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Abstract
Problem Oral squamous cell carcinoma (OSCC) is the eighth most prevalent cancer globally, leading to the loss of 
structural integrity within the oral cavity layers and membranes. Despite its high prevalence, early diagnosis is crucial 
for effective treatment.

Aim This study aimed to utilize recent advancements in deep learning for medical image classification to automate 
the early diagnosis of oral histopathology images, thereby facilitating prompt and accurate detection of oral cancer.

Methods A deep learning convolutional neural network (CNN) model categorizes benign and malignant oral biopsy 
histopathological images. By leveraging 17 pretrained DL-CNN models, a two-step statistical analysis identified the 
pretrained EfficientNetB0 model as the most superior. Further enhancement of EfficientNetB0 was achieved by 
incorporating a dual attention network (DAN) into the model architecture.

Results The improved EfficientNetB0 model demonstrated impressive performance metrics, including an accuracy of 
91.1%, sensitivity of 92.2%, specificity of 91.0%, precision of 91.3%, false-positive rate (FPR) of 1.12%, F1 score of 92.3%, 
Matthews correlation coefficient (MCC) of 90.1%, kappa of 88.8%, and computational time of 66.41%. Notably, this 
model surpasses the performance of state-of-the-art approaches in the field.

Conclusion Integrating deep learning techniques, specifically the enhanced EfficientNetB0 model with DAN, shows 
promising results for the automated early diagnosis of oral cancer through oral histopathology image analysis. This 
advancement has significant potential for improving the efficacy of oral cancer treatment strategies.
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Introduction
Oral cancer is the eighth most common type of cancer in 
the world. Each year, approximately 274,000 new cases 
are diagnosed. Most individuals with oral cancer live 
in developing countries. Cancer has become one of the 
main causes of death in India. Oral cancer has a higher 
mortality rate than other types of cancer. It is the most 
common cancer in men and the third most common can-
cer in women. It accounts for 17% of all cancers in men 
and 10.5% of all cancers in women. Studies have shown 
that less than 65% of primary care centers in low- and 
middle-income countries can receive good pathology 
services [1–3]. Oral cancer can affect the lips, mouth, 
and back of the throat. When this happens, the structural 
layers and membranes in the mouth and throat are lost. 
Oral malignancies include OSCC, salivary gland, verru-
cous, and lymphoepithelial carcinoma. Most carcinomas 
are caused by OSCC [4, 5]. The total mortality rate of 
OSCC patients has not greatly decreased despite the use 
of various treatment modalities, which is solely because 
early identification and diagnostic efforts have not been 
made. Doctors should examine any worrisome lesions 
that may be malignant and then recommend a biopsy. 
Under a microscope, slides containing biopsy sections 
are checked for abnormalities that deviate from typical 
cell configurations in size and shape. Malignant squa-
mous cells differ significantly from one another in terms 
of morphology at histopathological stages and are larger 
than normal cells. It is extremely important and accurate 
for a highly skilled and experienced physician to make a 
confirmatory diagnosis of oral cancer from these data. 
Nevertheless, the entire manual process of manually 
interpreting each portion of a slide and analyzing malig-
nant cells takes too much time and is subject to human 
mistakes [6, 7]. Owing to the abovementioned factors, 
computer-aided diagnostic (CAD) procedures may help 
doctors analyze features more quickly and accurately 
while saving time. The goal is to identify cancer at an 
early stage so that it may be treated promptly, reducing 
the risk of morbidity and mortality. In addition, in most 
cases of cancer, CAD systems can detect it, which implies 
that pathologists have attempted to detect more cases. 
In contrast to late detection, which results in a 30% sur-
vival rate, early detection of oral cancer increases survival 
rates to 80% [8, 9].

Recent advances in artificial intelligence have begun to 
influence the medical field. CNNs have become promi-
nent among these DL approaches because of their excel-
lent accuracy for image classification, particularly for 
texture classification tasks. Several strategies for diag-
nosing cancer and COVID-19 have been proposed 
and developed based on DL. It has been demonstrated 
that DL techniques offer higher accuracy. Addition-
ally, the transfer learning method is commonly used to 

