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Abstract
Background  Low mechanical properties are the main limitation of glass ionomer cements (GICs). The incorporation 
of elastomeric micelles is expected to enhance the strength of GICs without detrimentally affecting their physical 
properties and biocompatibility. This study compared the chemical and mechanical properties, as well as the 
cytotoxicity, of elastomeric micelles-containing glass ionomer cement (DeltaFil, DT) with commonly used materials, 
including EQUIA Forte Fil (EF), Fuji IX GP Extra (F9), and Ketac Molar (KT).

Method  Powder particles of GICs were examined with SEM-EDX. Setting kinetics were assessed using ATR-FTIR. 
Biaxial flexural strength/modulus and Vickers surface microhardness were measured after immersion in water for 24 h 
and 4 weeks. The release of F, Al, Sr, and P in water over 8 weeks was analyzed using a fluoride-specific electrode and 
ICP-OES. The toxicity of the material extract on mouse fibroblasts was also evaluated.

Results  High fluoride levels in the powder were detected with EF and F9. DT demonstrated an initial delay followed 
by a faster acid reaction compared to other cements, suggesting an improved snap set. DT also exhibited superior 
flexural strength than other materials at both 24 h and 4 weeks but lower surface microhardness (p < 0.05). EF and 
F9 showed higher release of F, Al, and P than DT and KT. There was no statistically significant difference in fibroblast 
viability among the tested materials (p > 0.05).

Conclusions  Elastomeric micelles-containing glass ionomer cement (DT) exhibited satisfactory mechanical 
properties and cytocompatibility compared with other materials. DT could, therefore, potentially be considered an 
alternative high-strength GIC for load-bearing restorations.
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Background
The phasing down of dental amalgam, as part of the 
Minamata Convention, led to the need for alternative 
direct restorative materials [1]. Resin composites and 
glass ionomer cements (GICs) were suggested as good 
candidates [2]. Several studies reported satisfactory suc-
cess with high-viscosity GICs for single or two-surface 
posterior restorations [3–5]. GICs were also reported to 
be a cost-effective restorative material [6–9]. The attrac-
tive properties of GICs include fluoride release, self-
adhesion, and preventive effects on secondary caries by 
releasing multiple ions such as fluoride, strontium, and 
phosphate [10].

The setting mechanism of GICs is an acid-base reaction 
[11]. This reaction involves the neutralizing polyacrylic 
acids in the liquid phase by ions released from fluoroalu-
minosilicate glass in the powder phase, forming a net-
work of polyacrylate salts [12]. The low flexural strength 
is a significant limitation of the GICs, as material fracture 
is one of the primary causes of failure in GIC restora-
tions [13]. The reported flexural strength of conventional 
GICs at 24 h post-setting was approximately 18–34 MPa 
[14]. These values are substantially lower than those of 
resin composite, which generally exhibit flexural strength 
higher than 100 MPa [15, 16]. Another major concern 
is the low wear resistance of GICs [17]. A clinical study 
indicated that the clinical performance of GICs sub-
stantially decreased after 6 years due to deterioration of 
occlusal contour and wear [13]. A negative correlation 
between wear and surface microhardness of GICs has 
also been reported [18].

Various strategies have been proposed to enhance the 
mechanical strength and abrasive resistance of glass ion-
omer cements. One approach was metal reinforcement 
by incorporating metal power or silver-tin alloys into the 
material [19]. However, the metal-reinforced GICs failed 
to demonstrate an enhancement in material strength and 
exhibited no clinical benefits, mainly due to their poor 
esthetics [19, 20]. Another strategy involved incorpo-
rating reactive glass fibers. It was observed that adding 
these fibers (600 μm in length) at a concentration of 20 
vol% approximately doubled the strength of a GIC [19]. 

Despite promising results, such methods have not been 
widely adopted in commercial materials. A recent alter-
native method for enhancing the mechanical strength 
involves incorporating polyethylene glycol (PEG) and 
polyurethane (PU) nanoparticles into GIC (Deltafil, 
DMG, Hamburg, Germany) [21]. These particles will 
form PEG-PU micelles with elastic structures. The duc-
tile particles in brittle GICs were expected to help dis-
perse energy at crack tips and form bridging zones to 
delay crack propagation [22].

