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Abstract
Background Tooth segmentation on intraoral scanned (IOS) data is a prerequisite for clinical applications in digital 
workflows. Current state-of-the-art methods lack the robustness to handle variability in dental conditions. This study 
aims to propose and evaluate the performance of a convolutional neural network (CNN) model for automatic tooth 
segmentation on IOS images.

Methods A dataset of 761 IOS images (380 upper jaws, 381 lower jaws) was acquired using an intraoral scanner. The 
inclusion criteria included a full set of permanent teeth, teeth with orthodontic brackets, and partially edentulous 
dentition. A multi-step 3D U-Net pipeline was designed for automated tooth segmentation on IOS images. The 
model’s performance was assessed in terms of time and accuracy. Additionally, the model was deployed on an online 
cloud-based platform, where a separate subsample of 18 IOS images was used to test the clinical applicability of the 
model by comparing three modes of segmentation: automated artificial intelligence-driven (A-AI), refined (R-AI), and 
semi-automatic (SA) segmentation.

Results The average time for automated segmentation was 31.7 ± 8.1 s per jaw. The CNN model achieved an 
Intersection over Union (IoU) score of 91%, with the full set of teeth achieving the highest performance and the 
partially edentulous group scoring the lowest. In terms of clinical applicability, SA took an average of 860.4 s per 
case, whereas R-AI showed a 2.6-fold decrease in time (328.5 s). Furthermore, R-AI offered higher performance and 
reliability compared to SA, regardless of the dentition group.

Conclusions The 3D U-Net pipeline was accurate, efficient, and consistent for automatic tooth segmentation on IOS 
images. The online cloud-based platform could serve as a viable alternative for IOS segmentation.
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Background
Conventional dental impression techniques have been 
largely replaced by digital intraoral scanning, which offers 
greater precision, is non-invasive, and provides increased 
patient comfort [1]. Integrating intraoral scanned (IOS) 
data into digital workflows for prosthodontics, ortho-
dontics, implant dentistry, and orthognathic surgery has 
significantly enhanced treatment planning efficiency and 
simplified clinical procedures by eliminating labor-inten-
sive and time-consuming steps associated with conven-
tional impressions [2].

A crucial step in digital dental workflows is the three-
dimensional (3D) segmentation of teeth from the IOS 
dataset. Accurate and efficient tooth segmentation is 
essential for clinical applications that require tooth 
realignment for treatment simulation or follow-up evalu-
ation, such as in orthodontics and implantology [3–5]. 
This accuracy is vital for achieving reliable and stable 
treatment outcomes [6].

Currently, semi-automatic segmentation algorithms in 
imaging software are still the preferred methods for seg-
menting teeth on IOS images. These algorithms extract 
geometric features such as surface contour lines, surface 
curvature, and harmonic field from the IOS data [7–9]. 
Despite being widely used in digital dental workflows, 
semi-automatic segmentation has limitations, including a 
lack of robustness, the need for manual correction, labor 
intensiveness, dependence on expertise, and excessive 
time consumption. To address these issues, significant 
efforts have been made to develop automatic segmenta-
tion tools. However, this remains challenging due to sub-
stantial variability in IOS data among different patients, 
including large-scale morphological and geometric varia-
tions of teeth, missing or disarranged teeth, and abnor-
mal dental conditions such as supernumerary teeth. 
Additionally, tooth rotation and crowding complicate 
the delineation of each tooth’s margins. This challenge is 
exacerbated in orthodontic patients with dental braces or 
indistinguishable gingival boundaries [5].

Recently, artificial intelligence (AI) has gained traction 
in the field of medicine due to its potential to automate 
tasks mimicking human intelligence [10]. Deep-learning-
based convolutional neural networks (CNNs), a sub-
category of AI, have been considered the most suitable 
method for medical image analysis [11–14]. Several stud-
ies have successfully employed CNNs to segment teeth 
from IOS datasets with satisfactory performance [15]. 
However, these studies often rely on small sample sizes 
or fail to investigate the networks’ robustness in handling 
deviations from natural dentition and variability in dental 
status, such as missing teeth, crowding, or orthodontic 
brackets [4, 5, 16–19].