classify medical images, improving the outcomes of DL 
approaches. The usefulness of DL methods, such as his-
tological or real-time oral cavity imaging, in classifying 
oral lesions from medical images has also been demon-
strated by recent research. Several studies have been 
conducted to diagnose oral cancer based on machine 
learning and DL using histopathological images. A light-
weight DL-CNN, EfficientNet-B0, was created by Fahed 
Jubair et al. to conduct a binary classification of 716 
real-time clinical images into potentially cancerous or 
benign images. The proposed DL-CNN model achieved 
an accuracy of 85.0% [10]. “Nandita et al. proposed an 
ensemble DL-CNN model combining two models, i.e., 
ResNet-50 and VGG-16. The accuracy of this ensemble 
model, which was trained using a dataset of enhanced 
oral lesion images, was 96.20% [11]”. “For the multiclass 
grading method of OSCC, Das et al. proposed a DL clas-
sification model to classify OSCC into four classes. First, 
pretrained models, such as AlexNet, VGG-16, VGG-19, 
and ResNet-50, are trained through the transfer learn-
ing approach. They achieved the highest classification 
accuracy of 92.15% with ResNet-50 [12]”. Fu et al. used 
44,409 total biopsy-proven OSCC photographic images 
and conventional clinical features to classify OSCC using 
cascaded DL. The sensitivity of the DL methods used 
was 94.90% [13]. They implemented a two-stage model 
to identify oral lesions and classify them into three cat-
egories—benign, OMD, and carcinoma. Tanriver et al. 
presented a DL EfficientNet-B7 model for detecting oral 
malignant disorders or OMDs. The tumor pathology 
department at Istanbul University’s oncology institute 
provided the oral, photographic dataset with lesions. The 
model’s highest level of accuracy recorded was 92.9% 
[14]. Mohammed Zubair et al. suggested a DL model 
utilizing the transfer learning approach to categorize 
five forms of oral precancerous lesions from annotated 
images and recognize the first stage of oral cancer. The 
classification accuracy was 97.00% for ResNet50 and 
98.00% for VGG-19 [15]. “Gupta et al. proposed a deep 
learning CNN model to classify images of dysplastic cells 
from the oral squamous epithelium layer. The suggested 
framework divides dysplastic cell images into four cat-
egories: normal, mild, moderate, and severe dysplastic 
cells. The dataset included 2557 photos obtained from 52 
patients. The suggested model’s findings reveal a train-
ing accuracy of 94.6% and a testing accuracy of 90.22% 
[16]”. Rachit Kumar Gupta et al. proposed a DL-based 
CNN framework for classifying dysplastic tissue images. 
The CNN model categorizes the presented images into 
four groups: normal, mild, moderate, and severe dysplas-
tic tissue. Biopsy samples from 52 patients, totaling 2688 
images, were taken. The training accuracy was 91.65%, 
while the testing accuracy was 89.3% [17]. Song et al. cre-
ated a portable smartphone-based oral inspection tool 
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and showed how DL approaches can effectively identify 
dual-modal photos to identify oral cancer. The fusion of 
white light and fluorescence images is used in an image 
classification technique that feeds data to a DL-CNN. 
For the VGG-CNN-M network, the authors obtained a 
validation accuracy of 86.90% [18]. Sharma et al. studied 
the clinical pictures of patients with OSCC and OPMDs. 
These images were analyzed in comparison to images of 
the normal oral mucosa. Transfer learning employing dif-
ferent pretrained CNN architectures was used for picture 
categorization. The accuracy for VGG19 was 76%, that 
for VGG16 was 72%, that for MobileNet was 72%, that 
for InceptionV3 was 68%, and that for ResNet50 was 36%. 
VGG19 performed better in the current investigation 
than did the other models [19].

Previous studies have attempted to utilize deep learning 
models to classify oral lesions, including oral squamous 
cell carcinoma (OSCC); however, notable drawbacks 
need to be addressed. These limitations include reliance 
on small or limited datasets, the use of single-modal data 
without considering multimodal fusion, and the high 
computational complexity of some models. Additionally, 
the lack of comprehensive clinical validation and inter-
pretability in model decision making poses challenges 
for real-world deployment. However, these studies have 
also introduced innovations, including comprehensive 
performance evaluations of multiple CNN models, archi-
tectural enhancements, such as dual-attention networks, 
and rigorous statistical analyses for robust comparisons. 
Comparative analyses with state-of-the-art approaches 
have further demonstrated advancements in model per-
formance. Addressing these limitations while building 
upon innovative methodologies is crucial for enhancing 
the accuracy, generalizability, and clinical applicability of 
deep learning-based oral lesion classification systems.

In this study, we were mainly interested in classifying 
OSCC based on cellular-level changes due to carcinoma, 
which supports clinical decisions. Therefore, we devel-
oped an automated OSCC classification method using 
histopathological images in this study. As a result, we 
demonstrated that a computerized classification method 
could be used for oral carcinoma classification, i.e., 
benign or malignant.

This study makes significant contributions to the fol-
lowing areas.

  • We conducted a comprehensive performance 
evaluation of 17 CNN models for detecting 
oral squamous cell carcinoma (OSCC) using 
histopathological images.

  • To identify the most effective CNN model, a two-step 
statistical analysis involving Duncan’s multiple range 
test and Wilcoxon signed-rank test was employed.

  • The performance of the EfficientNetB0 model was 
enhanced by introducing a dual-attention network.

  • A 5% improvement in accuracy compared with the 
baseline network was achieved through modifications 
made to EfficientNetB0.

  • A comparative analysis with state-of-the-art 
approaches was conducted, which demonstrated the 
superior performance of the proposed model.

The rest of the article is structured as follows: Sect.  2 
presents the background study, that is, about deep 
CNN models and details of the statistical analysis. Sec-
tion 3 describes the material and methodology. Section 4 
describes the findings and discusses the remarkable out-
comes. Finally, Sect. 5 concludes the article.

Background study
This section addresses deep convolutional neural net-
works and statistical analyses.

Deep CNN models
DL-CNN models have significantly improved the meth-
ods currently used for solving various image-based 
problems, including object recognition, detection, and 
classification. “A CNN is a DL network constructed using 
a spatial design that connects a particular region in one 
layer to a certain region in the next layer. Neurons build 
the layers, and each layer’s spatial architecture creates a 
volume of these neurons with a width, height, and depth. 
Depth and height define the number of neurons, whereas 
breadth and height dictate their size. The number of 
stacked layers that make up the entire network can be 
used to determine the depth of the network. The archi-
tecture of a CNN varies based on the usage the architect 
selects from an infinite number of layer combinations 
and builds each layer in infinite ways. The three most 
important layers are completely linked: the convolution, 
pooling, and fully connected layers [20]”. The DL-CNN 
model is completed by additional layers, including ReLU, 
batch normalization, and dropout layers, as illustrated in 
Fig. 1.

