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Abstract
Background  This study was performed to determine the therapeutic effects of diosgenin (DG) which is a steroidal 
saponin, administered at different doses on alveolar bone loss (ABL) in rats with experimental periodontitis using 
immunohistochemical and cone-beam computed tomography (CBCT).

Methods  Thirty-two male Wistar rats divided into four equal groups: control (non-ligated), periodontitis (P), DG-48, 
and DG-96. Sutures were placed at the gingival margin of the lower first molars to induce experimental periodontitis. 
Then, 48 and 96 mg/kg of DG was administered to the study groups by oral gavage for 29 days. At day 30, the animals 
were sacrificed and ABL was determined via CBCT. The expression patterns of osteocalcin (OCN), alkaline phosphatase 
(ALP), type I collagen (Col-1), B cell lymphoma 2 (Bcl 2), Bcl 2-associated X protein (Bax), bone morphogenetic protein 
2 (BMP-2), and receptor activator of NF κB ligand (RANKL) were examined immunohistochemically.

Results  Histopathologic examination showed all features of the advanced lesion in the P group. DG use decreased 
all these pathologic changes. It was observed that periodontitis pathology decreased as the dose increased. DG 
treatment increased the ALP, OCN, Bcl 2, Col-1, and BMP-2 levels in a dose-dependent manner, compared with the 
P group (p < 0.05). DG decreased the expression of RANKL and Bax in a dose-dependent manner (p < 0.05). ABL was 
significantly lower in the DG-48 and DG-96 groups than in the P group (p < 0.05).

Conclusion  Collectively, our findings suggest that DG administration protects rats from periodontal tissue damage 
with a dose-dependent manner, provides an increase in markers of bone formation, decreases in Bax/Bcl-2 ratio and 
osteoclast activation.
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Background
Various factors cause the bone loss including systemic 
diseases, trauma, osteoporosis and periodontal disease 
[1–3]. Bone loss in jaws is critical because especially 
severe losses leads the loss of function and complicates 
dental treatment. Therefore, studies have been focused 
protective and therapeutic treatment of the bone loss [4].

Periodontitis is an inflammatory disease in which the 
interactions between periodontal bacteria and the host 
tissue response lead to tissue destruction [4]. Specific 
groups of oral bacteria populate in dental plaque play a 
precursor role in the development of periodontal disease, 
however that once the disease has been stimulated, other 
factors effect the progression of periodontitis and aggra-
vate the treatment of disease [5]. Increases in oxidative 
stress, proinflammatory cytokines, and osteoclast cells 
have major roles in periodontal destruction [2]. Oxidative 
stress stimulates the transformation of precursor osteo-
clast cells into mature osteoclasts, leading to pathologi-
cal changes, followed by the destruction of affected tissue 
[6–8]. Reactive oxygen species (ROS) are highly reactive 

by-products of oxygen metabolism and they have crucial 
role in various cellular processes as signalling molecules 
[9]. ROS causes apoptosis by reducing B-cell lymphoma 2 
proteins (Bcl-2) and elevating the expression of Bcl-2-as-
sociated X protein (BAX) [10]. In addition, the elevation 
of ROS levels can damage tissue cells by stimulating pro-
inflammatory cytokine cells and modulating the several 
pathways such as activation of NFκB ligand (RANKL) 
pathway, decreasing the protective effect of Nuclear fac-
tor red line 2 related factor 2 pathway, c-Jun N-terminal 
kinase signaling pathway, NOD-like receptor protein 
3 [4, 11–13]. RANKL is known a member of the tumor 
necrosis factor superfamily. RANKL is an apoptosis regu-
lator gene and it is a binding partner of osteoprotegerin. 
RANKL is expressed by several types of cells, including 
osteoblasts, osteocytes, fibroblasts, and lymphocytes 
[14]. RANKL induces the activation of osteoclast cells 
and osteoclastogenesis because it stimulates the forma-
tion of osteoclast precursor cells. RANKL-mediated 
osteoclastogenesis has a critical role in periodontal 
destruction (Fig. 1) [4, 15, 16].

