
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Li et al. BMC Oral Health          (2024) 24:814 
https://doi.org/10.1186/s12903-024-04460-x

BMC Oral Health

†Wen Li and Enting Guo contributed equally to this work.

*Correspondence:
Chao Liu
dxliuchao@163.com
Weibin Sun
wbsun@nju.edu.cn
1Department of Cariology and Endodontics, Nanjing Stomatological 
Hospital, Affiliated Hospital of Medical School, Research Institute of 
Stomatology, Nanjing University, Nanjing, China

2Division of Computer Science, The University of Aizu, Aizu, Japan
3Department of Orthodontic, Nanjing Stomatological Hospital, Affiliated 
Hospital of Medical School, Research Institute of Stomatology, Nanjing 
University, Nanjing, China
4Department of Periodontics, Nanjing Stomatological Hospital, Affiliated 
Hospital of Medical School, Research Institute of Stomatology, Nanjing 
University, Nanjing, China

Abstract
Background  To evaluate the performances of several advanced deep convolutional neural network models (AlexNet, 
VGG, GoogLeNet, ResNet) based on ensemble learning for recognizing chronic gingivitis from screening oral images.

Methods  A total of 683 intraoral clinical images acquired from 134 volunteers were used to construct the database 
and evaluate the models. Four deep ConvNet models were developed using ensemble learning and outperformed a 
single model. The performances of the different models were evaluated by comparing the accuracy and sensitivity for 
recognizing the existence of gingivitis from intraoral images.

Results  The ResNet model achieved an area under the curve (AUC) value of 97%, while the AUC values for the 
GoogLeNet, AlexNet, and VGG models were 94%, 92%, and 89%, respectively. Although the ResNet and GoogLeNet 
models performed best in classifying gingivitis from images, the sensitivity outcomes were not significantly different 
among the ResNet, GoogLeNet, and Alexnet models (p>0.05). However, the sensitivity of the VGGNet model differed 
significantly from those of the other models (p < 0.001).

Conclusion  The ResNet and GoogLeNet models show promise for identifying chronic gingivitis from images. These 
models can help doctors diagnose periodontal diseases efficiently or based on self-examination of the oral cavity by 
patients.
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Background
Gingivitis is a chronic disease primarily caused by bacte-
rial infection. Gingivitis affects public health worldwide, 
and its main clinical symptoms are bleeding, redness, and 
bad breath. Without prompt treatment, the continuous 
progression of gingivitis can lead to the resorption of the 
alveolar bone and loss of the periodontal ligament. Mean-
while, the latest epidemiological survey on oral health 
reported that 88% of adults suffer from gingivitis each 
year [1]. As the first stage of periodontal disease, gingi-
vitis is closely related to other serious diseases such as 
cardiovascular disease, leukemia, and tumors [2, 3]. Pro-
tecting gum health is a key factor in preventing periodon-
tal disease [4]. Gingivitis is clinically diagnosed through a 
series of conventional oral examinations, which include 
measurements of the degree of redness and swelling and 
bleeding on probing [5]. Although chairside oral exami-
nation is the most reliable method for gingivitis detec-
tion, other methods should be considered to improve the 
efficiency of diagnosis and reduce the clinical burden on 
physicians.

In recent years, deep learning algorithms (e.g., deep 
convolutional neural networks [DCNNs]) have shown 
high efficiency and accuracy for classifying and ana-
lyzing medical characteristics or features [6, 7]. These 
algorithms can enable the automatic screening of sev-
eral diseases using imagery captured with cameras or 
smartphones. For example, Li et al. classified tooth types 
in dental images using contrast-limited adaptive histo-
gram equalization, gray-level co-occurrence matrix, and 
extreme learning machine approaches [8]. Krois et al. 
applied CNNs to detect periodontal bone loss in pan-
oramic dental radiographs [9]. In a previous study, we 
screened for gingivitis and its irritants (dental calculus 
and soft deposits) in oral photos using a novel multi-
task learning CNN model and obtained good accuracy 
and sensitivity for both classification and localization 
[10]. The above examples demonstrate that image analy-
sis can play an important role in monitoring the gingival 
condition of patients, and that DCNNs show promise 
for supplementing clinical visits to detect health issues. 
However, using deep learning models to screen for gum 
conditions remains under-explored.

