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Abstract
Objectives This study aimed to evaluate the feasibility of monolithic zirconia laminate veneers (MZLV) compared to 
lithium disilicate laminate veneers (LDLV).

Materials and methods Sixty resin replicas, each prepared with depths of 0.5 mm, 0.7 mm, and 1 mm, were 
produced using a 3D printer from acrylic teeth. Laminate veneers of these thicknesses were milled from pre-sintered 
monolithic zirconia (3rd generation) and lithium disilicate blocks. The intaglio surface of MZLV was treated with 
air abrasion using 110 μm diameter silica-modified aluminium oxide particles and ceramic primer, while LDLV was 
etched with etchant gel and treated with the ceramic primer before cementation with resin cement. Vertical marginal 
discrepancy (VMD) was assessed using a stereomicroscope, and a load-to-failure test was conducted using a universal 
testing machine. Failure modes were evaluated macroscopically on fractured surfaces. Data were analysed statistically 
using Two-way ANOVA and Bonferroni correction (α = 0.05).

Results LDLV samples exhibited significantly larger VMD compared to MZLV samples across all thicknesses, especially 
in cervical, palatal, and mean data. Within the LDLV group, load-to-fracture values for 0.7 mm and 1.0 mm thicknesses 
were similar, whereas for 0.5 mm thickness, it was significantly lower. In the MZLV group, load-to-fracture values were 
lower for 0.7 mm and 1.0 mm thicknesses compared to LDLV, but higher for 0.5 mm thickness.

Conclusions Material choice and restoration thickness significantly influence laminate veneer restorations’ success. 
MZLV generally exhibits superior vertical marginal fit compared to LDLV, with varying load-to-failure values across 
different thicknesses. Clinical management of debonding in MZLV is simpler compared to restoration fracture in LDLV.

Clinical relevance Considering clinical factors, MZLV may be a preferable option to LDLV for this restoration with the 
thickness of 0.5 mm.
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Introduction
Monolithic computer-aided design (CAD) and com-
puter-aided manufacturing (CAM) ceramic restorations 
have become increasingly prevalent in daily practice due 
to their high accuracy, rapid fabrication methods, and 
extensive range of available materials [1, 2]. Recent stud-
ies have indicated that CAD-CAM restorations exhibit 
superior marginal adaptation compared to convention-
ally fabricated indirect restorations [3, 4]. Also, Laminate 
veneers (LVs) can be manufactured utilising CAD-CAM 
technology [5]. A variety of materials are employed in the 
fabrication of monolithic CAD-CAM LVs, including glass 
ceramics (such as lithium disilicate, leucite-reinforced 
feldspathic, and feldspathic porcelain), zirconia, resin 
composite, resilient (hybrid) ceramics, polymer-infil-
trated ceramics, and zirconia-reinforced lithium silicate 
[6, 7]. Lithium disilicate has emerged as a leading glass 
ceramic utilized in dentistry [8]. Veneers represent one 
of its notable applications, offering clinicians an optimal 
balance between aesthetics and strength for all ceramic 
monolithic restorations [9]. However, caries, cracks, 
chipping, debonding, aesthetic matches, surfaces, mar-
ginal discoloration, and marginal defects are the most 
common complications that may occur resulting from 
the use of lithium disilicate laminate veneers [10].

Zirconia laminate veneers, when precision-milled 
using CAD-CAM technology, offer several advantages. 
For instance, they are applicable in clinical scenarios 
involving wide diastema or damaged teeth due to injury 
or decay, where the inner surface (lingual) remains 
undamaged. Glass-ceramic veneers have been noted as 
inappropriate in clinical scenarios where there are trau-
matic parafunctional occlusal forces, particularly in cases 
of reverse and edge-to-edge occlusal relationships. These 
conditions engender loading stress during functional 
activities, rendering glass ceramic veneers unsuitable for 
such cases. Traditional porcelain veneers are delicate and 
pose challenges in terms of adjustment and contouring 
before cementation. Nevertheless, the robustness of zir-
conia enables easier handling, facilitating adjustments of 
the veneer before cementation [11]. Moreover, zirconia 
laminate veneers may be considered when patients desire 
exceptionally bright teeth.

The mechanical and optical properties of zirconia 
are influenced by the mol concentration of yttria [12]. 
To enhance its translucency, increasing the yttria con-
tent in Y-PSZ to up to 5% results in 5Y-PSZ with larger 
grain sizes. This process involves replacing tetragonal 
grains with cubic grains, which reduces light scattering 
and birefringence at grain boundaries, thereby achieving 
ultra-translucency [13]. Manufacturers recommend not 
using monolithic cubic zirconia (MCZ) below 0.4  mm 
thickness.