Fig. 1  Schematic representation of periodontal destruction by ROS-induced inflammation. To summarize ROS for periodontal inflammation through 
multiple targets and multiple pathways. MMPs: matrix metalloproteinases; Nf-kB: nuclear factor kappa B; Nrf2: Nuclear factor red line 2 related factor 2; 
JNK: c-Jun N-terminal kinase; NRLP3: NOD-like receptor protein 3
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Growth factors organize cellular activities and improve 
tissue healing by binding to specific cell receptors. Sev-
eral studies have used growth factors to enhance peri-
odontal tissue and bone regeneration [17, 18]. BMP-2 
belongs to the TGF-β superfamily of proteins and it is a 
growth factor with roles in tissue regeneration, includ-
ing the transformation of undifferentiated mesenchymal 
cells and enhancement of osteoblast differentiation [19]. 
Furthermore, it stimulates the secretion of several osteo-
blastic-specific molecules, such as alkaline phosphatase 
(ALP), osteocalcin (OCN), and type I collagen (Col-1) 
[15, 20].

Various agents have been used to reduce the effects of 
ROS on periodontitis, and diosgenin (DG) is one of them. 
DG is a naturally occurring bioactive steroid saponin. It 
has been used in several steroidal drugs in the pharma-
ceutical industry because its chemical structure is similar 
to the structures of sex hormones [21, 22]. DG exhib-
its various therapeutic effects, including antioxidative, 
antidiabetic, anti-inflammatory, and antihyperlipidemic 
activities [21, 23, 24]. Moreover, DG modulates RANKL 
and OCN levels, regulates oxidative stress, stimulates sig-
naling in the BMP pathways, and prevents apoptosis [22, 
24–28].

To our knowledge, no study has evaluated the effects of 
different doses DG treatment on periodontal destruction 
in rats with systemically healthy. Therefore, it is unclear 
the influence and mechanisms of different doses DG 
treatment in systemically healthy rats with periodontitis. 
Here, we hypothesized that DG has antioxidative, anti-
inflammatory and anti-resorptive properties and it could 
prevent periodontal tissue destruction by decreasing 
RANKL levels, inhibiting periodontal inflammation and 
cell apoptosis, and inducing bone formation. This study 
was performed to investigate the therapeutic effects 
of DG on ALP, OCN, Col-1, BAX, Bcl-2, BMP-2, and 
RANKL levels, as well as alveolar bone loss (ABL), in rats 
with experimental periodontitis to ensure basic informa-
tion for potential DG application and further researches 
studies.

Methods
Animals
All experimental procedures in the present study were 
approved by the University Ethics Committee for Ani-
mal Experiments, Denizli (PAUHADYEK-2018/33). The 
Animal Research: Reporting of In Vivo Experiments 
guidelines were followed in this study. Thirty-two male 
Wistar albino rats (4 months old, 350–400  g), which 
were obtained from Pamukkale University Experimental 
Surgery Application and Research Center, were used in 
this study. Before initiation of the experimental proce-
dures, the rats were adapted to the experimental environ-
ment for ten days; they were housed separately in cages 

in a room at 21 ± 2  °C and with a 12-h light:12-h dark 
cycle. All animals had free access to water and food. G* 
Power 3.1 software was used to calculating of sample 
size, considering the global significance level of α = 0.05, 
a sampling power of 95%, and f = 0.86 [24]. Rats were 
divided into groups by simple randomization using the 
coin flip method into four groups (n = 8/group): control 
(non-ligated), periodontitis (P; ligature only), DG-48 
(ligature + DG 48  mg/kg/day), and DG-96 (ligature + DG 
96  mg/kg/day). The DG (Sigma-Aldrich, Saint Louis, 
MO, USA) was dissolved in distilled water and admin-
istered by oral gavage for 29 days, as in previous studies 
[22]. Rats in the control and P groups were given 1  ml 
distilled water by oral gavage during the experiment. All 
rats were sacrificed at day 30 [15, 29]. Before sacrifica-
tion, 50 mg/kg body weight of ketamine (Eczacibasi Ilac 
Sanayi, Istanbul, Turkey) and 5  mg/kg xylazine chloride 
(Virbaxil®, São Paulo, Brazil) were used for general anes-
thesia. Hence, all animals were unconscious. The animals 
were stabilized and their head were placed in the small 
animal guillotine opening by a specialist animal techni-
cian for sacrification. Subsequently, the rats were decapi-
tated rapidly.