“These layers make learning features from the input 
photos easier. The convolution layers, composed of 
several wide, height, and depth filters, extract various 
characteristics from the input image when fed to a con-
ventional CNN. The width and height determine the 
filter kernel size, and the depth determines the number 
of kernels. Each kernel is constructed using parameters 
that can be learned, which are convolved across the input 
image and then performed as a dot product to extract 
features. Size, stride, and padding are a few additional 
parameters for the convolutional layer. The stride deter-
mines how many steps the kernel takes before conduct-
ing a convolution operation. The padding regulates the 
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output size from the boundary and layer pixels. The col-
lected characteristics are also given to the pooling layers 
as input for more effective processing. It is necessary to 
lower the size of the feature map that the convolution 
layer created. Although the pooling layers lower the fea-
ture map, they perform operations comparable to those 
of the convolution layers. The two types of layers that are 
used most frequently are average and maximum pools. 
As a result, the CNN becomes less computationally dif-
ficult as the feature map size decreases. Eventually, the 
covariant shifts in the intermediate layers are normal-
ized by the batch normalization layer and rectified linear 
unit (ReLU), enabling improved network convergence. 
Dropout layers were used to prevent model overfitting. 
The fully connected layer receives the reduced feature 
map and applies the SoftMax algorithm to categorize the 
appropriate classes [20]”.

There are various pretrained DL-CNN models available 
for image classification. These models include AlexNet, 
DarkNet19, DarkNet53, GoogleNet, InceptionResNetv2, 
Inceptionv3, MobileNetv2, NASNetLarge, ResNet18, 
ResNet50, ResNet101, and EfficientNet. In addition, the 
DL-CNN models can classify generalized photos that 
are not part of the ImageNet dataset. We considered 
all pretrained models, from which we chose Efficient-
Net and modified it with extra layers for efficient OSCC 
identification.

  • AlexNet: “It comprises five convolutional layers, 
three max-pooling layers, two normalization layers, 
two fully connected layers, and 1 softmax layer. 
Each convolutional layer comprises convolutional 
filters and a rectified linear unit (ReLU) nonlinear 
activation function. Max pooling is accomplished 
using the pooling layers. Owing to the existence 
of completely linked layers, an input size of 
224 × 224 × 3 was fixed. If the input image is 
grayscale, it is converted to RGB by duplicating the 
single channel to create a three-channel RGB image. 

AlexNet’s total parameter count was 60 million with 
a batch size of 128 [21]”.

  • DarkNet 19: This is a convolutional neural network 
with a total of 19 layers. A version of the network 
that has already been trained on more than a million 
images is stored in the ImageNet database. The 
network has already been trained to sort photos into 
1000 different groups of objects, such as animals, a 
keyboard, a mouse, and a pencil. Thus, the network 
learns to represent a wide range of images using 
many different features. The network also works with 
images that have a resolution of 256 by 256.

  • DenseNet is a densely connected convolutional 
network. Instead of residual connections, the 
authors proposed dense blocks inspired by 
ResNet. Like the VGG, the dense block includes 
successive convolution layers that are connected. 
Each convolution layer receives all previous layer 
information. DenseNet had 8,062,504 parameters 
and a 93.34% top 5 ILSVCR accuracy rating. This 
network reduces information loss by connecting all 
layers (especially the deep layers) [22].

  • GoogLeNet: “It is a 22-layer convolutional neural 
network. A network that has already been trained 
can be imported using the Places365 or ImageNet 
datasets. The network trained on ImageNet divides 
images into 1000 object categories, including several 
animals, a keyboard, a mouse, and a pencil. Similar to 
networks trained on ImageNet, Places365 networks 
classify photos into 365 distinct place types, such as 
fields, parks, runways, and lobbies. For a variety of 
images, these networks have learned several feature 
representations. The input image size for both 
untrained networks is 224 by 224 [23]”.

  • InceptionResNetv2: “It is trained using the 
ImageNet database. For a variety of photos, the 
network has learned rich feature representations. 
The network contains 164 layers, a 299 × 299 input, 
and generates a list of estimated class probabilities as 
its output. It is constructed using both the residual 

Fig. 1 Generalized deep learning CNN model
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connection and the inception structure. Several 
convolutional filters of various sizes are mixed with 
residual connections in the Inception-ResNet block. 
In addition, avoiding the degradation issue caused 
by deep structures, including residual connections, 
shortens the training time [24].”

  • Inceptionv3: “It is a model for image recognition 
that has been demonstrated to achieve over 
78.1% accuracy on the ImageNet dataset. Model 
components include convolutions, average pooling, 
maximum pooling, concatenation, dropouts, 
and fully connected layers. The model uses batch 
normalization and applies it to activation inputs. 
SoftMax is used to compute the loss. Inception-v3 
is a convolutional neural network design from 
the inception family that uses label smoothing, 
factorized 7 × 7 convolutions, and an auxiliary 
classifier to transport label information down the 
network along with the use of batch normalization 
for layers in the side head [24].”

  • MobileNetv2: “MobileNetV2 has a 32-filter fully 
convolution layer and 19 residual bottleneck layers. 
Bottleneck depth-separable convolution with 
residuals is the foundation of this approach. The 
input picture resolution and width multiplier are 
configurable hyperparameters that can be modified 
for accuracy or performance trade-offs in the 
architecture. The core network employs 3.4 million 
parameters and requires 300 million multiple-adds. 
The model size is 1.7 M to 6.9 M parameters, and 
the network computational cost is 7 multiply adds to 
585 M MAdds [25]”.

