0%) 11 (52.4%) 8 (66.7%) 3 (42.9%) 30 (53.6%)
Gingiva 3 (18.8%) 2 (9.5%) 0 (0.0%) 0 (0.0%) 5 (8.9%)
Floor of mouth 1 (6.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (1.8%)
Categorical variables were demonstrated as frequencies and percentages, and were tested by Fisher’s test; continuous variables were demonstrated as averages and 
standard deviations, and were tested by Kruskal-Wallis test. OLK: oral leukoplakia

Table 2  Baseline information of TMA cases
Hyperplasia Mild dysplasia Moderate dysplasia Severe dysplasia Total P

Number of slides 124 43 51 11 229
Sex 0.55
Male 61 (49.2%) 18 (41.9%) 20 (39.2%) 6 (54.5%) 105 (45.9%)
Female 63 (50.8%) 25 (58.1%) 31 (60.8%) 5 (45.5%) 124 (54.1%)
Age 57.8 ± 12.2 59.0 ± 13.0 60.8 ± 10.0 58.8 ± 9.6 58.7 ± 11.8 0.46
Site < 0.001
Buccal mucosa 57 (46.0%) 29 (67.4%) 18 (35.3%) 7 (63.4%) 111 (48.5%)
Tongue 33 (26.6%) 9 (20.9%) 12 (23.5%) 1 (9.1%) 55 (24.0%)
Gingiva 9 (7.3%) 2 (4.7%) 0 (0.0%) 0 (0.0%) 11 (4.8%)
Floor of mouth 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (18.2%) 2 (0.9%)
Palate 14 (11.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 14 (6.1%)
Missing 11 (8.9%) 3 (7.0%) 21 (41.2%) 1 (9.1%) 36 (15.7%)
Categorical variables were demonstrated as frequencies and percentages, and were tested by Fisher’s test; continuous variables were demonstrated as averages and 
standard deviations, and were tested by Kruskal-Wallis test. TMA: tissue microarray

Table 3  The performances of convolutional neural networks
Accuracy (%) 95% CI (%) AUC 95% CI

ShuffleNet-V2
224 px & 10× 91.1 (90.5, 91.8) 0.957 (0.952, 0.962)
224 px & 20× 89.0 (88.7, 89.4) 0.957 (0.955, 0.959)
512 px & 10× 72.6 (70.3, 75.0) 0.729 (0.692, 0.763)
512 px & 20× 80.8 (79.8, 81.8) 0.809 (0.794, 0.823)
ResNet-50
224 px & 10× 90.6 (89.9, 91.3) 0.954 (0.949, 0.960)
224 px & 20× 88.0 (87.6, 88.4) 0.930 (0.926, 0.933)
512 px & 10× 72.6 (70.3, 75.0) 0.633 (0.598, 0.666)
512 px & 20× 85.1 (84.2, 86.0) 0.894 (0.884, 0.903)
Inception-V4
224 px & 10× 93.8 (93.3, 94.4) 0.979 (0.976, 0.983)
224 px & 20× 94.9 (94.6, 95.1) 0.987 (0.986, 0.988)
512 px & 10× 75.2 (73.0, 77.5) 0.603 (0.565, 0.640)
512 px & 20× 82.5 (81.5, 83.5) 0.772 (0.755, 0.788)
EfficientNet-B0
224 px & 10× 92.8 (92.3, 93.4) 0.966 (0.961, 0.971)
224 px & 20× 97.5 (97.3, 97.6) 0.993 (0.992, 0.994)
512 px & 10× 76.6 (74.4, 78.9) 0.741 (0.709, 0.774)
512 px & 20× 89.6 (88.8, 90.4) 0.928 (0.919, 0.937)
CI: confidence interval; AUC: area under the receiver operating characteristic curve; px: pixel
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Therefore, we selected EfficientNet-B0 as the best CNN 
for OED grading, and referred to it as E-MOD (Efficient-
Net-B0 Model for OED Diagnosis). E-MOD had an aver-
age accuracy of 97.5% (95% CI: 97.3%∼97.6%), an average 
AUC of 0.993 (95% CI: 0.992 ∼ 0.994), an average sensitiv-
ity of 94.7% (95% CI: 94.2%∼95.3%), and an average spec-
ificity of 98.3% (95% CI: 98.1%∼98.4%).

We used TMA images to test the robustness of 
E-MOD. At the patch-level, E-MOD had an average 
accuracy of 90.9% (95% CI: 90.2%∼91.6%) and an average 
AUC of 0.875 (95% CI: 0.865 ∼ 0.885). The predictions at 
the slide-level were calculated according to the maximum 
proportion of each category. At the slide-level, E-MOD 
had an average accuracy of 63.5% (95% CI: 57.4%∼69.6%), 
an average AUC of 0.673 (95% CI: 0.484 ∼ 0.824), an aver-
age sensitivity of 86.1% (95% CI: 81.2%∼90.6%), and an 
average specificity of 64.0% (95% CI: 56.5%∼71.0%).