Induction of periodontitis model
The experimental procedure was performed under gen-
eral anesthesia. 50 and 5 mg/kg body weight of ketamine 
and xylazine chloride respectively were administered 
intraperitoneally to provide general anesthesia. The cer-
vical areas of the first lower right and left mandibular 
molars were submarginally ligatured using a 4 − 0 sterile 
silk suture (Dogsan Ilac Sanayi, Istanbul, Turkey) to stim-
ulate plaque accumulation and periodontal inflamma-
tion. The ligatures were checked daily by two operators to 
prevent the observer bias (AK and ALA).

Three-dimensional imaging
A supine-position cone-beam computed tomography 
(CBCT) unit (Newtom 5G-XL; QR, Verona, Italy) was 
used for three-dimensional imaging. The smallest field-
of-view of this device (6  cm × 6  cm) was chosen; the 
exposure settings were 100 mm voxel, 110 kV, 11.4 mA, 
9.0 s exposure time, 26.0 s scanning time, enhanced scan, 
boosted dose, and high-resolution (HiRes) mode. The 
unit’s proprietary software (NNT, version 12.1; QR) was 
used for image analysis. All specimens were exposed in 
the same position with the same exposure parameters. 
A dentomaxillofacial radiologist with 9 years of experi-
ence was blinded to the specimens (MO); this radiologist 
performed all tomographic procedures and analyzed the 
images. Figure 2 shows three-dimensional reconstructed 
and cross-sectional slice images. The distance was mea-
sured at cementoenamel junction to the alveolar bone 
crest and averaged across six areas (the mesial, medial, 
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and distal parts of the buccal–lingual surfaces) of the 
mandibular first molar teeth for evaluating the linear 
bone loss (in mm).

Histopathological method
After rats had been sacrificed, mandibular samples were 
obtained and fixed in 10% neutral-buffered formalin for 
histopathological evaluation. The samples were decalci-
fied in a solution (Osteofast 1; Biognost, Zagreb, Croatia) 
for 2 weeks, then routinely processed using automatic tis-
sue processor equipment (Leica ASP300S; Leica Micro-
systems, Wetzlar, Germany) and immersed in paraffin. 
Subsequently, a rotary microtome (Leica RM 2155; Leica 
Microsystems) was used to obtained 5 μm sections from 
each sample. Each sample was cut along the long axis of 
the tooth in the mesiodistal direction and stained with 
hematoxylin and eosin. Histopathological examinations 
were performed by a single specialist who was blinded to 
the samples (ÖÖ).

Observations were conducted using a light microscope 
at ×40 magnification, according to a modified version of 

histopathological scoring criteria established by Leitao 
et al. [30]. To standardize the data, five areas from each 
rat were evaluated and their averages were taken. Neu-
trophil leukocyte infiltrations were specifically assessed. 
Inflammatory cell infiltrations, alveolar bone resorption, 
and degeneration and destruction of the cementum were 
scored according to previous study [30].

Immunohistochemical method
The streptoavidin-biotin peroxidase technique was per-
formed to the sections selected for immunohistochemi-
cal processing. Sections were immunohistochemically 
stained at 1/100 dilution for all primary antibodies using 
anti-BMP 2 (ab59348; all from Abcam plc, Cambridge, 
UK), anti-RANKL (ab216484), anti-ALP (ab224335), Bax 
(ab53154), anti-Bcl-2 (ab59348), anti-Col-1 (ab34710) 
and anti-OCN (ab93876) antibody kits according to the 
manufacturer’s recommendations.