  • NASNet Large: “It is a machine learning model. The 
key principles differ from those of GoogleNet and 
may lead to a significant AI breakthrough. The first 
414 NASNet-Large layers form the encoder. NASNet 
has state-of-the-art accuracies of 82.7% top-1 and 
96.2% top-5 on ImageNet. The goal was to find the 
optimal mix of filter sizes, output channels, strides, 
layers, etc. During each search action, reinforcement 
learning rewarded accuracy for the searched 
architecture on the dataset [26]”.

  • NASNetMobile: “The two primary functions of 
Nasnetmobile are normal and reduction cells. 
To attain a higher mAP, NasNet first applies its 
operations to a small dataset before transferring 
its block to a large dataset. For better NasNet 
performance, a customized drop path called a 
scheduled drop path for effective regularization is 
utilized. The normal and reduction cells are utilized 
in the original Nasnet architecture, where the 
number of cells is not predetermined, and the size 
of the feature map is dictated by the normal and 
reduction cells, respectively. Based on the two initial 

hidden states, a control architecture in Nasnet based 
on a recurrent neural network (RNN) predicts the 
whole structure of the network [26]”.

  • ResNet: “He et al. launched ResNet in 2015, which 
won the 2015 ImageNet competition with a top-
five accuracy percentage of 94.29%. 25,000,000 
parameters. ResNet is a deep network with up to 152 
layers and a unique residual link that connects the 
convolutional layers to the ReLU activation layer. The 
residual connection preserves prior layer weights 
during backpropagation. This network consists of 
three layers: ResNet50, ResNet101, and ResNet152. 
Residual connections allow this network to be used 
at several levels. Increasing network depth rather 
than width reduces superfluous parameters. The 
addition of residual blocks makes the filter size the 
same, which is this network’s greatest shortcoming. 
This network’s training requires enormous datasets, 
making it computationally expensive [27]”.

  • VGG: “Oxford Visual Geometry Group researchers 
introduced VGG16 and VGG19 architectures 
in 2014. The top five accuracy rates of ImageNet 
2014 were 91.90% for VGG16. VGG16 has 
five convolution blocks, three thick layers, and 
138,355,752 parameters. Convolutional layers plus a 
max pooling layer reduce the block output size and 
noise. The first two blocks have two convolutional 
layers, and the last three have three. This network’s 
kernel stride is 1. After the five blocks, a flattened 
layer was added to transform the 3D vector of the 
blocks into a 1D vector for the completely connected 
layers. The first two fully connected layers have 4096 
neurons, while the final layer has 1000 neurons. 
After the completely linked layers, a softmax layer 
ensures that the output probability summation is 
one. VGG19 features 19 convolution layers instead 
of 16 layers. The number of layers increases from 
138,357,544 to 143,667,240. The authors claimed that 
these layers strengthen the architecture and allow 
it to learn more complex architectures. Sequential 
blocks reduce spatial information by inserting 
convolutional layers after each other [28]”.

  • Xception: “It is a modification to the Inception 
architecture that uses depthwise separable 
convolutions in place of the regular Inception 
modules. The depthwise separable convolution 
layer and a few shortcut structures are the key 
components of Xception. Xception features 
22.8 million parameters compared to approximately 
23.6 million parameters in Inception. It goes well 
beyond Inception’s guiding concepts. In Inception, 
the original input was compressed using 1 × 1 
convolutions. From each of those input spaces, 



Page 6 of 14Soni et al. BMC Oral Health          (2024) 24:601 

various filters were applied to each of the depth 
spaces. The opposite occurs with Xception [29]”.

  • EfficientNet is based on the basic neural architecture 
search network from the AutoML MNAS. The 
network was optimized for accuracy but penalized 
for computational complexity. A slow inference time 
penalizes this. Due to FLOPS, the architecture’s 
mobile inverted bottleneck convolution is larger than 
that of MobileNet V2. Scaling up this baseline model 
yields EfficientNets. EfficientNet scales models using 
compound coefficients. Compound scaling uses a 
given set of scaling coefficients to consistently scale 
width, depth, and resolution. EfficientNet has seven 
multidimensional models using scaling and AutoML, 
which outperform most convolutional neural 
networks in terms of accuracy and efficiency [30].

Statistical analysis
This study analyzes the performance of 16 CNN models 
and the proposed model using the statistical analysis tool 
IBM SPSS Statistics 26. Two methods, i.e., the Duncan 
test and Wilcoxon signed-rank test, were used.

  • Duncan test

In statistics, David B. Duncan created the multiple com-
parison method known as Duncan’s new multiple range 
test (MRT) in 1955. “Duncan’s MRT is a member of the 
larger group of multiple comparison techniques that 
compare sets of means using the studentized range statis-
tic qr. This testing was created as a more powerful varia-
tion of the Student-Newman‒Keuls approach. The test 
produces a set of subgroups of means, whereby each sub-
set’s means have been determined to be not significantly 
different. Duncan’s MRT is particularly protective against 
false negative (Type II) mistakes while having a greater 
risk of making false positive (Type I) errors [31]”.

  • Wilcoxon sign test

“The Wilcoxon signed-rank test is a nonparametric sta-
tistical hypothesis test that is used to compare the loca-
tions of two populations using two matched samples or 
to assess the location of a population based on a sample 
of data. The one-sample version has the same goal as 
the one-sample Student’s t test. It is a paired difference 
test for two matched samples, analogous to the paired 
Student’s t test (also known as the “t test for matched 
pairs” or “t test for dependent samples”). When popula-
tion means are unimportant, such as evaluating whether 
a population’s median is nonzero or whether a sample 
from one population outweighs a sample from another, 
the Wilcoxon test can be a helpful substitute for the t test 
[32]”.