Previous studies reported that Deltafil exhibited higher 
fracture toughness than other conventional GICs [21, 
23]. The material was also found to demonstrate superior 
longevity compared to Ketac Universal and Fuji IX GP 
Extra upon the chewing simulation of occlusal restora-
tion (Class I cavity) [21]. Deltafil exhibited lower abrasion 
loss or wear than other GICs [21], suggesting its poten-
tial suitability for load-bearing restorations. Despite these 
beneficial effects, the reports on the chemical, mechani-
cal, and cytotoxic properties of GICs containing PEG-PU 
micelles are limited.

This study, therefore, aims to compare the setting reac-
tion, biaxial flexural strength, surface microhardness, ion 
release, and cytotoxicity of GIC-containing elastomeric 
micelles (Deltafil) with other commonly used high-vis-
cosity conventional GICs. The null hypothesis was that 
Deltafil would not exhibit significant differences in these 
properties when compared to other commercial GICs.

Methods
Characterization of GICs
Four commercial high-viscosity glass ionomer cements 
were used in the current study (Table 1). The characteris-
tics of glass fillers and elemental analysis were performed 
using a scanning electron microscope (SEM, JSM 7800 F, 
JEOL Ltd., Tokyo, Japan) equipped with an energy-dis-
persive X-ray spectrometer (EDX, X-Max 20, Oxford 
Instruments, Abingdon, UK). The powder of GICs was 
coated with Au (Q150R ES, Quorum Technologies, East 
Sussex, UK) using a current of 23 mA for 45 s. The test 
used a beam voltage of 10 kV and the working distance 

Table 1  Composition of conventional glass ionomer cements used in the current study
Materials Composition Powder-

to-liquid 
ratio

Lot 
number

Suppliers

Deltafil (DT) Powder: fluoroaluminosilicate glass, polyacrylic acid Liquid: polyacrylic acid, tartaric acid, 
PEG-PU micelles, water

4.9:1 242330 DMG, Ham-
burg, Germany

EQUIA Forte HT 
Fill (EF)

Powder: 92–97% fluoroalumino-silicate glass, 3–8% polyacrylic acid, pigment trace 
Liquid: 34–45% polyacrylic acid, 5–10% polybasic carboxylic acid, 45–55% water

3.0:1 22087171 GC, Tokyo, 
Japan

Fuji IX GP Extra 
(F9)

Powder: 95% fluoroalumino-silicate glass, 5% polyacrylic acid Liquid: 40% polyacrylic 
acid, 5–10% polybasic carboxylic acid, 50% water

3.6:1 2104131 GC, Tokyo, 
Japan

Ketac molar (KT) Powder: 85–95% oxide glass, 1-6% copolymer of acrylic acid-maleic acid Liquid: 35–55% 
copolymer of acrylic acid-maleic acid, 40–55% water, 5–10% tartaric acid

3.4:1 8325000 3 M ESPE, St. 
Paul, MN, USA
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set at 10  mm. The single-point EDX analysis was per-
formed in 3 areas of the filler particle.

Setting kinetics
The setting kinetics of GICs were determined using 
attenuated total reflectance-Fourier transform infrared 
spectroscopy (ATR-FTIR, Nicolet iS5, Thermo Fisher 
Scientific, Waltham, MA, USA) (n = 3). Immediately 
after 10 s of mixing using an amalgamator (CapMix, 3 M 
ESPE, St. Paul, MN, USA), the materials were injected 
into the diamond of the ATR. Then, the FTIR spectra 
(400–4000 cm–1) were recorded from the bottom surface 
every 30  s for 10 min using a resolution of 4 cm–1. The 
test was performed at 25  °C. Key peak assignments for 
each chemical group are provided in Table  2. Peak loss 
and gain during the acid/base reaction were obtained by 
subtracting the initial spectra from those at later times to 
provide different spectra.