Therefore, the aim of the current study was to pro-
pose and validate the performance of a CNN model for 

automatically segmenting teeth on IOS images, including 
those with a full set of natural teeth, orthodontic brack-
ets, and partially edentulous dentition.

Methods
This study complied with the World Medical Association 
Declaration of Helsinki on medical research. This study 
received ethical approval from the Ethics Committee 
Research of University Hospitals Leuven (reference num-
ber: S65188) and followed the Artificial Intelligence in 
Dental Research checklist (Appendix Table 1) [20].

Dataset
The dataset included 761 IOS images (380 upper jaws 
and 381 lower jaws) acquired by a Trios 3Shape intraoral 
scanner (Copenhagen, Denmark) between June 2020 and 
April 2021 from the LORTHOG Register, Department 
of Oral & Maxillofacial Surgery, University Hospitals 
Leuven. All the data were retrospectively collected and 
anonymized. The inclusion criteria were complete scans 
of jaws with a full set of permanent teeth, orthodon-
tic patients with brackets, and prosthodontic patients 
with partially edentulous dentition. Any local pathologi-
cal conditions were excluded. The dataset was randomly 
divided into three subsets for training (n = 609), valida-
tion (n = 76), and testing (n = 76).

AI model architecture
A multi-step 3D U-Net pipeline was designed for auto-
mated tooth segmentation on IOS images. While a basic 
3D U-Net network was implemented [21], minor adjust-
ments to the hyperparameters were made to prevent 
overfitting and optimize evaluation metrics such as the 
IoU, Dice coefficient score, and 95% HD. The proposed 
multi-step approach using U-Net models aims to refine 
tooth segmentation by improving the data quality and 
increasing the training dataset size through data augmen-
tation (Fig. 1), resulting in more accurate and robust seg-
mentation. Below is a detailed explanation of each stage:

Preprocessing the Raw STL data
Region of interest (ROI) extraction  The ROI of the 
tooth structure was extracted from the raw STL data. The 
ground truth datasets were labeled by human experts. 
IOS data were prepared by semi-automatic segmentation 
(SA) in OrthoAnalyzer software (3Shape A/S, Copenha-
gen, Denmark) and exported in standard tessellation lan-
guage (STL) format. Segmentation tasks were randomly 
performed by three dental practitioners following initial 
training and calibration.
The IOS image was first preprocessed by preparing a 
model set and then assigned to the segmentation field. 
Missing teeth were deselected, followed by manual indi-
cation of distal and mesial points to create a cut spline 
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outlining the tooth contour. Then, a sculpt was created, 
and the toolkit for addition or removal was used for 
minor correction of over- or under-estimations in the 
segmentations. Extra corrections were applied for cases 
with brackets by removing the connecting wire and iso-
lating the teeth. Finally, the segmented teeth were labeled 
according to FDI notation using 3-matic 14.0 software 
(Materialise, Leuven, Belgium). All segmentations and 
labels were checked by a second observer for quality con-
trol, with necessary alterations made as needed.

Smoothing To improve the quality of the ROI, mono-
chromatic data were smoothed using techniques such as 
smoothing filters, morphological operations, and level set 
methods. These operations primarily focused on refining 
image texture and reducing noise. Specifically, Gaussian 
blurring and median filtering were employed. Gaussian 
blurring involved convolving the image with a Gauss-
ian kernel to achieve a smoother appearance, effectively 
reducing high-frequency noise. Median filtering was used 
to reduce impulse noise by replacing pixel values with 
the median value of neighboring pixels. These smoothing 
operations were selected to enhance image quality and 
prepare it for subsequent analysis and processing stages.

Data augmentation
To increase the size and variability of the training data-
set, data augmentation techniques were applied to the 
preprocessed ROI data. This included operations such as 

scaling, rotation, flipping, and deformations, which cre-
ated new training samples from the original data. Data 
augmentation improves the model’s generalization per-
formance by making it more robust to variations and 
artifacts in the input data. The Adam optimizer, an adap-
tive learning rate optimization algorithm, was used to 
train the U-Net networks.