Materials and methodology
This section addresses the details of the dataset and pro-
posed methodology.

Dataset
There were 1224 total images from 230 patients in this 
dataset. There are two sets of images, each with a dif-
ferent resolution. “The first collection consisted of 439 
OSCC images at 100x magnification and 89 histopatho-
logical images of the normal epithelium of the oral cav-
ity. The second group consisted of 495 histopathological 
images of OSCC tissue at 400x magnification and 201 
images of the normal epithelium of the oral cavity. The 
second group consisted of 495 histopathological images 
of OSCC tissue at 400x magnification and 201 images of 
the normal epithelium of the oral cavity. A total of 934 
malignant (OSCC) images and 290 normal (benign) oral 
cavity epithelium images were obtained. Medical profes-
sionals collected, processed, and cataloged the slides of 
tissue stained with H&E. Images were then taken using 
a Leica ICC50 HD microscope [33]. Histopathological 
images of oral cancer squamous cell samples are pre-
sented in Fig. 2.

Fig. 2 Sample of oral squamous cell histopathological images (a) benign (b) malignant
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Proposed methodology
This research suggested the detection of OSCC using 
histopathological images. The methodology comprises 
three phases. In the first phase, 17 pretrained CNN mod-
els were evaluated to detect OSSC. Each CNN model was 
individually executed 30 times to examine its credibility. 
Finally, the finding of each execution with seven para-
metric measures is recorded.

In the second phase, the statistical analysis was carried 
out in two steps. In the initial step, the Duncan multiple 
range test was carried out. From this, the best-perform-
ing model is chosen. The Wilcoxon signed-rank test was 
performed in the second step of the statistical analysis. 
The high-performance model selected by the Duncan test 
was used as a reference. Then, the seven parameter mea-
sures of the reference model were compared with those 
of the other 16 CNN models to determine the superior 
model. In this analysis, the best model obtained was Eff-
cienNetB0, but the accuracy was less than 90%, which is 
more satisfactory. Hence, we are motivated to improve 
EffcienNetB0 by modifying its original structure, as illus-
trated in Fig. 3.

Google published an efficient network in 2019. The 
baseline network uses a neural architecture search and a 
scaled model to obtain a series of models. EffcienNetB0 
comprises a convolutional layer, an MBconvolution1 
layer, an MBconvolution6 layer, a pooling layer, a fully 
connected layer, and a classification layer.

EfficientNetB0 is a convolutional neural network 
(CNN) architecture that has gained prominence owing 
to its efficiency and effectiveness in various computer 
vision tasks. Below, we outline some of the key strengths 
of EfficientNetB0 in comparison with other deep learning 
models.

  • Scalability: One of the primary strengths of 
EfficientNetB0 is its scalable architecture, which is 
achieved through a compound scaling method. This 
method optimizes the network depth, width, and 
resolution simultaneously, resulting in models that 
are both efficient and accurate across a wide range of 
computational resources.

  • Parameter Efficiency: Compared with other deep 
learning architectures, EfficientNetB0 achieves 
superior performance while maintaining a relatively 
small number of parameters. This efficiency is 
crucial for applications with limited computational 
resources, making EfficientNetB0 suitable for 
deployment on various mobile and edge devices.

  • Transfer Learning Capability: Owing to its 
effectiveness in learning rich feature representations 
from images, EfficientNetB0 demonstrates strong 
transfer learning capabilities. Pretrained versions of 
EfficientNetB0 on large-scale image datasets, such 

as ImageNet, can be fine-tuned on smaller datasets 
with specific tasks, leading to improved performance 
and faster convergence.

  • State-of-the-art Performance: EfficientNetB0 
consistently achieved state-of-the-art performance 
across benchmark datasets and computer vision 
tasks, including image classification, object detection, 
and segmentation. Its superior performance is 
attributed to its optimized architecture, which 
balances model complexity and computational 
efficiency.

  • Generalization Ability: EfficientNetB0 demonstrates 
robust generalization ability, meaning that it can 
effectively learn from limited training data and 
generalize well to unseen data. This is particularly 
beneficial for medical imaging tasks in which 
annotated datasets may be limited or expensive to 
acquire.

In our study, we employed EfficientNetB0 as the back-
bone architecture for our deep learning model due to 
these strengths, aiming to leverage its efficiency and per-
formance for classifying oral epithelial lesions.

The modification of the main architecture of Efficient-
NetB0 is illustrated in Fig. 3(a). The layer of each block is 
illustrated in Fig. 3 (b). A dual attention network (DAN) 
is introduced before the fully connected layer. The fea-
tures extracted from block 7 are fed to pooling through 
DAN. The blocks are MBConvolution, i.e., MBconvolu-
tion1 and MBconvolution6. MBconvolution1 is illus-
trated in Fig. 3(c); MB convolution refers to an inverted 
mobile bottleneck [34]. MBconvolution6 is the six-time 
repeat of MBconvolution1. The input image of the his-
topathology of OSSC was 300 × 300. The final classifica-
tion result is processed through a convolution layer, an 
MB convolution layer, an MB convolution layer, a pooling 
layer, a fully connected layer, and a classification layer.