The sections were then embedded with hydrogen per-
oxide in 3% methanol for 20 min to eliminate activity of 
endogenous peroxidase. Sections were boiled twice for 
5  min with citrate buffer solution and washed in phos-
phate buffered saline (PBS). The UltraVision Detection 
System Anti-Polyvalenti HRP Kit (Mouse and Rabbit Spe-
cific HRP/DAB Detection Kit-Micro-polymer, ab236466; 
Abcam plc) was used as the secondary antibody was 
used as the secondary antibody and 3,3’-diaminobenzi-
dine (DAB) as the chromogen. Sections were incubated 
with primary antibodies for 60 min at room tempareture. 
Immunohistochemistry was then performed using bio-
tinylated secondary antibody and streptavidin-alkaline 
phosphatase conjugate. Sections were incubated with 
DAB for 3–5 min.

For negative controls, an antibody dilution solution was 
used instead of primary antibodies. Harris haematoxylin 
was used for contrast staining and slides were examined 
under a light microscope. Immunohistochemical find-
ings were scored on a scale of 0 to 3, where 0 = no stain-
ing, 1 = mild staining, 2 = moderate staining, and 3 = heavy 
staining [31]. All immunohistochemical evaluations were 
performed by a specialized pathologist who was blinded 
to the samples (ÖÖ). Immunohistochemical analyses 
were performed using ImageJ 1,48 version (National 
Institutes of Health, Bethesda MD).

After the classic microscopic analyses, we obtained 
histomorphometric and immunohistochemical evalua-
tions using an automated image analysis system (Olym-
pus CX41; Olympus Corporation, Tokyo, Japan). The 
lesioned area was evaluated using proprietary software 
(cellSens Life Science Imaging Software System; Olym-
pus Corporation).

Fig. 2  Cone-beam computed tomography images from all groups. The 
left and middle columns show three-dimensional reconstruction images 
of the buccal and lingual areas, respectively; the right column shows cross-
sectional images
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Statistical analysis
The Shapiro–Wilk test was used to assess whether data 
exhibited normal distributions. The post hoc Dun-
can multiple comparison test and one-way analysis of 
variance were used to analyze the ABL. Independent 
variables (ALP, BAX, Bcl-2, BMP-2, Col-1, OCN, 
RANKL, and histopathological scores) were evaluated 
using the Kruskal–Wallis test. All data are reported as 
means ± standard deviations for each group (p < 0.05). All 
analyses were conducted using SPSS software (version 
23; IBM Corporation, Armonk, NY, USA).

Results
CBCT findings
Periodontitis was induced in all ligated groups, accord-
ing to the CBCT findings. The results showed that the 
control group had no ABL. ABL was significantly lower 
in the DG-48 and DG-96 groups than in the P group 
(p < 0.05; Figs. 2 and 3).

Histopathological findings
Histological examination showed that the control group 
had normal gingival tissue architecture and gingival epi-
thelium; it showed no pathological findings. Hyperemia, 
ulcers in the gingival epithelial layer, inflammatory reac-
tions in the gingival tissue and periodontal ligament, 

partial to severe cement destruction, and alveolar bone 
degradation were observed in the P group. Microscopic 
evaluations of the DG-48 and DG-96 groups revealed 
that the treatments ameliorated the pathological find-
ings, compared with the P group. Furthermore, cellular 
infiltration, ABL, and cement destruction were reduced 
in the DG-96 group, compared with the DG-48 group 
(Fig. 4).

Immunohistochemical findings
The expression patterns of ALP, Bcl-2, BAX, Col-1, 
BMP-2, OCN, and RANKL in mesenchymal cells in all 
groups were observed immunohistochemically. Positive 
immunoexpression was indicated by a brown color. Dur-
ing examinations of the ALP, BAX, Bcl-2, BMP-2, Col-1, 
OCN, and RANKL immunostained sections, slight to 
negative immunoexpression findings were observed in 
the control group.