To apply U-Net to mesh data, several preprocessing 
steps were followed to create a suitable input for the neu-
ral network:

Voxelization
The STL mesh file was converted into a volumetric repre-
sentation through voxelization. The process of voxeliza-
tion for the STL files involved converting the continuous 
surface geometry into a discrete volumetric representa-
tion. This was achieved by partitioning the STL mesh 
into a three-dimensional grid of equally sized cubic ele-
ments, known as voxels. Each voxel was assigned a value 
based on its intersection with the mesh surface. The vox-
elization procedure included the following steps: grid 
generation, intersection testing, voxel value assignment, 
and volumetric data creation.

Patch division
The volumetric representation was divided into smaller 
sub-volumes, called patches. Each patch was used as 
input to the network.

Fig. 1 The multi-step approach using U-Net models
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Feature extraction
Features were extracted for each patch using convolu-
tional layers. In U-Net, the encoder part consists of a 
series of convolutional layers with pooling operations to 
extract high-level features from the input.

Symmetric Decoder
A symmetric decoder architecture was used to recon-
struct the output segmentation. The U-Net decoder 
includes a series of up convolutional layers with skip 
connections from the encoder part to reconstruct the 
segmentation.

Training
Binary cross-entropy was used as the loss function to 
train the U-Net on labeled mesh data. The labels for each 
patch were obtained by applying a labeling process to the 
mesh.

Once trained, the U-Net can predict the segmentation 
for new mesh data patches.

Validation metrics
The performance of the CNN model was evaluated using 
the following metrics:

  • Intersection over Union (IoU):

 
IoU =

TP

(TP + FP + FN)

  • Timing: The AI runtime for each segmentation was 
recorded in seconds.

  • Dice similarity coefficient (DSC):

 
DSC =

2 × TP

(TP + FP ) + (TP + FN)

TP = true positives; TN = true negatives; FP = false posi-
tives; FN = false negatives.

When applied to mesh data, IoU and DSC metrics 
were used to compare the overlap between two sets of 

triangles or polygons. To calculate these metrics, the 
labeled area of interest was compared to the ground truth 
or reference data. The mesh data were represented as a 
collection of vertices and faces. To apply IoU or DSC, the 
labeled regions on the mesh were converted into a binary 
mask, where each vertex was either labeled “inside” or 
“outside” of the labeled region. Specifically, this was done 
by projecting the 3D model onto a 2D plane and creating 
a binary image mask using traditional image segmenta-
tion methods. For crown surface datasets, typically only 
the visible or labeled side of the crown was analyzed, with 
the unlabeled side being ignored during the calculation 
of the IoU and DSC since it was not part of the labeled 
area of interest. When calculating these metrics, only 
the labeled regions were taken into account. Unlabeled 
regions were ignored, and their contribution to the final 
metric score was treated as if they were correctly seg-
mented. It is important to note that the accuracy of the 
evaluation metrics can be affected by the quality of the 
labeling and segmentation process, as well as the specific 
characteristics of the mesh data being analyzed.

Clinical applicability of the CNN model
The CNN model was implemented on an online cloud-
based platform (Virtual Patient Creator, Relu Inc, Leu-
ven, Belgium), allowing users to upload STL files of IOS 
data for automated AI-driven segmentation (A-AI). The 
platform also offers users tools for correction and gener-
ating refined AI-driven segmentation (R-AI). To evaluate 
the clinical applicability of the tool, an additional sub-
sample of 18 IOS images was tested, including cases with 
a full set of permanent teeth (n = 6), teeth with orthodon-
tic brackets (n = 6), and partially edentulous dentition 
(n = 6). The timing, consistency, and accuracy of the A-AI 
and R-AI segmentations were compared to the semi-
automatic (SA) method.