In this study, we selected several advanced deep Con-
vNet models (Alexnet [11], VGG [12], GoogLeNet [13], 
and ResNet [14]) for the classification of anatomical gin-
gival soft tissue structures from oral screening images 
and compared their performance for recognizing chronic 
gingivitis in terms of both accuracy and efficiency. 
AlexNet is renowned for its breakthrough performance 
in the ImageNet challenge, which reignited the interest in 
neural networks for computer vision tasks. GoogLeNet, 
with its inception modules, demonstrates the power of 
network-in-network architectures to increase depth and 

width without a significant increase in computational 
cost. ResNet introduced residual learning, enabling the 
training of much deeper networks by addressing the van-
ishing gradient problem, leading to remarkable improve-
ments in accuracy. Lastly, VGGNet is celebrated for its 
simplicity and depth, utilizing very small convolutional 
filters to build deeper networks, which has shown to be 
effective in capturing fine details in images. Together, 
these models encompass a range of approaches that have 
significantly advanced the field of computer vision. By 
comparing the accuracy of the four advanced models in 
identifying gingivitis, we aim to initiate a discourse on 
the integration of deep learning into oral self-examina-
tion tools for enhancing public dental health.

Materials and methods
In this section, Firstly, we present the data collection 
protocol employed in this study along with the gener-
ated dataset, followed by the annotation of the collected 
data. Next, we demonstrate the limitations associated 
with gingivitis diagnosis and propose four deep learning 
model architectures. The implementation and training of 
the model are subsequently elaborated upon. Finally, we 
elucidate the metrics and statistical analysis methodolo-
gies employed to validate multiple models for discerning 
gingivitis.

Ethical approval
The project was approved by the Ethical Review Board at 
local University (approval number NJSH-2022NL-069). 
Any reports related to the results of this study will be 
subject to confidentiality and compliance with data pro-
tection regulations

Subjects and dataset
We built an in-house dataset of oral photos collected in 
the Department of Periodontics, Orthodontics and End-
odontics, Stomatological Hospital, from January 2020 
to December 2022. The dataset contained 683 images 
captured by postgraduate dentists from 134 gingivitis 
patients and the healthy population. The images cover a 
wide age range from 14 to 60 years old. Images of teeth 
with severe cervical caries and periodontitis with severe 
gingival recession were excluded. To approximate the 
image quality in practical scenarios, a diverse range of 
equipment was utilized for photo collection, includ-
ing iPhone, Samsung Galaxy, Canon 6D and so on. The 
methods were conducted in accordance with the rel-
evant guidelines and regulations, written informed con-
sent was obtained from each participant. The diagnosis 
of chronic gingivitis requires that two criteria be met: (1) 
clinical symptoms including bleeding with tooth brush-
ing, blood in the saliva, and gingival swelling and red-
ness (Fig.  1); and (2) no attachment loss in periodontal 
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probe examination and no loss of supporting structures 
in radiographic analysis.

In our preprocessing step, images of different sizes are 
first scaled, and all images are uniformly scaled to a size 
of 224 × 224 pixels. This process uses bilinear interpola-
tion to maintain the aspect ratio and detail information 
of the image. Subsequently, we normalized the scaled 
image to normalize the pixel values to between 0 and 1.

Given the constrained size of our dataset, it was imper-
ative to explore strategies that could artificially expand 
our data’s diversity without compromising its integrity. 
To this end, we integrated a comprehensive suite of data 
augmentation techniques directly into our training pro-
cess. This dynamic augmentation occurs in real-time 
during the training phase, presenting the model with an 
enriched dataset. Our augmentation strategy includes 
a range of transformations, such as random rotations 
zooming, horizontal flipping, and shear transformations.

Implicit sorting relationships may exist in the initially 
gathered data, which may negatively affect the DCNN 
model’s accuracy. Therefore, during training, we initially 
use a shuffling procedure to disrupt the order of the data.
We divided the dataset into training, validation, and test-
ing subsets by randomly splitting the photos into three 
groups. We used the training set to update the model. We 
changed the hyperparameters in the validation set, and 
the test set was used to evaluate the model’s performance. 
To increase the use of data and train the model with a 
large number of parameters, we improved the efficiency 
of data utilization through cross validation. Figure 2 pro-
vides details about the distribution of the dataset.