The reaction extent (RE) of acid neutralization reac-
tions (degree of acid-base neutralization) was determined 
based on the reduction of the peak representing the acid 
group according to the method used in a previous study 
[25].

	
RE = 100 ∗ At −A0

Af − A0
� (1)

where A0 and At were the absorbance at 1714 cm–1 ini-
tially and at time, t, respectively. The final absorbance 
(Af) at infinite time (i.e., when 1/t = 0) was determined 
from the intercept on the y-axis of plots of late-time 
absorbance versus 1/t.

Biaxial flexural strength (BFS) and modulus (BFM)
For biaxial flexural strength and modulus determination 
(n = 10), the GICs were mixed and loaded into a metal cir-
clip (10  mm internal diameter and 1  mm in thickness). 
The discs were covered with an acetate sheet and glass 
slide. They were left at room temperature for 1 h and sub-
sequently removed from the circlip and placed in 5 mL of 
deionized water. The specimens were kept in an incuba-
tor at 37ºC for 24 h or 4 weeks, then removed and placed 
in a ball-on-ring testing jig. They were loaded using 
a 500  N load cell and a crosshead speed of 1  mm/min. 

The failure load was recorded, and then biaxial flexural 
strength (BFS) and modulus (BFM) were calculated using 
the following equations [26].

	
BFS =

F
d2

{
(1 + v)

[
0.485ln

( r
d

)
+ 0.52

]
+ 0.48

}
� (2)

	
BFM =

(
∆H
∆Wc

)
×

(
βcd

2

q3

)
� (3)

where F is the failure load (N), d is the thickness of the 
disc specimens (m), r is the radius of the circular sup-
port of the ball-on-ring testing jig (m), and v is Poisson’s 
ratio (0.3) [26]. Additionally, ∆H

∆Wc  represents the rate of 
change of the load about the central deflection or gradi-
ent of force versus the displacement curve (N/m) [27]. 
βc and q are the center deflection function (0.5024) and 
the ratio of the support radius to the specimen radius, 
respectively. The fracture surface of the representative 
tested specimen from each material was determined 
using SEM-EDX using a similar protocol to the first sec-
tion. The EDX single-point analysis was performed from 
3 areas on the fracture surface.

Surface microhardness
For surface microhardness determination, disc speci-
mens (10 mm in diameter and 1 mm in thickness) were 
prepared similarly to the previous section (n = 5). The 
specimens were immersed in 5 mL of deionized water. 
The Vickers surface microhardness of the specimens after 
immersion for 24  h was then recorded using a Vickers 
microhardness tester (FM-800, Future-Tech, Kanagawa, 
Japan). The measurement was performed using a load 
of 300 g with an indentation time of 10 s [28]. The result 
was averaged from 4 areas and expressed as Vickers hard-
ness number (VHN). The specimens were then placed in 
the same solution, and the Vickers surface microhardness 
of the same specimens was then repeated at 4 weeks.

Ion release
Fluoride release in deionized water from disc speci-
mens (n = 5) was assessed using a fluoride-specific elec-
trode (Orion Versastar Pro, Thermo Fisher Scientific, 
Waltham, MA, USA). Fluoride concentrations of 1, 10, 
100, and 1000 ppm were used for calibration. Disc speci-
mens (10 mm in diameter and 1 mm in thickness) were 
prepared similarly to the previous section. They were 
immersed in a tube containing 5 mL of deionized water. 
The specimens were kept in an incubator with a con-
trolled temperature of 37ºC for up to 8 weeks. At various 
time points (1, 2, 3, 4, 5 days and 1, 2, 3, 4, 5, 6, 7, and 
8 weeks), the specimens were removed and placed in a 
fresh solution. The storage solution from each time point 

Table 2  Peak assignments for reactive acidic and product salt 
groups in GICs [24, 25]
Wave number (cm–1) Assignment
1255 Acid C-O stretch
1410 Salt sym. COO–

1467 Salt sym. COO–

1554 Salt asym. COO–

1588 Salt asym. COO–

1705 Acid C-O stretch
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was mixed with TISABIII using a 1:10 volume ratio. The 
concentration of fluoride was then measured.