ALP, Bcl-2, BMP-2, Col-1, and OCN expression levels 
were significantly lower in the P group than in the control 
group (p < 0.05). Treatment significantly increased the 
expression levels of ALP, Bcl-2, BMP-2, Col-1, and OCN 
in the DG groups, compared with the P group (p < 0.05). 
Additionally, DG-96 was more effective than DG-48 
for normalizing immunoexpression (Fig.  5). Statistical 

Fig. 3  Statistical analysis of histopathological, immunohistochemical, and cone-beam computed tomography results. a, b, c, d statistically significant 
difference (p < 0.05) between the groups. All values expressed as means ± standard deviations
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analysis results of the immunohistochemical scores are 
shown in Fig. 3.

BAX and RANKL expression levels increased in the P 
group, compared with the control group (p < 0.05). Treat-
ment significantly decreased RANKL and BAX levels in 
the DG groups, compared with the P group (p < 0.05). 
Finally, DG-96 significantly decreased the expression 

levels of RANKL and BAX, compared with DG-48 
(p < 0.05; Figs. 3 and 5).

Discussion
In the present study, we used histomorphometry, immu-
nohistochemistry, and CBCT to evaluate the effects of 
DG dose on ABL in experimental periodontitis. To our 
knowledge, this is the first study regarding the effects of 
DG in healthy rats with experimental periodontitis. The 
doses of DG were determined on the basis of previous 
findings [22, 32, 33].

There are three methods that are frequently used to 
induce periodontal disease, which are: ligature applica-
tion, oral bacterial inoculation, and the lipopolysaccha-
ride injection technique. In the ligature model, sterile 
non-absorbable sutures or orthodontic wires are widely 
used to induce local irritation and bacterial plaque 
accumulation. Secondly, mono and mixed cultures of 
periodontal bacteria are inoculated orally by gavage or 
topical application. Lastly, lipopolysaccharide extracted 
from pathogenic bacteria can be directly injected into 
the gingival sulcus to induce inflammation and stimulate 
osteoclastogenesis and alveolar bone loss. Among these 
methods, ligature application induces inflammation and 
alveolar bone resorption more promptly compared to 
other methods [34]. Hence, we preferred this method for 
inducing bone loss.

Micro-computerized tomography is regarded as the 
“gold standard” method for analyzing trabecular bone 
and tooth microstructure, evaluating the development 
of the skull bones, and assessing tissue engineering [35]. 
However, several studies have evaluated the efficacy of 
CBCT as an alternative for assessing periodontal defects 
because micro-computerized tomography involves ultra-
high radiation doses and is not routinely used in clinical 
settings [36]. Thus, Tayman et al. investigated the use of 
CBCT to measure periodontal defects; they concluded 
that it provides useful linear and volumetric measure-
ments of such defects in vitro [36]. Other studies have 
suggested that CBCT can be used to evaluate periodon-
tal defects and the structures and trabecular micro-
architecture of alveolar bone [37]. In an experimental 
study, Lektemur Alpan et al. demonstrated that CBCT 

Fig. 5  Immunohistochemical expression results for all groups accord-
ing to the streptavidin–biotin method. Negative-to-slight expression in 
the control group; marked decreases in alkaline phosphatase (ALP), Bcell 
lymphoma 2 (Bcl-2), bone morphogenetic protein 2 (BMP-2), Col-1, and 
osteocalcin (OCN) but increases in Bcl-2-associated X protein (BAX) and re-
ceptor activator of NF-κB ligand (RANKL) in the periodontitis (P) group; and 
amelioration by diosgenin 48 mg/kg/day (DG-48) and diosgenin 96 mg/
kg/day (DG-96) in those groups. The arrows indicate cells expressing mark-
ers; the bars represent 50 μm

 

Fig. 4  Histopathological appearance of the groups. Normal gingival histology in the control group (arrow); gingival epithelial loss and severe inflamma-
tory reaction in the periodontitis group; moderate inflammatory reaction in the diosgenin 48 mg/kg/day (DG-48) group; and decreased inflammatory 
reaction and periodontal lesions and increased epithelization in the diosgenin 96 mg/kg/day (DG-96) group. T: teeth; the bars represent 100 μm
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measurements of ABL levels were accurate [37]. Thus, we 
measured ABL using CBCT in this study.