1) Training dataset
The identification of gingivitis is a complex process that 
involves considering the color of the gums, the level of 
swelling, and the bleeding condition. Accordingly, we 
selected models with large numbers of structural layers 

Fig. 2  Numbers of images with positive and negative findings assigned to the training, validation, and testing subsets

 

Fig. 1  Clinical symptoms of gingivitis
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to extract the complex features of gingivitis. To update 
the model’s parameters, the model was trained many 
times with the training data.

2) Validation dataset
The model’s variables, including the number of layers and 
neurons, can affect the ultimate recognition accuracy. In 
this study, the model that performed best in the valida-
tion set was chosen as the final version after we tested 
numerous iterations of each model. As the number of 
training sessions increases, the model accumulates con-
siderable useless knowledge, including the brightness 
of the image, the placement of the teeth, the size of the 
teeth, and other features of oral diseases such as black 
stains and dental calculus. Additionally, we used the vali-
dation set to halt model updates early.

3) Test dataset
We used the test set to test the final performance of the 
model based on accuracy and analysis of the receiver 
operating characteristic (ROC) curves.

4) Cross-validation method
Due to the complexity of the task and the small amount 
of data, we needed to increase the use of the collected 
data. We used a cross-validation method to train/test 

multiple groups of models with different training/test 
sets, as shown in Fig. 3.

This rigorous validation framework was designed to 
enhance the reliability of our model’s performance met-
rics by carefully segregating the dataset into non-over-
lapping training, validation, and testing segments. The 
nested cross-validation process involved an outer 5-fold 
cross-validation for delineating training and testing data, 
complemented by an inner 5-fold cross-validation within 
the training dataset for hyperparameter tuning.

ConvNet models
We selected several models and compared their perfor-
mances by training to identify the model with the best 
performance. Finally, we outperformed a single model 
by using ensemble learning. Figure  4 shows the overall 
framework of the model.

1) AlexNet
AlexNet uses ReLU as the activation function. Only the 
most obvious elements of a region are kept. As an illus-
tration, consider the color of the gingiva. Only the com-
ponents whose color depth exceed the threshold are kept, 
and the rest of the features are eliminated (Fig. 5).

To increase the diversity of the data, we randomly elim-
inated some of the intermediate results using the dropout 
function.

Fig. 5  Architecture of VGG. Note “Conv” is short for convolutional, and “FC” stands for the fully connected layer

 

Fig. 4  Architecture of AlexNet, Note “Conv” is short for convolutional, and “FC” stands for the fully connected layer

 

Fig. 3  Cross validation was used to average the data and take several samples to observe the results of a variety of collected data
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2) VGG
For the model to quickly collect the general informa-
tion of the image, a lot of distant information needs to 
be swiftly aggregated. We used the 3 × 3 convolution ker-
nel to quickly gather tooth and gingival information over 
large distances. Therefore, we obtained a general assess-
ment without a precise division of tooth position (Fig. 6).

3) GoogLeNet
Each model layer’s dimension may correlate to the tooth’s 
higher-dimensional attributes. To minimize the feature’s 
dimension, we used a 1 × 1 convolution kernel (Fig. 7).

4) ResNet
We used a 34-layer version of the ResNet model (Fig. 8). 
We discovered that the starting information and position 
information in the image were helpful in the recogni-
tion process. Basic knowledge of the structure and color 
can be learned in the first few layers, and this knowledge 
remains helpful in the subsequent layers. ResNet adds the 
results of previous layers to subsequent layers by using 
residual structures and skipping intermediate steps. In 
this way, the knowledge learned in the previous layer can 
be directly transferred to the next layer.

Table 1  The precision, recall, F1 score, cross entropy loss and 
accuracy of models

Precision Recall F1_score Cross
Entropy

Accuracy

AlexNet 0.98 0.92 0.95 0.27 92%
GoogLeNet 0.98 0.91 0.93 0.32 90%
ResNet 0.97 0.87 0.92 0.38 87%
VGGNet 0.97 0.85 0.90 0.42 85%

Table 2  Calculated p values between different models and 
labels after extracting the data at random

Label AlexNet GoogLeNet ResNet VGGNet
Label 0.164 0.856 0.908 < 0.001
AlexNet 0.164 0.226 0.201 < 0.001
GoogLeNet 0.856 0.226 0.948 < 0.001
ResNet 0.908 0.201 0.948 < 0.001
VGGNet < 0.001 < 0.001 < 0.001 < 0.001

Fig. 8  We used ensemble learning to identify images that are difficult for a single model to identify