The time for the SA method was measured from 
importing the STL data into OrthoAnalyzer until the 
generation of a segmented model. For A-AI, the algo-
rithm automatically calculated the time, while the R-AI 
time was the sum of the A-AI and the subsequent refine-
ments. Two independent observers performed the SA 
and R-AI segmentations to assess the inter-observer 
reliability. To evaluate intra-observer variability, one 
observer repeated the same segmentations after an inter-
val of two weeks. Furthermore, the accuracies of A-AI 
and R-AI were compared with SA-based segmentation. 
The hardware specifications are listed in Table 1.

Statistical analyses
Data were analyzed using IBM SPSS Statistics for Win-
dows, version 21.0 (IBM Corp., Armonk, NY, USA). 
Descriptive statistics were calculated for each evaluation 
metric. Normality was assessed using normal quantile 

Table 1 Specifications of hardware devices
• Model name: AMD Ryzen 7 3700X • Model name: NVIDIA 

GeForce RTX 3060
• Number of CPU cores: 8 • CUDA cores: 3584
• Number of threads: 16 • Total memory: 12GB
• Base clock: 3.6 GHz
• L1/L2/L3 cache: 512KB/4MB/32MB
•   Total memory: 32GB
CPU: Central processing unit, GPU: Graphics processing unit, CUDA: Compute 
unified device architecture
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plots, and log-transformation was applied to normally 
distributed data. The intra-class correlation coefficient 
(ICC) was used to calculate the inter- and intra-observer 
reliability. Test-retest reliability was also determined. 
Timing was compared between different methods using 
two-way repeated measure ANOVA [22]. A p-value of 
< 0.05 was considered statistically significant.

Results
AI model performance
Within the 76 validation scans, three groups were identi-
fied: full set of teeth (n = 41), teeth with brackets (n = 13), 
and partially edentulous dentition (n = 22). Table  2 pro-
vides an overall view of the CNN model’s segmenta-
tion performance compared to the ground truth and 
the results for each individual group. The CNN model 
required 31.7 ± 8.1  s per jaw for segmentation, regard-
less of the dentition group. The model achieved an IoU 
of 91.0 ± 5.5% and a DSC of 94.6 ± 4.8%, indicating an 
optimal overlap compared to the ground truth. Among 
the individual dentition groups, the full set of teeth 
achieved the highest performance metrics, while the 
partially edentulous group scored the lowest. Figure  2 
illustrates examples of automated segmentations for dif-
ferent dentition types. The CNN model effectively gener-
ated dentition with lingual fixed retainers, brackets, and 
partially erupted, crowded, or missing teeth. Although 
the segmentation of crowded teeth was optimal, further 
improvements are needed to enhance the CNN model’s 
ability to distinguish boundaries in extreme crowding 
cases.

Clinical applicability
The average segmentation timing is presented in Table 3. 
The A-AI method required 66.7  s per case (both upper 

and lower jaw), while the SA approach took an average of 
860.4 s (14.3 min). The R-AI segmentation took 328.5 s, 
representing a 2.6-fold decrease compared to the SA 
approach. Two-way repeated measures ANOVA showed 
a significant interaction between the applied method 
and operator (p = 0.02). A significant difference in timing 
was observed between methods (SA vs. R-AI) for both 
operators (p < 0.001). The R-AI timing was significantly 
different between the observers (p = 0.04), whereas no 
significant difference was found with the SA approach 
(p = 0.13).

The test-retest reliability indicated a high correlation 
(r = 0.873) [23]. Both the intra- and inter-operator reli-
ability of the SA and R-AI were excellent, suggesting 
a high consistency of the training dataset. As shown in 
Table  4, the R-AI exhibited higher observer reliability 
compared to the SA, irrespective of the dentition group, 

Table 2 The segmentation performance of the AI model 
(mean ± SD) compared to ground-truth
Dentition group IoU (%) DSC (%) Timing* (s)
Full teeth 92.2 ± 3.8 95.5 ± 3.2 33.0 ± 7.4
Partially edentulous 89.3 ± 8.0 93.0 ± 7.5 31.2 ± 10.6
Brackets 90.0 ± 3.4 94.6 ± 2.0 28.8 ± 2.5
Average 91.0 ± 5.5 94.6 ± 4.8 31.7 ± 8.1
Note * Timing for AI segmentation per upper jaw or lower jaw