RANKL is the primary regulator of osteoclastogenesis; 
it has a critical role in osteoclast-associated diseases [38]. 
Several studies have demonstrated that ABL is associated 
with high RANKL levels [35, 39]. Zhang et al. performed 
24  mg/kg body weight/day, 48  mg/kg body weight/day 
and 96  mg/kg body weight/day as dosages of DG and 
they reported that a high dose of DG decreased bone loss 
by modulating the RANKL and osteoprotegerin levels in 
an ovariectomized rat model [22]. In an another study, 
Zhang et al. evaluated protective effects of DG on ABL 
in ovariectomized rats and they indicated that DG inhib-
ited osteogenesis and osteoclastogenesis by regulating 
the releasing of important molecules in the Wnt, RANKL 
or osteoclastogenic cytokine pathways [40]. In previ-
ous study, we evaluated the effects of DG on RANKL in 
diabetic rats with periodontitis and our results showed 
that 96  mg/kg DG treatment significantly decreased in 
RANKL levels and ABL. In the present study, DG treat-
ments significantly downregulated the RANKL levels and 
inhibited RANKL-induced osteoclastogenesis in rats in 
a dose-dependent manner, compared with the untreated 
periodontitis group. Furthermore, DG significantly 
decreased ABL in a dose-dependent manner, compared 
with the untreated group. These results suggested that 
DG prevents ABL by inhibiting RANKL expression and 
RANKL-induced osteoclastogenesis, consistent with the 
findings of earlier reports [22, 24, 40].

Inflammation can increase oxidative stress, thus, wors-
ening DNA damage and tissue apoptosis [41]. Moreover, 
periodontal disease reportedly leads to an imbalance 
between pro- and anti‐apoptotic processes [42]. There-
fore, we evaluated apoptotic marker levels in our study. 
BAX is a member of the Bcl-2 family; expression levels 
of BAX and Bcl-2 are considered indicators of apoptosis 
or survival in cells [15, 43]. Wu et al. applied the 10, 50, 
or 100 mg/kg DG daily in ovariectomized rats and they 
reported that DG treatment decreases BAX and BAX/
Bcl-2 levels and it has a therapeutic potential for ovari-
ectomy-induced cardiac apoptosis [44]. In vitro study 
demonstrated that 2, 6, and 8 µM doses of DG allevi-
ates the apoptosis by maintaining the Bcl-2 expression 
[45]. Additionally, 96  mg/kg DG treatment significantly 
reduced Bax and increased Bcl-2 levels in our previous 
experimental study [24]. In the present study, we evalu-
ated BAX and Bcl-2 levels to identify the effects of DG 
on apoptosis signaling pathways. The results showed that 
experimental periodontitis upregulated and downregu-
lated the expression levels of BAX and Bcl-2, respectively. 
In contrast, DG treatment upregulated and downregu-
lated the expression levels of Bcl-2 and BAX, respectively, 
in our experimental periodontitis model. Particularly, 
DG significantly increased the Bcl-2 levels in higher 

dose group than low dose group. These results indicate 
that dose depending DG treatment decreases periodon-
titis–induced apoptosis by suppressing the expression of 
BAX and inducing the expression of Bcl-2; these results 
are also consistent with previous findings [24, 26, 44, 45]. 
Additionally, apoptosis is a complex process, and addi-
tional markers or assays might be needed to confirm this 
effect comprehensively.