 

Fig. 7  Architecture of ResNet. Note: “Conv” is short for convolutional, “Res” is short for Residual Network, and “FC” stands for the fully connected layer

 

Fig. 6  Architecture of GoogleNet. Note “Conv” is short for convolutional. Inception is a structure composed of 5 convolutional networks, where the di-
mensions of each network are as shown in the figure
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5) Ensemble learning
The AlexNet, GoogLeNet, and ResNet models had good 
performance based on their accuracy and area under 
the ROC curve (AUC). In contrast, the VGGNet model 
performed poorly. We know that for locating particular 
data, some models perform poorly, while others show 
good performance. Consequently, we combined the find-
ings from the three models with good performance using 
ensemble learning. Three models—Alexnet, Googlenet, 
and Resnet—were used to make predictions for one 
image. The output of ensemble learning was then deter-
mined by the outcomes of the three models with the 
highest number. The ensemble learning process is shown 
in Fig. 4.

Training strategies
To train the model quickly, we employed transfer 
learning hyperparameters. The optimization method 
included a few hyperparameters. Transfer learning [15] 
was first utilized for initialization. The model parame-
ters developed using the open dataset were utilized by 
all four models. Compared with the loss value of the 
model, which will decrease later, the loss value of the 
model in the early stage of training is larger. The early 
loss value of training was greater because the hyper-
parameters used in transfer learning were different 
from those employed in our jobs. The GoogLeNet and 
ResNet models both showed substantial loss values in 
the first few epochs, whereas the VGG and AlexNet 
models displayed smaller loss values. The loss values 
of the four prediction algorithms converged to lower 
values as the number of epochs increased [16].

In our endeavor to develop a model capable of gen-
eralizing well beyond the confines of our training data, 
we implemented a comprehensive strategy to prevent 
overfitting. Apart from leveraging early stopping as a 
safeguard against overtraining, we incorporated drop-
out with a rate of 0.5 within our model’s architecture, 
which served to randomly deactivate a portion of the 
neurons during each training pass. This randomness 
introduced by dropout helps in reducing the model’s 
sensitivity to specific features of the training data. In 
parallel, L2 regularization with a value of 1 × 10− 4 was 
applied across the network’s parameters, imposing a 
constraint that penalizes the magnitude of the weights, 
thereby discouraging complex models that could over-
fit the training data.

To evaluate the effectiveness of the proposed strategy, 
we ran numerous experiments. Inference accuracy and 
training loss were measured. Finally, we examined the 
performances the AlexNet, VGG, GoogLeNet, and ResNet 
deep learning models.

In our study, we evaluated several deep learning 
models’ performance metrics, including precision, 

recall, F1 score, cross-entropy loss, and accuracy, as 
summarized in Table 1. AlexNet and GoogLeNet dem-
onstrated superior performance, particularly in pre-
cision and F1 score, indicating their effectiveness in 
accurately identifying positive cases.

The convergence performance of a model is reflected 
by the loss value. In most cases, the loss value will sta-
bilize after a certain time and eventually decrease to 
some amount. The training is then considered to be 
finished. The model’s training outcome can be mea-
sured by the accuracy. The initial prediction accu-
racy of the AlexNet, VGG, and GoogleNet models was 
roughly 85%. The VGG model began to exhibit accu-
racy fluctuations at approximately 20 epochs, after 
which the accuracy increased steadily before flatten-
ing out. The same phenomenon was observed for the 
AlexNet model at approximately 23 epochs. At approx-
imately 29 epochs, the accuracy of the AlexNet model 
peaked before starting to decrease and returning to the 
initial accuracy.

A recognition model is prone overfitting if there are 
too many training iterations, which increase the accu-
racy on the training dataset. However, this will result in 
substandard generalization performance, leading to poor 
performance on unseen data. Among the four models, 
the ResNet and GoogLeNet models performed well with 
high recognition accuracy. We also constructed the ROC 
curves of the four models and calculated the correspond-
ing AUC values. Among the models, VGGNet had the 
smallest AUC (89%), while the AUCs of GoogLeNet and 
ResNet were larger (94% and 97%, respectively). It is 
worth noting that GoogLeNet showed better generaliza-
tion performance than ResNet.

It is important to note that after sufficient training, 
several models experienced overfitting. As a result, we 
kept the results once the training reached the highest 
level of accuracy.