For Al, P, and Sr release, another set of disc specimens 
(n = 5) was prepared and immersed in tubes containing 5 
mL of deionized water. The tubes were kept at 37ºC for 8 
weeks; then, the specimens were removed, and the stor-
age solution was collected. The calibration standard was 
performed using an Environmental Standard (CPAchem, 
Bogomilovo, Bulgaria). The concentration of each ele-
ment was determined using inductively coupled plasma 
optical emission spectrometry (ICP-OES, Optima 8300, 
PerkinElmer, Waltham, MA, USA). The detection range 
of Al, P, and Sr were 0.1–50 mg/L, 0.5–50 mg/L, and 0.1–
20 mg/L, respectively.

Cytotoxicity
Cytotoxicity testing of the extracts from disc specimens 
was conducted following a protocol reported in previ-
ous studies [29, 30]. Disc specimens (10 mm in diameter 
and 1 mm in thickness) were prepared and sterilized by 
30-min UV irradiation on each of their top and bottom 
surfaces (n = 5). The specimens were then immersed in 
200 µL of Dulbecco’s modified Eagle medium (DMEM, 
Gibco, Thermo Fisher Scientific, Grand Island, NY, 
USA) with 10% FBS (Gibco), 1% penicillin/streptomycin 
(Gibco) and 1% L-glutamine (Gibco) added. The speci-
mens were left for 5 h at room temperature. Then, 50 µL 
of the medium was pipette mixed with an equal volume 
of fresh medium for a two-fold dilution and subsequently 
transferred to 96-well plates. These plates were seeded 
with mouse fibroblast L292 cells at a density of 8 × 103 
cells/well, with plain culture medium serving as the blank 
control.

The cells were cultured at 37 °C in a humidified atmo-
sphere containing 5% CO2 for 72  h. Then, the MTT 
solution (0.5  mg/mL) (Invitrogen, Thermo Fisher Sci-
entific, Grand Island, NY, USA) was added to each well 
for 30  min. The reaction was terminated by 100 µL of 
dimethylsulfoxide (Sigma‒Aldrich, St. Louis, MO, USA). 
The final product’s color was quantified by measuring 
the absorbance at 570 and 650 nm (OD, optical density) 
using a microplate reader spectrophotometer (Varioskan 
LUX Multimode, Thermo Fisher Scientific, Grand Island, 
NY, USA). The relative cell viability (%) was calculated 
according to the following Eqs. [31, 32]. The assay was 
conducted in triplicate.

	
Relative cell viability =

ODof the test group

ODof the control
× 100� (4)

Statistical analysis
Results for quantitative analysis, including absorbance 
change, BFS/BFM, surface microhardness, ion release, 

and cytotoxicity. These data were presented as mean 
and 95%CI. Data were analyzed using Prism for macOS 
version 10.1.1 (GraphPad Software, San Diego, CA, 
USA). The normality of data was checked using the Sha-
piro-Wilk test. Then, the results between groups were 
compared using one-way ANOVA followed by Tukey 
post-hoc multiple comparisons. Power analysis was per-
formed using G*power version 3.1.9.6 (Heinrich Heine 
University Düsseldorf, Düsseldorf, Germany) [33]. The 
effect size was calculated using the results from the pre-
vious studies [34, 35]. These estimations suggested that 
the sample size used in each test would provide power 
greater than 0.95 at an alpha level of 0.05 for one-way 
ANOVA.

Results
Characterization of GICs
SEM images (Fig. 1) showed that the powder phase of all 
materials consisted of a mix of small and large particle 
diameters. Additionally, EDX results indicated higher 
fluorine content (atomic%) in EF and F9 compared to DT 
and KT. The average fluorine content (mean ± SD) mea-
sured from 3 points of each material was 23 ± 2% for DT, 
30 ± 4% for EF, 27 ± 7% for F9, and 11 ± 9% for KT.