Several biochemical markers have been used to evalu-
ate bone metabolic activity, including ALP, Col-1, OCN, 
and BMP-2 [10, 37]. ALP is released by osteoblast cells; 
measurements of ALP level are used to evaluate osteo-
blastic activity. OCN controls mineral deposition; thus, 
it has critical roles in bone formation and remodeling 
[46]. Furthermore, BMP-2 mediates the differentiation of 
osteoblastic cells and induces the release of ALP, OCN, 
and Col-1 [15, 19, 20]. Zhao et al. performed 10 mg/kg, 
30  mg/kg, and 90  mg/kg DG in retinoic acid-induced 
osteoporosis in rats and they indicated DG significantly 
reduced the ALP levels and increased OCN levels in 
30 mg/kg, and 90 mg/kg DG groups and promoted bone 
formation and inhibits bone absorption by regulating 
bone metabolism and mineralization [27]. Another study 
applied DG via oral gavage at a dosage of 100 mg/kg body 
weight daily and they found that DG could enhance the 
bone formation process through increased Wnt and BMP 
signaling activity; these pathways regulate the osteo-
genic differentiation of mesenchymal stem cells and pre-
osteoblasts [25]. Liao et al. found that the arginyl–DG 
conjugate stimulates BMP-2-induced osteoblastic dif-
ferentiation with synergistic effects on ALP activity and 
mineralization [47]. Additionally, Zhang et al. treated 
the DG group rats by oral gavage with 100 mg/kg body 
weight DG and they showed that DG has anti-bone loss 
efficiacy on rat alveolar bone by alleviating the OCN lev-
els [40]. In diabetic rats with experimental periodontitis, 
we used the 96 mg/kg DG treatment and previous results 
reported that DG treatment significantly improved the 
expression of ALP, OCN and BMP-2 in test group [24]. 
In the present study, DG significantly promoted the 
expression of ALP, OCN and BMP-2 in test groups than 
P group. Also, high dose DG treatment significantly pro-
moted BMP-2 and ALP levels compared the low dose 
group. These findings suggest that DG treatment, espe-
cially high dose of DG, enhances bone formation by 
increasing new bone activity through enhanced expres-
sion of ALP, OCN, and BMP-2; this is also consistent 
with previous findings [24, 25, 27, 40, 47].

Col-1 is an important factor that stimulates osteoblast 
differentiation and mineral matrix deposition [48]. The 
increasing of Col-1 supports the ABL formation in the 
experimental periodontitis [43]. A few studies investi-
gated the association between DG and Col-1 level. In 
our previous study, 96 mg/kg DG treatment significantly 
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increased the Col-1 levels in diabetic rats with peri-
odontitis [24]. The present study showed periodontitis 
decreased the Col-1 level and both dose of DG treatment 
significantly increased the Col-1 level and confirmed the 
previous study the association between the periodontitis 
and Col-1 [24, 43]. However, further studies are needed 
to evaluating DG on Col-1 levels.

This study have several limitation. We did not evaluate 
the effect of DG on the Wnt pathways or osteoprotegerin 
levels or other relevant markers of bone metabolism, 
inflammation and did not compare the CBCT findings 
with micro-computerized tomography; these were limi-
tations of the present study. Therefore, further studies 
are needed to investigate the effects of DG on the other 
bone metabolic pathways and relevant markers expres-
sion in periodontal disease. Another limitation of our 
study is the inability to examine DG in humans by his-
tological examination due to ethical barriers and poten-
tial side effects. Ligature induced periodontitis causes 
acute inflammation in rats however periodontitis is a 
chronic course in humans in terms of proinflammatory, 
anti-inflammatory cytokine activities and oxidant/anti-
oxidant balance and that is a limitation. Additionally, we 
preferred DG doses according to previous studies none-
theless different doses of DG could be evaluated further 
studies.

Conclusion
The present study indicated that both doses of DG—par-
ticularly the higher dose—regulate bone activity, prevent 
RANKL-induced osteoclastogenesis and improve new 
bone activity and bone formation. Although limitations, 
our results indicate that DG administration can prevent 
alveolar bone damage in periodontal disease.
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