We examined the p values between different mod-
els and correct result after extracting the data at ran-
dom. ResNet and GoogLeNet and label(The label is the 
real classification of the data. During the process of 
data collection, the researchers who collect the data 
will mark the data classification as the label.)had the 
highest p values out of all the tested models, and no 
substantial differences were observed in the projected 
outcomes of these models. The p values between the 
VGGNet model and the other models were all less than 
0.001, indicating significant differences.

Discussion
Chronic gingivitis is a common oral disease that influ-
ences human health and quality of life [17]. In this 
study, we evaluated four precise ConvNet models for 
the recognition of chronic gingivitis from screening 
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oral photographs taken by either mobile phones or 
digital cameras. This approach differs from the com-
monly used deep learning systems based on clinical 
imaging for the computer-assisted diagnosis of gingi-
vitis. Among the four tested models, the ResNet and 
GoogLeNet models presented the best performance. 
These models can be applied to help people maintain 
oral hygiene through self-screening, thereby reducing 
the treatment burden on physicians and the financial 
burden on patients.

Previous studies have verified the advantages of 
using photographs for the detection of chronic gingivi-
tis by dentists. Eke et al. reported self-screening mea-
sures for periodontal diseases [18]. Alalharith et al. 
evaluated state-of-the-art object detection and recog-
nition techniques based on deep learning for the auto-
matic detection of gingivitis in orthodontic patients 
based on intraoral images [19]. Lang et al. further 
assessed the ability to diagnose plaque-induced gingi-
vitis from intraoral photographs based on the symp-
toms of gingivitis [20]. These studies all suggest that 
clinical photographs are sufficient for dentists to draw 
conclusions that are statistically similar to those based 
on visual inspection.

Unlike the above-described studies, we compared 
several advanced transfer learning-based ConvNet 
models (Alexnet, VGG, GoogLeNet, and ResNet) for 
the automated detection of gingivitis from oral pho-
tographs. The most closely related study in the lit-
erature is Xianwei et al. (2019), who assessed a deep 
learning method (a mask DCNN model with a multi-
channel gray-level co-occurrence matrix associated 
with a particle swarm optimization neural network) 
for the detection of gingivitis based on dental images. 
However, compared to their work, our study provides 
four innovations: (1) we identified gingivitis using oral 
images from both consumer mobile phones and digital 
cameras; (2) we employed transfer learning to effec-
tively train the models and compensate for the low 
data volume; (3) we used a cross-validation method 
to process the training, validation, and testing datas-
ets, and each group was trained once to make efficient 
use of the datasets; and (4) we use ensemble learning, a 
supervised learning algorithms, to select three models 
that performed better than VGGNet.

At present, transfer learning has three main aspects 
[21]: (1) the new data are used for training after load-
ing all the model parameters; (2) only the last few 
layers of parameters are trained and loaded after the 
weights are determined; and (3) after the weight is 
loaded, a complete connection adds one layer to the 
original network. Because our task is not the same 
as the publicly available dataset, we adopted transfer 

learning and trained the model faster than random 
initialization.

Other studies have used transfer learning meth-
ods to diagnose oral diseases. Jin et al [22]. proposed 
a deep transfer learning method for the diagnosis of 
various diseases based on computer-aided facial recog-
nition. Rahman et al. [23]. proposed a transfer learn-
ing model based on AlexNet to extract rank features 
from oral squamous cell carcinoma biopsy images and 
achieved high classification accuracies. Chang et al. 
[24]. presented a transfer learning-based method for 
the automatic diagnosis of parotid gland tumors from 
multimodal magnetic resonance images. However, 
none of these studies used ensemble learning to train 
for low-quality spatial annotations of disease.

In this work, we developed four trained CNN models 
to automatically identify and localize gingivitis from 
photographs. We created a high-specificity point (blue) 
and a high-sensitivity point (orange) for the model to 
show the accuracy; as a result, the prediction results 
at various operating points could be represented visu-
ally. To reduce false positives, we established a high-
specificity point (blue) with a high discrimination 
threshold. To maintain a low missing rate, we selected 
a high-sensitivity point (orange) with a low discrimi-
nating threshold (Fig.  9). We also provide the ROC 
curve or accuracy of the ensemble model in Fig. 10. It 
is important to note that the two points of ResNet can 
be obtained at the same site. These points were not 
simultaneously established for VGGNet since its pre-
diction result was suboptimal. Regarding their ability 
to recognize gingivitis, the ResNet model achieved a 
larger AUC of 97% than the GoogLeNet (AUC = 94%), 
Alexnet (AUC = 92%), and VGG (AUC = 89%) models 
(Fig.  9). The ResNet and GoogLeNet models and label 
(correct category result) had the highest sensitivity of 
all models tested, and there was not a substantial dif-
ference in the projected outcomes between the ResNet 
and GoogLeNet groups (p>0.05). Meanwhile, the sensi-
tivity of VGGNet was significantly different from those 
of the other groups (p < 0.001; Table 2; Fig. 11).