DSC, Dice coefficient score; IoU, Intersection over union; SD, standard deviation

Table 3 Timing of segmentation methods
Method Mean (s) SD (s) Min (s) Max (s)
SA 860.4 211.4 551.0 1348.0
A-AI 66.7 8.5 55.3 79.5
R-AI 328.3 181.1 101.6 739.5
Abbreviations A-AI, automated artificial intelligence-driven segmentation; R-AI, 
refined artificial intelligence-driven segmentation; SA, semi-automatic method; 
Max, maximal value; Min, minimal value; SD, standard deviation; s, seconds

Fig. 2 Example of AI segmentation results of the upper and lower jaws for the different dentition groups
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further validating the tool’s effectiveness in performing 
reproducible and superior segmentation compared to the 
conventional SA approach.

An overview of the accuracy assessment of the A-AI 
and R-AI compared to the SA for all subgroups is dis-
played in Table  5. Both A-AI and R-AI achieved high 
IoUs of 90.5% and 92.5%, respectively. The study demon-
strated that R-AI outperformed A-AI in terms of the 95th 
percentile of the Hausdorff distance (HD), representing 
the maximum distance between the predicted model and 
ground truth. The results showed that the bracket group 
had the highest 95% HD, followed by the full teeth group 
and the partially edentulous group. A visual illustration 
of AI segmentation with and without manual refine-
ment is presented in Fig. 3. As shown in the figures, the 
online platform enabled users to define the boundaries 
that the AI failed to capture, including areas under lin-
gual fixed retainers, indistinct boundaries around braces 
and swollen gingiva, and extremely crowded teeth. When 
incomplete tooth segmentation was observed, manual 
delineation of the tooth contours was performed. This 

involved manually adding or removing parts of the tooth 
mask using the 3D paint brush or 3D contour tool on 
the AI platform. The operator verified the lingual/pala-
tal, facial/labial, and occlusal surfaces to ensure that the 
region of interest was accurately masked without any 
overestimation or underestimation of the margins.

Discussion
In digital dentistry, detecting teeth on IOS images is cru-
cial for treatment planning and follow-up evaluation. In 
light of recent technological advancements, this study 
developed a robust fully automated CNN model and pro-
vided an easy-to-use interactive tool for IOS tooth seg-
mentation using the Virtual Patient Creator platform. 
This model ensures time-efficient segmentation with 
accuracy and consistency. Additionally, the performance 
of the CNN model was validated for clinical applications 
by deploying it on an online cloud-based platform where 
manual corrections could be performed, further facilitat-
ing its integration into clinical practice.

Previous studies have not explored the robustness of 
their proposed automated IOS segmentation algorithms 
for segmenting teeth with brackets or partially edentu-
lous dentition [5, 16–19]. Therefore, this study included a 
variety of cases, both normal (full set of teeth) and abnor-
mal (partially edentulous and bracket group), to assess 
the generalizability of the AI model across a dataset with 
heterogeneous geometry. The AI model demonstrated 
high performance in segmenting normal dentition 
and confirmed its accuracy in complex cases, such as 
crowded or misaligned teeth, which are typically chal-
lenging to identify due to overlapping regions with adja-
cent teeth [19]. Unlike previous studies, the presented 
model accurately segmented teeth with brackets and par-
tially edentulous jaws [18]. Furthermore, it outperformed 
other competing methods in recognizing the boundary 
between noisy gingiva and partially erupted teeth [24].

To date, various deep learning models have been pro-
posed for tooth segmentation on IOS images, each with 
different levels of performance. These models have 
focused mainly on the segmentation of a full set of nor-
mal teeth. Zanjani et al. introduced a Mask-MCNet 
framework, achieving an IoU value of 98%, although this 
result may be due to their small dataset of 120 IOS images 
and the unspecified case variability [16]. Lian et al. evalu-
ated MeshSegNet and achieved a DSC value of 95.2% 
using a dataset of 30 upper-jaw cases, but the model 
struggled with missing teeth and brackets [18]. Wu et 
al. proposed the TS-MDL model, which achieved a DSC 
of 95.3% with a relatively small sample of 36 upper IOS 
images, although its performance decreased in malocclu-
sion cases [19]. Zhang et al.’s TSGCNet achieved a low 
IoU of 89% for segmenting incisors [25]. Compared to 
these studies, our model showed high performance, with 