Setting kinetics
Example FTIR spectra versus time after mixing are pro-
vided in Fig. 2A. During the set, GICs showed a decrease 
in peak absorbance at 1705  cm–1 due to the loss of the 
carboxylic acid group (COOH) and an increase in mul-
tiple polyacrylate salt peaks at lower wavenumbers. The 
pattern of changes obtained from all materials was simi-
lar, which was presented by a representative sample from 
DT. Difference spectra (obtained by subtracting the ini-
tial spectrum from those at later times) for all materials 
given in Fig. 2B-D. Whilst with DT (Fig. 2B), there was a 
delay before significant absorbance change, with all other 
cements, no delay was observed. The relative intensities 
of different salt peaks showed only minor variations with 
time for a given cement but could vary between cements. 
For example, difference spectra for DT and KT at 10 min 
demonstrated greater absorbance change at 1554 and 
1410 cm–1 than F9 and EF (Fig. 2F).

The average initial absorbance at 1705 cm–1 was similar 
for DT, F9, and EF (p > 0.05), suggesting comparable ini-
tial levels of polyacid (Fig. 3A). However, the initial absor-
bance of KT was significantly higher than EF (p = 0.013). 
Maximum extrapolated absorbance change following 
reaction, however, was greater for DT and KT than for F9 
and EF (Fig. 3A). The extrapolated absorbance change of 
EF was significantly lower than both DT (p = 0.006) and 
KT (p = 0.002). Using the 1705  cm–1 acid peak, a clear 
delay in the reaction can be observed for DT followed 
by a rapid reaction between 3 and 5 min (Fig. 3B). For all 
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Fig. 2  (A) Representative FTIR spectra of DT, (B-E) changes of spectra of all materials, and (F) the changes of spectra for all cement at 10 min. Difference 
spectra were calculated by subtracting the initial spectrum from that at later times. The reduction of the peak at 1705 cm–1 due to the neutralization of 
the polyacid was used to calculate the reaction extent

 

Fig. 1  The SEM images of the powder phase and the elemental composition of each material
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other cements, there was a steady reaction up to 5 min. 
The reaction rate slowed for all cements after 5  min. 
Reaction levels at 10 min were ~ 70% of extrapolated final 
values in all cases.

Biaxial flexural strength (BFS) and modulus (BFM)
At 24 h (Fig. 4A), the highest BFS was observed for DT 
(62 ± 6  MPa). Other materials were statistically similar 
(p > 0.05), presenting significantly lower BFS in compari-
son to DT (p < 0.01). This trend continued at 4 weeks, 
with all groups showing a significant increase in BFS after 
storage (p < 0.05).

For BFM at 24 h (Fig. 4B), DT also showed the highest 
value (2.4 ± 0.4 GPa)(p < 0.05). No significant differences 
were detected between EF, F9, and KT (p > 0.05). After 

4 weeks, the BFM of all materials increased significantly 
(p < 0.05). The BFM of DT (2.7 ± 0.4 GPa) remained sig-
nificantly higher than that of EF and KT (p < 0.05) but 
was not significantly different from F9 (2.2 ± 0.4 GPa)
(p = 0832).

Fracture surfaces of the representative specimen from 
each material showed the remaining glass fillers in the 
matrix (Fig. 5). EDX analysis indicated that multiple ele-
ments such as F, Si, and Al were detected on the fracture 
surfaces in all materials.

Surface microhardness
At 24 h (Fig. 6), KT exhibited the highest surface micro-
hardness (71.1±1.0 VHN), which was significantly higher 
than DT (57.8±3.2 VHN), EF (63.6±6.1 VHN), and F9 

Fig. 4  (A) Biaxial flexural strength and (B) biaxial flexural modulus after 24 h and 4 weeks of immersion in deionized water. Data are mean and 95% CI 
(n = 10). The same lower-case and upper-case letters indicate p < 0.05 for results at 24 h and 4 weeks, respectively

 

Fig. 3  (A) Average of initial absorbance change at 1705 cm–1 and the maximum extrapolated absorbance change at 1705 cm–1. Data are mean and 95% 
CI (n = 3). The same lower-case and upper-case letters indicated p < 0.05 for the initial and extrapolated maximum change, respectively. (B) The changes 
in average reaction extent over time obtained from a representative sample of each group
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(62.5±2.4 VHN) (p < 0.05). At 4 weeks, surface micro-
hardness values of all materials increased significantly 
(p < 0.05). KT maintained the highest value (80.6 ± 2.8 
VHN), which was significantly greater than both DT 
(70.1 ± 1.2 VHN) and F9 (74.5 ± 3.3 VHN) (p < 0.01).