The PAM and CAM run in parallel in the DAN. The 
attention mechanism filters out irrelevant information 
and prioritizes useful information. The DAN attention 
mechanism achieves great accuracy by adjusting the 
relationship between local and global features [35]. Fig-
ure 3(d) and 3(e) depict the PAM and CAM, respectively. 
The position attention module encodes more contextual 
information into local features, improving their represen-
tation capabilities. Following that, we go over the process 
of adaptively aggregating spatial contexts. As shown in 
Fig. 3(d), we first feed a local feature A ∈ RC×H×W into a 
convolution layer to build two new feature maps B and C, 
where {B, C} ∈ RC×H×W. Next, they are reshaped to RC×N, 
where N = H × W is the number of pixels. Next, we per-
form matrix multiplication on the transpose of C and B 
and use a softmax layer to compute the spatial attention 
map S ∈ RN×N
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Sij =
exp(Bi.Cj)

N∑
i=1

exp(Bi.Cj)
 (1)

where Sji calculates the impact of the ith position on the 
jth position; the higher the correlation between two places 
is, the more similar their feature representations are.

Meanwhile, we feed feature A into a convolution layer 
to create a new feature map D ∈ RC×H×W that we reshape 

to RC×N. The outcome is RCHW when we conduct a 
matrix multiplication of D and the transpose of S. Last, 
we multiply it by a scale parameter and execute an ele-
mentwise sum operation on the features A to obtain the 
final result E ∈ RC×H×W, as shown

 
Ej = α

N∑

i=1

(Sji.Di) +Aj  (2)

Fig. 3 Improved EfficientNet (a) basic architecture of improved EfficientNet, (b) details of each block of (a), (c) architecture of MB convolution, (d) archi-
tecture of PAM, (e) architecture of CAM
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where it is set to zero at the start and gradually learns to 
attach a greater weight [36]. Equation  2 shows that the 
resulting feature E at each place is a weighted sum of the 
features across all positions and the original features. As 
a result, it has a global contextual perspective and selec-
tively collects contexts based on the spatial attention 
map. Similar semantic traits benefit from mutual gains, 
boosting intraclass compactness and consistency.

Emphasis has now been placed on interdependent fea-
ture maps to improve the feature representation of cer-
tain semantics. As a result, we create a channel attention 
module to formally model channel interdependence. 
The channel attention module topology is depicted in 
Fig. 3(e). Unlike the position attention module, we calcu-
late the channel attention map X ∈ RC×C straight from the 
original features A ∈ RC×H×W. In particular, we reshape A 
to RC×N and then execute matrix multiplication on A and 
its transpose. Finally, a softmax layer is applied to obtain 
the channel attention map X ∈ RC×C.

 

xji =
exp(Ai.Aj)

C∑
i=1

exp(Ai.Aj)
 (3)

where xji is the impact of the ith channel on the jth chan-
nel. Furthermore, we conduct matrix multiplication 
on the transpose of X and A and reshape the output to 
RC×H×W. The result is then multiplied by the scale param-
eter β, and an elementwise sum operation with A is per-
formed to generate the final output E ∈ RC×H×W.

 
Ej = β

C∑

i=1

(xji.Ai) + Aj  (4)

where β gradually learns a weight from 0. Equation  4 
demonstrates that the final feature of each channel is a 
weighted sum of all channels’ and original features’ fea-
tures, which depicts the long-term semantic connections 
across feature maps. It improves feature discriminability 
[37].

We applied 17 pretrained DL CNN models—Alexnet, 
Darknet19, Darknet53, Densenet201, Googlenet, Incep-
tionResNetv2, InceptionV3, Mobilenetv2, Nasnet-
Large, NasnetMobile, Xception, ResNet18, ResNet50, 
ResNet101, VGG16, VGG19, and EfficientNet—for 
OSCC detection. This study used these models to catego-
rize benign and malignant cases from oral lesion histo-
pathology images because they have achieved excellent 
success in various computer vision and medical image 
analysis challenges. The best model is then chosen and 
considered for future comparison.

In summary, the proposed model was executed as 
follows.

Step1: Oral squamous cell carcinoma (OSCC) images 
were collected from clinical databases or medical 
institutions.

Step2: Seventeen pretrained deep learning models were 
used for the classification of benign and malignant 
lesions in OSCC images.

Step3: The performance of each model was evaluated 
using various metrics, including accuracy, sensitivity, 
specificity, false positive rate (FPR), precision, F1 
score, Matthews correlation coefficient (MCC), 
kappa, and computational time.

Step4: Statistical analysis, specifically Duncan’s 
multiple range test, was used to determine the best-
performing model among the 17 pretrained models.

Step5: Further validation of the selected model was 
performed through additional statistical analysis, 
such as the Wilcoxon signed-rank test, to confirm its 
superiority.

Step6: Both statistical tests confirm that EfficientNetB0 
outperforms the other models in terms of 
classification accuracy and other evaluation metrics.

Step7: Enhancements to the EfficientNetB0 model, 
including the incorporation of a dual attention 
network (DAN) and MobileNet convolutional layers 
(MBConvolution), were implemented to improve the 
performance.

Step8: Sequential execution of the enhanced 
EfficientNetB0 model on the OSCC image dataset 
was performed to evaluate its classification 
performance.

Step9: The performance of the improved model was 
assessed using the same set of evaluation metrics to 
measure any enhancements achieved through the 
introduction of the dual attention network and MB 
convolution layers.