The task addressed in this study was a dichotomous 
classification task, and the amount of data was less 
than required for model training datasets. To make use 
of this small amount of data and ensure the accuracy 
of the model training process, we employed transfer 
learning during training. Well-learned networks retain 
some common abstractions of gingivitis, and the new 
neural network can adopt the high-latitude features 
of the previous underlying general-purpose network. 
Transfer learning can hasten the convergence of the 
model and enhance recognition performance. The 
loss of GoogleNet and ResNet models continued to 
fluctuate until 25 epochs, after which they stabilized 
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(Figs.  12 and 13). After a few variations, Alexnet and 
VGG quickly stabilized after roughly the same number 
of epochs. It is important to note that the model’s pre-
diction performance is shown by the accuracy on the 
right. We chose the best result as the final model since 
accuracy decreases as the number of training epoch 
increases.

Our study has several shortcomings. First, it is 
worth mentioning that several models have the prob-
lem of overfitting gradient descent after sufficient 
training; in other words, the model’s prediction is 
highly consistent with the training set, making it dif-
ficult to accurately detect the new data. Therefore, 
we retained the results when the training reached the 
highest accuracy; later updates will only consider the 
original parameters after the original ideal recogni-
tion performance is achieved. Second, although we 
employed transfer learning to improve the accuracy 

of the ResNet model in identifying gingivitis from oral 
photographs, our dataset collected from patients was 
limited; thus, we plan to expand the amount of data 
from patients of different ages and for a wider range 
of ethnic groups. Third, some issues during the train-
ing process may lead to the failure of gingivitis detec-
tion; for instance, improper lighting can cause light 
spots on gingiva, which may be misidentified as gingi-
vitis (see Fig. 8). Thus, we need composite images with 
fewer light spots, and pre-processing steps should be 
designed to reduce noise without eliminating real fea-
tures. Finally, to improve the model accuracy and reli-
ability, some text datasets such as clinically diagnosed 
cases or traditional questionnaires [25] can be used to 
complement image datasets [26].

We show Grad-CAM based on the last convolu-
tional layer of each model on several test data samples. 
These heatmaps can help understand which areas of 

Fig. 9  ROC curves of AlexNet, VGG, GoogLeNet, and ResNet during training. To reduce false positives, we established a high-specificity point (blue) with 
a high discrimination threshold. To maintain a low missing rate, we selected a high-sensitivity point (orange) with a low discriminating threshold. These 
points were not simultaneously established for the VGGNet model since its prediction result was suboptimal
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the image the model focuses on (Fig.  14). Simultane-
ously, the incorrect predictions of the picture by the 
model is likely attributed to issues with reflective light 
during the shooting process. For instance, the subse-
quent heat map failed to accurately detect gingivitis. 
Figure  15 is a heat map illustrating a selection of the 
images.

Conclusion
Deep learning plays an essential role in dental disease 
recognition. We extracted data multiple times for com-
plex tasks with limited data and used ensemble learning 
to improve model performance. Among the tested mod-
els, the ResNet and GoogleNet models performed best, 
and transfer learning increased the accuracy of the mod-
els to recognize gingivitis from oral images.

Fig. 11  Sensitivity of the AlexNet, VGG, GoogLeNet, and ResNet models dur-
ing training and testing. The AUC value increased during training and de-
creased during testing. Among the models, the prediction result of ResNet 
changed the most

 

Fig. 10  ROC curves with ensemble Model
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Fig. 14  Grad-CAM of correct predictions of gingivitis

 

Fig. 13  Loss and accuracy of the AlexNet, VGG, GoogLeNet, and ResNet models of Validation

 

Fig. 12  Loss and accuracy of the AlexNet, VGG, GoogLeNet, and ResNet models during training
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