Ion release
An initial burst release of fluoride was observed at 24 h 
(Fig. 7A). EF and F9 showed a continual increase in fluo-
ride release over the 8-week measurement period. In con-
trast, for DT and KT, the increase was slower, beginning 
to level off at approximately 1 week. The highest cumu-
lative fluoride release at 8 weeks (Fig.  7B) was from EF 
(58.4 ± 4.2 ppm), which was significantly higher than F9 
(49.8 ± 1.7 ppm), DT (12.2 ± 1.8 ppm), and KT (12.4 ± 0.3 
ppm) (p < 0.05). The fluoride release from DT was compa-
rable to that of KT (p = 0.990).

EF and F9 also exhibited higher releases of Al and P 
than DT and KT (Table  3). Additionally, DT showed a 
significantly higher release of Al, P, and Sr compared to 
KT (p < 0.05).

Cytotoxicity
The highest cell viability of mouse fibroblast after expo-
sure to extract from each material was observed from DT 
(88 ± 4%), followed by KT (87 ± 4%), F9 (84 ± 3%), and EF 
(80 ± 6%) as shown in Fig. 8. However, no significant dif-
ference was detected among the materials (p > 0.05).

Discussion
This study compared the physical and mechanical prop-
erties of novel conventional elastomeric micelles-con-
taining GICs (DT) with other commonly used materials. 
The results indicated that DT had significantly higher 
biaxial flexural strength than the other materials but 

Fig. 6  Vickers surface microhardness after 24 h and 4 weeks of immersion 
in deionized water. Data are mean and 95% CI (n = 5). The same lower-case 
and upper-case letters indicate p < 0.05 for results at 24  h and 4 weeks, 
respectively

 

Fig. 5  The SEM images and EDX analysis of fracture surfaces from representative samples of each material after BFS testing at 4 weeks
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exhibited lower fluoride release than EF and F9. There-
fore, the null hypothesis was rejected.

The setting reaction of glass ionomer cement (GICs) is 
based on an acid-base reaction between polyacrylic acid 
and the fluoroaluminosilicate glass in the cement pow-
der [36]. Therefore, a reduction in the FTIR peak repre-
senting the acid group in the spectroscopic analysis was 
used as an indicator of the acid reacting with the glass 
to form polyacrylate salts [25]. It was expected that the 
high level of acid-base reaction could potentially pro-
mote strong crosslinking of glass-matrix interaction, 
ultimately enhancing the mechanical properties of GICs 
[37, 38]. A slight delay in the inhibition of the reaction 
(approximately 2  min after the start of data collection) 
was observed for DT, which could be attributed to the 
effect of tartaric acids [11]. These acids may act as inter-
mediates, forming tartrate salts before the final reaction 
between their anions and the carboxylic groups of the 
polyacrylic acid [36]. This inhibition time could provide 
a working time for GIC to be placed and adapted within 
the prepared cavity before a rapid snap setting [39]. How-
ever, it should be mentioned that the manufacturers did 
not reveal the actual composition of each product. There-
fore, a direct comparison may not be possible.

This study assessed the setting reaction of GICs for 
up to 10  min. Hence, the setting kinetics observed in 
this study may only be suitable for assessing the kinet-
ics during the hardening times (1.5–6  min) required by 
BS EN ISO 9917-1 2007 Dentistry-Water-based cements 
[40]. From a clinical perspective, faster reaction kinetics 
may indicate a quick setting for GIC, potentially reduc-
ing the susceptibility to fracture due to early mastication 
on the restoration [41]. However, the setting reactions of 
GICs can continue for several months [42]. This could be, 

Table 3  The mean (95% CI) of the concentration of elements 
after immersion in deionized water for 8 weeks. The same letters 
in each row indicate a significant difference between materials 
(p < 0.05)
Material/ele-
ment (µg/L)