Results and discussion
The proposed methodology was applied to an HP Victus 
system, which features a 12th generation Intel Core i7 
processor and running Windows 11 alongside an NVIDIA 
GPU, with MATLAB 2022a as the primary program-
ming environment. The enhanced dataset was randomly 
partitioned into training (80%) and testing (20%) sets to 
ensure that the classifier could be generalized to unseen 
patients. By leveraging pretrained convolutional neural 
network (CNN) models, transfer learning is employed 
to adapt these models for oral squamous cell carcinoma 
(OSCC) classification. Hyperparameter settings were 
carefully selected to optimize the model performance, 
including an initial learning rate of 0.0001, utilization of 
the SGDM optimizer, and a mini-batch size of 32. These 
parameters undergo iterative tuning to achieve optimal 
classification accuracy and generalization. To classify 
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OSCC as having the best performance, we employed 
pretrained CNN models in this study. The CNN models 
used were AlexNet, Darknet19, Darknet53, Densenet201, 
GoogLeNet, InceptionResNetv2, InceptionV3, Mobile-
netv2, NasnetLarge, NasnetMobile, Xception, ResNet18, 
ResNet50, ResNet101, VGG16, VGG19, and Efficient-
NetB0. The results presented in this work are the aver-
age of 30 independent runs. The performance of CNN 
classifiers is measured using confusion matrix measures, 
i.e., the accuracy (Acc), sensitivity (Sen), specificity (Spe), 
precision (Pre), FPR, F1 score, kappa values, and com-
putational time. Statistical analysis was carried out to 
choose the best model. The statistical analysis comprised 
two steps. The Duncan multirange test was applied in the 
initial step, as shown in Tables 1 and 2. The same subset 

exhibits similar performance, although they may have 
distinct characteristics or features (since superscript let-
ters are identical columnwise, i.e., ‘a’). A p value between 
0 and 1 is frequently used to indicate the degree of statis-
tical significance. The p values for comparing the catego-
rization methods were all greater than the typical value 
of 0.05 based on the findings of the statistical study. As 
a result, it cannot be concluded that there is a significant 
difference between the methodologies, which is the null 
hypothesis. Tables  1 and 2 show that EfficientNetB0 is 
significantly different from the others in terms of seven 
confusion matrix measures.

Again, we used the Wilcoxon signed-rank test to pro-
vide greater clarification. Table  3 provides illustrations 
of the Wilcoxon signed-rank test. By utilizing + and -, 

Table 1 Shows accuracy, sensitivity, specificity, and precision of CNN Model in duncan statistical test
Model Name Accuracy sensitivity specificity precision
AlexNet 0.7227ab 0.6891abc 0.7564a 0.7871abc

DarkNet19 0.7983efg 0.7758bcdef 0.8208ab 0.8341bcde

Darknet53 0.8053fgh 0.8044cdef 0.8061ab 0.8288bcde

Densenet201 0.8233gh 0.8210def 0.8257ab 0.8418de

Google Net 0.6971a 0.6353a 0.75884a 0.7828ab

Inceptionresnetv2 0.8180fgh 0.8032cdef 0.8328ab 0.8438de

Inceptionv3 0.8071fgh 0.8023cdef 0.8120ab 0.8225abcde

Mobilenetv2 0.8337h 0.8424ef 0.8251ab 0.8370cde

NasNet Large 0.7904ef 0.7624bcdef 0.8184ab 0.8324bcde

Nasnet Mobile 0.7695de 0.7436abcde 0.7955ab 0.8089abcd

Resnet18 0.7589cd 0.7372abcde 0.7806ab 0.8008abcd

Resnet50 0.7178ab 0.6808ab 0.7548a 0.7954abcd

Resnet101 0.7540cd 0.7487abcde 0.7593a 0.7941abcd

Vgg16 0.7605cd 0.7379abcde 0.7832ab 0.8070abcd

Vgg19 0.7314ab 0.7205abcd 0.7423a 0.7753a

Xception 0.8158fgh 0.8227def 0.8089ab 0.8247abcde

Efficient Net B0 0.8666i 0.8772f 0.8561ab 0.8696e

Table 2 Shows FPR, F1 score, MCC, kappa, comp time of CNN model in duncan statistical Test
Model Name FPR F1 Score MCC Kappa Comp time
AlexNet 0.2435b 0.6701ab 0.4893ab 0.4455ab 20.18c