Testing pathological feature detection models
The performances of 12 pathological feature detection 
models are shown in Table 4. The median accuracy of the 
models was 79.7% and the median AUC was 0.766, sug-
gesting that EfficientNet-B0 was accurate in the detection 
of OED features. After training 12 pathological feature 
detection models with EfficientNet-B0, the softmax acti-
vation scores were extracted from the models. Therefore, 
we obtained 12 scores as the variables of a multiclass 
logistic model.

Establishment of a comprehensive grading system
In the internal test dataset, the multiclass logistic model 
had an average accuracy of 81.3% (95% CI: 71.4%∼90.5%), 
an average AUC of 0.793 (95% CI: 0.650 ∼ 0.925, 
Fig.  3A), an average sensitivity of 61.6% (95% CI: 
33.3%∼85.4%), and an average specificity of 86.0% (95% 
CI: 76.2%∼94.7%). We also used TMA images to test the 
robustness of the model. It had an average accuracy of 
86.5% (95% CI: 82.4%∼90.0%), an average AUC of 0.669 

(95% CI: 0.496 ∼ 0.843, Fig. 3B), an average sensitivity of 
70.6% (95% CI: 67.3%∼73.9%), and an average specificity 
of 79.4% (95% CI: 76.1%∼82.8%). The average accuracy of 
the model (86.5%) was significantly higher than E-MOD 
(63.5%).Furthermore, this model demonstrated superior 
performance over three junior oral pathologists in terms 
of OED grading. In the internal test dataset, it achieved 
the highest accuracy and AUC. Meanwhile, in the TMA 
dataset, it exhibited the highest values for almost all met-
rics, including accuracy, AUC, and sensitivity (Supple-
mentary Table 2).

Finally, we combined the model and E-MOD to estab-
lish a comprehensive grading system for OED, which 
was named E-MOD-plus. Meanwhile, an application of 
E-MOD-plus was developed, as an auxiliary tool for oral 
pathologist. As Fig.  4 shows, E-MOD-plus can not only 
accurately predict OED level at the whole-slide level, but 
also predict the presence of OED features.

Discussion
OED grading is crucial to the prognosis of OLK, and 
could also influence prevention or treatment strategies 
[4]. While the complexity of the OED grading criteria 
makes the job heavy to oral pathologists, an accurate 
and objective computational model could be helpful for 
improving the efficiency of OED grading.

In our study, four CNNs were firstly evaluated using 
four differently scaled image inputs. All of them reached 
promising performances, especially EfficientNet-B0. 
When trained with 20×, 224-pixel patches, EfficientNet-
B0 model (E-MOD) achieved the highest accuracy and 
AUC, at the patch-level. The selection of CNN is an 
important factor to develop a computer-aided grading 
system. ResNet-50 and Inception-V4 are two popular 
networks for medical image analysis due to high accuracy 
and robustness, but the training process is usually slow 
because of the complexity of their structures [29, 30]. 
ShuffleNet-V2 is a significantly faster network designed 

Table 4  The performances of 12 pathological feature detection models
Pathological Feature Accuracy (%) (95% CI) AUC (95% CI)
Irregular epithelial stratification 78.2(67.3 ∼ 89.1) 0.768 (0.576 ∼ 0.930)
Loss of polarity of basal cells 79.3 (62.1 ∼ 93.1) 0.722 (0.578 ∼ 0.813)
Drop-shaped rete ridges 86.9 (78.7 ∼ 95.1) 0.900 (0.814 ∼ 0.967)
Increased number of mitotic figures 81.7 (71.7 ∼ 91.7) 0.806 (0.671 ∼ 0.927)
Premature keratinization in single cells 96.9 (92.2 ∼ 98.4) 0.734 (0.544 ∼ 0.856)
Loss of epithelial cell cohesion 98.4 (93.4 ∼ 98.4) 0.983 (0.948 ∼ 1.000)
Abnormal variation in nuclear size 67.6 (51.4 ∼ 81.1) 0.725 (0.612 ∼ 0.818)
Abnormal variation in nuclear shape 78.9 (65.8 ∼ 92.1) 0.776 (0.600 ∼ 0.923)
Abnormal variation in cell size 80.0 (68.9 ∼ 91.1) 0.883 (0.737 ∼ 0.993)
Abnormal variation in cell shape 88.6 (79.5 ∼ 97.7) 0.764 (0.646 ∼ 0.876)
Increased N: C ratio 62.5 (51.5 ∼ 79.5) 0.742 (0.604 ∼ 0.796)
Hyperchromasia 65.4 (51.9 ∼ 78.8) 0.679 (0.587 ∼ 0.759)
AUC: area under the curve; CI: confidence interval
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for mobile devices, but the accuracy is relatively lower 
[31]. EfficientNet-B0 is an advanced one that combines 
high accuracy and high speed. The essence of Efficient-
Net-B0 is to systematically scale depth, width and resolu-
tion, to achieve a balance of accuracy and efficiency [32]. 
Therefore, EfficientNet-B0 was selected as the best model 
for OED grading.