DT EF F9 KT

Al 540 a

(126)
19,858 a 
(2,078)

10,592 a 
(1,163)

268 a 
(17)

P 716 b

(13)
1,786 b

(131)
1,300 b

(79)
684 b 
(10)

Sr 416 c

(66)
292 c

(23)
190 c

(26)
112 c 
(4)

Fig. 8  Percentage of cell viability of mouse fibroblast after exposure to ex-
tract from specimens of each material. Data are mean and 95% CI (n = 10). 
The line indicates p > 0.05

 

Fig. 7  (A) Fluoride release versus square root of time in hours upon immersion in deionized water for 8 weeks. (B) The cumulative release of fluoride at 8 
weeks for each material. Data are mean and 95% CI (n = 5). Line indicated p > 0.05
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therefore, considered a limitation of the current study, 
requiring future tests to determine the setting kinetics 
over longer time points.

The high flexural strength value would help ensure the 
suitability of GICs for placing in load-bearing cavities 
such as Class II restorations in posterior teeth. While 
there is currently no specific standard for the minimum 
flexural strength of GICs, the ISO 4049:2019 (Dentistry-
Polymer-based restorative materials) requires a minimum 
flexural strength of 80 MPa for polymer-based restorative 
materials intended for permanent restorations in occlusal 
areas [43]. None of the GICs in this study met this rec-
ommended threshold. This may imply that these materi-
als should be primarily used in conservative load-bearing 
cavities or Class I atraumatic restorative treatment (ART) 
restoration [44–46]. DT exhibited the highest BFS at 24 h 
(~ 62  MPa), which was slightly higher than previously 
reported ranges of 45–58 MPa from the 3-point bending 
test [23]. This discrepancy could be attributed to differ-
ent testing protocols. Biaxial flexural strength testing was 
reported to show higher strength and greater reliability 
compared with the 3-point bending test [47]. This could 
be due to the uniform stress distribution, easy control in 
preparing small specimens, increased survival at a given 
load due to smaller volume, and narrow defect distribu-
tion [47, 48].

The highest BFS of DT could be due to its higher pow-
der-to-liquid ratio (4.9:1) compared with other materials 
(3.0:1 to 3.6:1) [35]. Another explanation could be that 
the elastomeric micelles may help seal or delay the crack 
propagation. However, the effects of delayed crack propa-
gation should be confirmed in future work using fracture 
toughness or fatigue testing [49]. The lack of assessment 
of mechanical behavior upon cyclic loading or fatigue 
testing is a limitation of the current study. The fatigue 
test may be more relevant to confirm the crack-inhibiting 
actions for DT because the restorations were subjected to 
a sub-critical repeated loading [50].

An increase in flexural strength and surface microhard-
ness was detected in all GICs upon immersion in water. 
This may be due to the maturation process of the setting 
reaction of GICs [42]. The reduction in modulus of elas-
ticity could be due to the dissolution of glass, which may 
reduce the rigidity of the material [35]. Another possibil-
ity could be the increase in unbound water, which could 
act as a plasticizer, reducing the rigidity of the polymer 
matrix in GICs [51].

EF and F9 showed higher fluoride release compared to 
other materials. This was in accordance with a previous 
study [52] and a consensus that ranked EF and F9 as the 
first and third materials of choice among conventional 
GICs for long-term restorative materials [53]. The level 
of fluoride release was governed by several key factors, 
such as the composition of the glass, the porosity and 

solubility of materials, the molecular weight of a polyacid, 
and the powder-to-liquid ratio [35, 54, 55]. EDX analysis 
of the powder phase showed that EF and F9 contained 
higher levels of fluoride compared with other materi-
als., which may partly explain the higher level of fluoride 
release observed with EF and F9. This result was obtained 
from a single-point EDX analysis from the glass particles, 
which should be interpreted with caution.