DarkNet19 0.1791ab 0.7882def 0.6182fg 0.5967fgh 14.64a

Darknet53 0.1938ab 0.7939def 0.6347fgh 0.6106ghi 75.46g

Densenet201 0.1742ab 0.8167efg 0.6661gh 0.6360hi 116.81k

Google Net 0.2411b 0.6444a 0.4452a 0.3942a 20.84c

Inceptionresnetv2 0.1671ab 0.8068efg 0.6542gh 0.6360ghi 91.21i

Inceptionv3 0.1879ab 0.8007defg 0.6283fgh 0.6143ghi 44.12e

Mobilenetv2 0.1748ab 0.8339fg 0.6768h 0.6467h 23.70d

Nasnet Large 0.1815ab 0.7786cdef 0.6050ef 0.5809fg 334.23m

Nasnet Mobile 0.2044ab 0.7504cde 0.5642de 0.5391ef 155.35l

Resnet18 0.2193ab 0.7384cd 0.5484d 0.5179de 18.27b

Resnet50 0.2451b 0.6667ab 0.4853ab 0.5179cd 20.21c

Resnet101 0.2406b 0.7352cd 0.5422cd 0.5081de 91.06i

Vgg16 0.2167ab 0.7349cd 0.5549d 0.5211de 90.62i

Vgg19 0.2576b 0.7130bc 0.5005bc 0.4629cd 112.20j

Xception 0.1910ab 0.8111efg 0.6475fgh 0.6317ghi 84.58h

Efficient Net B0 0.1438a 0.8654g 0.7451i 0.7333i 64.41f



Page 11 of 14Soni et al. BMC Oral Health          (2024) 24:601 

Ta
bl

e 
3 

Sh
ow

s S
ig

n 
ou

tp
ut

 o
f d

iff
er

en
t C

N
N

 m
od

el
s i

n 
w

ilc
ox

on
 si

gn
 te

st
 c

on
ce

rn
in

g 
Effi

ci
en

tN
et

B0
Cl

as
-

si
fic

a-
tio

n 
M

od
el

A
le

xn
et

D
ar

kn
et

19
D

ar
kN

et
53

D
en

se
N

et
20

1
G

oo
gl

en
et

In
ce

pt
io

nR
es

ne
tV

2
In

ce
p-

tio
nV

3
M

o-
bi

le
-

ne
tV

2

N
as

-
ne

t-
la

rg
e

N
as

-
ne

t-
M

o-
bi

le

Re
sn

et
18

Re
sn

et
50

Re
sN

et
10

1
Vg

g1
6

Vg
g1

9
Xc

ep
-

tio
n

Ac
cu

-
ra

cy
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-

Se
ns

i-
tiv

ity
-

-
+

+
-

-
-

+
-

-
-

-
-

-
-

-

Sp
ec

i-
fic

ity
+

+
+

-
+

+
+

+
+

-
-

-
-

-
-

+

Pr
ec

i-
sio

n
-

+
-

+
-

+
-

-
+

-
-

-
-

-
-

-

FP
R

-
+

+
+

-
+

-
-

-
-

-
-

+
-

-
+

F1
_

Sc
or

e
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-

M
CC

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

Ka
pp

a
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
Co

m
-

pu
ta

-
tio

na
l 

Ti
m

e

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-



Page 12 of 14Soni et al. BMC Oral Health          (2024) 24:601 

the superiority, inferiority, and parity of alternative clas-
sifiers concerning EfficientNetB0 are demonstrated. The 
EfficiientNetB0 classification method statistically out-
performed the other 16 classification methods. The Effi-
cientNetB0 model provided the highest performance, 
according to the results from the remaining models, with 
a mean accuracy of 86.66%.

The performance of EfficientNetB0 was further 
enhanced by modifying the feature layers of the CNN 
model.

The improved EfficientNetB0 was evaluated in terms of 
the same seven confusion matrix measures. The confu-
sion matrix of the improved EfficientNetB0 is illustrated 
in Fig. 4.

Hence, the proposed method achieved an accuracy of 
91.1%, a sensitivity of 92.2%, a specificity of 91.0%, a pre-
cision of 91.3%, an FPR of 1.12%, an F1 score of 92.3%, 

an MCC of 90.1%, a kappa of 88.8%, and a computational 
time of 66.41%.

Furthermore, a state-of-the-art comparative analysis 
was carried out, as illustrated in Table 4.

Conclusion
Recent advances in DL techniques have made it possible 
to diagnose oral squamous cell cancer (OSCC) auto-
matically, with performance on par with or exceeding 
that of highly qualified human specialists. In this study, 
improved DL-CNN models were used to automatically 
categorize normal and malignant oral histopathology 
images. A CNN model based on EfficientNetB0 was pro-
posed in this work. For effective OSCC detection, a sug-
gested DL-CNN model was built with the appropriate 
additional layers, and the candidate models were adjusted 
using this architecture. Among the other modified mod-
els tested, the EfficientNerB0 DL-CNN model achieved 
an accuracy of 86.66%. Additionally, it was discovered 
that the results of the suggested work were noticeably 
better than those of some renowned studies. An accu-
racy of 91.1%, a sensitivity of 92.2%, a specificity of 91.0%, 
a precision of 91.3%, an FPR of 1.12%, an F1 score of 
92.3%, an MCC of 90.1%, a kappa of 88.8%, and a com-
putational time of 66.41% were attained in the categori-
zation of OSCC histopathological images. Moreover, the 
proposed model outperformed other CNN models and 
models used in previous studies. In the future, enhanc-
ing the interpretability of the DL-CNN model’s predic-
tions using attention mechanisms and saliency maps will 

Table 4 Comparison with previous work
Classification models Accuracy (%)
Gupta et al. [17] 89.30
Song et al. [18] 86.90
G. Forslid et al. [38] 82.39
Rutwik et al. [39] 89.52
Welikala et al. [40] 88.20
Rahman et al. [33] 89.70
H. Wieslander et al. [41] 78–82
Kim et al. [42] 78.10
M. Aubreville et al. [43] 88.30
Shaban et al. [44] 82.39
Proposed model (Improved EfficientNetB0) 91.1

Fig. 4 Confusion matrix of improved EfficientNetB0.
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be pivotal, fostering trust among clinicians and facilitat-
ing its seamless integration into clinical practice. Addi-
tionally, conducting large-scale clinical validation studies 
and obtaining regulatory approval are paramount steps 
toward the adoption of this model in real-world health-
care settings. Integration with telemedicine platforms 
holds promise for extending access to timely OSCC diag-
noses, particularly in underserved regions. Moreover, 
establishing a feedback loop mechanism for continuous 
model improvement based on real-world performance 
data will ensure that the DL-CNN model remains adap-
tive and responsive to evolving clinical needs.
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