Table 4 Inter and intra-observer assessment based on the ICCs 
in terms of the IoU (%) for the SA and R-AI methods
Intra-operator consistency
Dentition group SA R-AI
Full teeth 93.7 98.2
Partially edentulous 95.4 95.5
Brackets 90.9 98.9
Inter-operator consistency
Dentition group SA R-AI
Full teeth 92.9 98.3
Partially edentulous 94.2 97.1
Brackets 91.9 98.2
Abbreviations A-AI, automated artificial intelligence-driven segmentation; R-AI, 
refined artificial intelligence-driven segmentation; SA, semi-automatic method; 
ICC, Intra-class correlation coefficient; IoU, Intersection over union

Table 5 Accuracy assessment of the A-AI and R-AI vs. the SA 
methods (mean ± SD)
Metric Dentition A-AI vs. SA R-AI vs. SA
IoU (%) Full teeth 91.3 ± 1.0 94.4 ± 0.8

Partially edentulous 91.3 ± 3.5 91.8 ± 6.2
Brackets 88.7 ± 5.4 91.1 ± 6.4
Average 90.5 ± 4.0 92.5 ± 5.4

DSC (%) Full teeth 95.4 ± 0.5 97.1 ± 0.4
Partially edentulous 95.4 ± 2.0 95.6 ± 3.6
Brackets 93.9 ± 3.1 95.2 ± 3.6
Average 94.9 ± 2.2 96.0 ± 3.1

95% HD (mm) Full teeth 0.0030 ± 0.0032 0.0029 ± 0.0033
Partially edentulous 0.0001 ± 0.0001 0.00006 ± 0.0001
Brackets 0.7619 ± 1.1795 0.7609 ± 1.1778
Average 0.2549 ± 0.7384 0.2546 ± 0.7373

Abbreviations A-AI, automated artificial intelligence-driven segmentation; R-AI, 
refined artificial intelligence-driven segmentation; SA, semi-automatic method; 
DSC, Dice coefficient score; IoU, Intersection over union; SD, standard deviation
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a DSC score comparable to or exceeding those of other 
proposed models [5, 16–19, 23]. One study reported the 
superior performance of a CNN model (TSegNet) with a 
DSC of 98% for both normal and abnormal cases. How-
ever, the authors did not specify separate DSC scores 
for these case types or identify the number of abnormal 
cases. Additionally, their model produced incomplete 
segmentation of wisdom and rudimentary teeth [24]. In 
contrast, the 3D U-Net pipeline presented in this study 
achieved an average DSC of 94.6% across various case 
groups, confirming its ability to handle both regular and 
complicated dental morphologies. Importantly, the inte-
gration of the CNN model into an online cloud-based 
platform allows for user refinements (the R-AI method) 
with interactive tools, enhancing its ability to segment 
complex dental malformations and confirming its suit-
ability for clinical applications.

Although the presented model demonstrated high 
performance in automated tooth segmentation, certain 
error types remain, particularly in low-quality scans 
and extremely crowded teeth. One reason could be that 
these cases are quite rare, leading to insufficient learning 

opportunities for the model. The differences in the 95% 
HD results between the dentation groups may be due 
to the complexity and characteristics of different dental 
conditions. For instance, segmentation errors tend to be 
more common in cases involving severe malocclusion, 
indistinct boundaries around the braces, and swollen 
gingiva. These complexities, which are predominantly 
found in the brackets group, result in higher deviations 
from the ground truth. The intricate dental arrangements 
and overlapping structures present significant challenges 
for accurate AI segmentation. In contrast, the full teeth 
group, comprising cases with minor alignment issues or 
no malocclusion, exhibited fewer deviations. The simplic-
ity and clarity of these cases make them easier for AI to 
segment accurately. The partially edentulous group, with 
a few missing teeth, presented the lowest complexity, 
resulting in the lowest deviations from the ground truth. 
The straightforward nature of these cases allows for 
more precise segmentation by the model. The minimal 
improvement in model performance with R-AI suggests 
that fewer corrections are needed. R-AI substantially 
reduces labor-intensive steps, with a 2.6-fold decrease in 

Fig. 3 Visual comparison of tooth segmentation with (a) automated AI-driven segmentation (A-AI) and (b) refined AI-driven segmentation (R-AI). R-AI 
allowed refinement of the accurate tooth segmentation boundary, as highlighted in the contours
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time consumption and higher consistency compared to 
the SA method.