The releasing profile of fluoride from GICs in this study 
was in accordance with a diffusion-controlled pattern 
reported in the previous study [56]. This pattern usu-
ally consists of an initial burst release at ~ 24  h, which 
was attributed to the rapid washout of fluoride from 
the cement occurring during the initial setting phase 
[57]. Then, acid-base reactions continue at a slower rate, 
resulting in a sustained release of fluoride at low levels 
that could last from several months up to 3 years [58, 59]. 
A limitation of this study was that the duration of fluo-
ride and other elemental releases was monitored for only 
approximately 2 months. It was expected that the GICs 
would continue to exhibit ion-release actions over time. 
Future studies should investigate both ion-releasing and 
rechargeability [60] of the materials over extended peri-
ods (e.g., 12–36 months) to assess their long-term remin-
eralizing potential.

It should be mentioned that the minimum requirement 
for fluoride release to promote clinical benefits for car-
ies management from the ISO standard for GICs has not 
been established. It was, however, suggested that fluoride 
at a concentration of 0.03–0.7 ppm could inhibit mineral 
loss and enhance remineralization in dentin [10]. This 
may be associated with the reduction of S. mutans and 
inhibits the bacteria from metabolizing carbohydrates 
[55, 61]. Furthermore, all tested materials provided ele-
mental release other than fluoride, such as Al, Sr, and P. 
A high level of elemental release was generally observed 
in EF. According to the manufacturer, the powder phase 
of EF contains a mixture of large and small particles of 
highly reactive fluoroaluminosilicate glass, referred to as 
a “glass hybrid material” [62]. This highly reactive glass 
may increase interaction with acids, resulting in a greater 
level of elemental release. The release of multiple ele-
ments was expected to enhance the bioactive properties 
of GICs, such as promoting mineralization or providing 
buffering effects [11, 63]. For example, the replacement of 
Ca with Sr in glass ionomer cement showed an increase 
in the radiopacity of the material and enhanced tooth 
remineralization [64, 65]. Sr was also believed to exhibit 
synergistic effects with fluoride in controlling dental bio-
film [66]. It should be noted that Sr was not detected in 
the powder phase by the EDX, which could be due to the 
low concentration of the element in the glass network 
compared with other elements.
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The conventional glass ionomer cement added with 
elastomeric micelles demonstrated cell viability compa-
rable to that of commonly used commercial materials. 
The percentage of viability of all materials was greater 
than 70% relative to the blank control. This may suggest 
that all materials complied with the requirement of ISO 
10993-5:2009, Biological evaluation of medical devices 
Part 5: Tests for in vitro cytotoxicity [31]. According to 
the standard, a reduction in cell viability greater than 30% 
is considered cytotoxic [31]. The results from the cur-
rent study also correlated with the previous study, which 
indicated the good biocompatibility of conventional GICs 
to both L929 mouse fibroblasts and human dental pulp 
cells [67]. A satisfactory cytocompatibility was usually 
observed with conventional GICs compared with resin-
modified GICs due mainly to the lack of toxic compo-
nents such as 2-hydroxyethyl methacrylate [11, 68, 69].

The Minamata Convention advocates for the phasing 
down of dental amalgam to mitigate the environmental 
risk of releasing mercury waste into the environment 
[70]. The available alternative direct restorative materials, 
such as GICs, have improved over time but still exhibit 
limited strength and questionable long-term perfor-
mance [71]. The current study demonstrated that GIC 
added with elastomeric micelles exhibited satisfactory 
mechanical properties and ion-releasing actions, suggest-
ing its potential as an alternative GIC material. However, 
it is important to mention that this is an in vitro study. 
Therefore, clinical studies are necessary to assess the 
long-term effectiveness of this material compared with 
other GICs or resin composite in clinical settings.

Conclusions
The novel glass ionomer cement containing elastomeric 
micelles (DT) exhibited similar levels of acid-base neu-
tralization, surface microhardness, and cytotoxicity as 
compared to other commercial materials. However, DT 
has demonstrated superior strength. While DT exhib-
ited lower levels of fluoride release than the commonly 
used GICs, it still falls within the range observed with a 
commercial comparison. These findings suggest that DT 
could be considered a viable option for load-bearing res-
torations where conventional GIC is deemed suitable.
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