However, in the TMA dataset, E-MOD had an average 
accuracy of 63.5%, and an average AUC of 0.673, at the 
slide level. These results suggest that using the propor-
tions of patches to directly integrate the classification of a 
deep learning model was probably not a proper approach. 
Hence, we considered combining the detection of OED 
features to assist slide-level prediction, since this pro-
cess is crucial to OED grading in the routine diagnosing 
workflow. Now that EfficientNet-B0 was highly accurate 
at the patch level (including TMA patches), we utilized 
EfficientNet-B0 to train feature detection models, and 
extracted the values of activation functions as scores. 
The scores were finally integrated in a multiclass logistic 
model and it achieved better performance than E-MOD. 
The average accuracy of the multiclass logistic model 
(86.5%) was significantly higher than E-MOD (63.5%), 
though there is no significant differences between the 
AUC. These results suggest that the combination of OED 
features is more effective than mere whole-slides. In com-
parison with junior oral pathologists, this model exhib-
ited decent performances. Notably, this model achieved 
the highest accuracy and AUC in both test datasets. This 
not only signifies its consistently high-level performance 

with diverse slides, but it also reinforces the potential for 
computational pathology applications in OED grading.

Finally, E-MOD-plus, an OED grading application 
was developed, by combining E-MOD and the multi-
class logistic model based on the scores of OED features. 
E-MOD-plus was accurate, objective and user-friendly. 
It is noteworthy that the highlighted patches, which are 
indicative of high diagnostic value in the prediction map, 
have the potential to play a decisive role in OED grading. 
These regions have an increased possibility of contain-
ing OED pathological features, merit thorough review by 
pathologists if they cannot grade OED quickly. E-MOD-
plus could be positioned as an adjunct to pathologists, 
especially in the initial screening and re-evaluating 
stages. During the initial screening stage, E-MOD-plus 
can grade batches of slides with ease, accelerating the 
OED grading process. When grading complex cases, 
pathologists are encouraged to review the heatmaps gen-
erated by the model, to locate regions where significant 
pathological features of OED may be present. This collab-
orative approach leverages the strengths of both human 
expertise and machine efficiency, creating a synergy that 
enhances the overall OED grading process.

This study was performed as a preliminary investiga-
tion of OLK computational histopathology which had 
several limitations. First of all, the reference grading cri-
teria of OED needs to be updated. As substantial modi-
fications were made to the pathological features in the 
WHO criteria (2022 version) [5], it is also necessary to 
evaluate the effect of added features if they are included 
in the model. Another limitation of our study was the 

Fig. 3  (A) The ROC curves of the multiclass logistic model in whole-slides. (B) The ROC curves of the multiclass logistic model in tissue microarrays. ROC: 
receiver operating characteristic; AUC: area under the curve
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relatively small sample size employed in the development 
and evaluation of E-MOD-plus. While the current data-
set has provided valuable insights and a foundation for 
E-MOD-plus, its size constrains the generalizability of 
our findings. To address this limitation in future research, 
collaborative efforts with other research institutions and 
healthcare providers will be pursued to aggregate larger 
datasets, enabling a more comprehensive analysis and 
further validation of the model’s performance. The next 
limitation was that we used parent labels to categorize 
patches, which can make the ground truth labels noisy. 
However, this is an obstacle in the advances of compu-
tational pathology [36]. An ideal solution to this prob-
lem is massive manual annotations of several expert oral 
pathologists, which is extremely time-consuming. In this 
study, the neural networks still showed powerful detec-
tion and grading performances, suggesting deep learning 
algorithms could partially overcome the disadvantage of 
imbalanced and noisy ground truth labels.

Moving forward, our focus lies in gathering compre-
hensive prognosis information on the subjects involved 
in the study. This approach will enable us to track the 

progression of malignant transformation over time, pro-
viding better understanding of the relation between OED 
severity and malignant transformation. Moreover, we will 
utilize prognosis as an outcome for enhancing our model. 
By incorporating detailed prognostic data, our model can 
evolve beyond mere OED feature detection and OED 
grading, aiming to contribute meaningfully to the predic-
tion of malignant transformation.

Last but not least, although our models reached satis-
factory performances when trained from scratch, they are 
likely to be improved with transfer learning [37]. Transfer 
learning replaces randomized initial weights with ones 
from pretrained models using known datasets such as 
ImageNet [38]. It is believed that an increase in accuracy 
and a reduction in convergence time can be observed 
after applying transfer learning in model training [37, 39]. 
Therefore, we aimed to include transfer learning in grid 
search strategy in future studies.

Fig. 4  The interface of E-MOD-plus, the proposed detection and grading application of oral epithelial dysplasia. The upper left shows the input whole-
slide image; the upper right shows a heatmap which marks a higher level of oral epithelial dysplasia with a brighter color; the lower left shows the prob-
abilities of 12 pathological features; and the lower right shows a prediction of the whole-slide
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Conclusions
In conclusion, E-MOD-plus, the OED detection and 
grading system for OLK, was objective and accurate in 
the detection of OED pathological features as well as the 
grading of OED, and had potential to assist oral patholo-
gists in clinical practice.
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