Integrating the IOS image segmentation model into 
the Virtual Patient Creator platform could be a viable 
tool for planning and follow-up assessments in clini-
cal practice. The platform also incorporates automated 
segmentation of other computed tomography-derived 
anatomical structures, such as teeth, maxillary complex, 
mandible, mandibular canals, dental implants, and phar-
ynx [22, 26–28], which could further optimize digital 
workflows. The underlying AI techniques offer the poten-
tial to enhance various dental specialties with precision 
and efficiency. They could be adapted for tasks in den-
tal practices, enabling accurate analysis and treatment 
planning, and improving outcomes across orthodontics, 
prosthodontics, implantology, complex restorative den-
tistry, and forensic dentistry [29]. Beyond the orthodon-
tic and prosthodontic cases presented, our platform’s 
segmentation capabilities can enhance pre-surgical plan-
ning for implants and post-operative assessment of peri-
implant bone levels [28]. In the future, implant planning 
and placement could be improved by accurately mapping 
the bone structure and nerve canals, reducing risks and 
increasing success rates. Our platform also has poten-
tial benefits for complex restorative dentistry by provid-
ing precise anatomical segmentation, aiding in detailed 
reconstructions and restorations. The successful use of 
AI in automated forensic CBCT segmentation suggests 
opportunities for transfer learning to improve accuracy 
and efficiency in dental identification [30]. Our platform’s 
ability to segment and analyze CBCT and intraoral scan 
images could significantly improve the accuracy and 
speed of dental identification. AI-driven comparisons of 
dental records facilitate the identification of individu-
als in forensic investigations, enhancing the reliability of 
forensic analyses [31].

Techniques such as saliency maps and gradient-based 
methods are crucial for visualizing the areas a model 
focuses on, enhancing the interpretability of AI systems 
[32]. This results in more precise and reliable dental care, 
ensuring that AI systems are better verified, trusted, and 
adopted in practice [33]. Hasany et al. proposed MiSuRe 
for generating saliency maps in image segmentation [34]. 
These maps can act as proxies for post-hoc model reli-
ability, distinguishing correct from incorrect predictions. 
In image segmentation, the overlap between the ground 
truth and model output is subjective and varies by appli-
cation. Saliency maps help determine which predic-
tions to accept or reject based on visualized focus areas, 
potentially automating this process [34]. Future studies 
are expected to incorporate these techniques to provide 
valuable insights for dentists, aiding in model refinement 
and validating AI recommendations.

As this study describes training of the model based 
on data derived from a single intraoral scanner, further 
strengthening of the algorithm is planned by introduc-
ing scans from various institutions and scanner brands to 
increase generalizability. AI models require continuous 
supervision and an ongoing learning process to main-
tain their effectiveness. To enhance their generalizability, 
future work should focus on training the current model 
to recognize a wider range of intra-oral scanner types, 
diverse tooth morphologies, and various dental anoma-
lies. Additionally, the model should learn to identify 
missing and restored teeth, different dental treatments, 
and cases of dental crowding. By expanding the model’s 
knowledge base, we can eventually apply this AI across 
all dental specialties and treatment concepts, ensuring its 
comprehensive applicability in the field of dentistry.

Conclusions
The proposed 3D U-Net pipeline outperformed state-of-
the-art methods for automated tooth segmentation on 
IOS images, delivering accurate, efficient, and consistent 
results. Its clinical applicability is enhanced by the use of 
an online cloud-based platform for automated segmenta-
tion and interactive refinement.
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