Mechanical properties are crucial for the long-term 
clinical success of laminate veneer restorations. How-
ever, the selection of new restorative materials should 
ideally be based on clinical evidence. Consequently, in 
vitro, testing of dental materials is a valuable alternative 
for evaluating their properties and understanding their 
behaviour [14].

The marginal edges of the laminate veneer ceramic res-
torations are very critical areas that play a key role in the 
success of this type of aesthetic restoration [15]. Marginal 
integrity is essential for the long-term success of porce-
lain laminate veneers. However, evidence regarding their 
marginal fit remains unclear [16].

This study aimed to evaluate the feasibility of mono-
lithic zirconia laminate veneers in comparison to lithium 
disilicate laminate veneers. Our investigation involved an 
in vitro analysis focusing on vertical marginal discrep-
ancy and load-to-failure. The null hypotheses posited 
that there would be no statistically significant differences 
between monolithic zirconia laminate veneers (MZLV) 
and lithium disilicate laminate veneers (LDLV) of differ-
ent thicknesses regarding vertical marginal discrepancy 
and load-to-failure.

Materials and methods
Design and fabrication of laminate veneers
Three prefabricated acrylic teeth (Maxillary left cen-
tral, Frasaco GmBh, Germany) were prepared using 
depth-gauge diamond burs to achieve depths of 0.5 mm, 
0.7  mm, and 1.0  mm, respectively. To ensure a palatal 
butt joint, a 1.5 mm reduction was made from the inci-
sal edge, and preparations were finalized with a chamfer 
finish line across all depths. Subsequently, the prepara-
tions were scanned using a desktop scanner (Freedom 
HD, DOF, Seoul, Korea), and 60 resin dies were produced 
using a 3D printer (NextDent 5100, 3D Systems, Next-
Dent B.V., Soesterberg, The Netherlands).

A maxillary left central laminate veneer restoration 
was designed using computer-aided design software. The 
cement thickness was set at 40 μm [17], and the restora-
tion thicknesses were adjusted to 0.5  mm, 0.7  mm, and 
1  mm, with the restoration extending 1  mm above the 
cervical edge. Subsequently, laminate veneers were milled 
from pre-sintered monolithic zirconia (3rd generation, 
KATANA Zirconia STML Noritake Dental Supply Co., 
Ltd., Miyoshi, Japan) [18] and lithium disilicate blocks 
(IPS E-Max CAD, Ivoclar Vivadent, Shaan, Liechten-
stein) using a 5-axis milling machine (Ceramill Motion 2, 
Amann Girrbach, Austria). Figure 1 represents a laminate 
veneer sample on the resin die.

Monolithic zirconia laminate veneers (MZLV) (A total 
of 30 zirconia laminate veneers, n = 10 in each thick-
ness) were sintered in the sintering furnace according 
to the manufacturer’s instructions (6 h 42 min, 1530 °C) 
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and manually polished after sintering (Luster Zirconia 
Adjusting and polishing kit, Meisinger, Germany).

Lithium disilicate laminate veneers (LDLV) (A total 
of 30 lithium disilicate laminate veneers, n = 10 in each 
thickness) were submitted to the specific crystalliza-
tion cycle in a porcelain oven (Programat, Ivoclar Viva-
dent, Shaan, Liechtenstein) following the manufacturer’s 
instructions and then polished with rubber diamond 
points (ST102 HP, R1020HP, R1040HP. Edenta AG). The 
thicknesses of the veneers were controlled with a digital 
caliper (Digimatic Caliper IP67, Mitutoyo, Tokyo, Japan). 
The measurements were done 1 mm above the chamfer 
finish line.

Cementation protocols
The intaglio surface of the MZLV underwent air abra-
sion using 110  μm diameter silica-modified aluminum 
oxide particles (Rocatec Plus, 3  M ESPE) at a pressure 
of 0.2 MPa for 10 s by the same operator. Subsequently, 
the surface was treated with a primer (Clearfil Ceramic 
Primer Plus; Kuraray Noritake Dental) containing 
3-trimethoxysilylpropyl methacrylate (3-TMSPMA) 
and 10-Methacryloyloxydecyl dihydrogen phosphate 
(10-MDP).

LDLV were etched with etchant gel (K-etchant gel, Kur-
aray Noritake Dental) for 20 s, rinsed, and dried. Subse-
quently, the surfaces of the laminate veneers were treated 
with the same agent (Ceramic Primer Plus, Kuraray Nori-
take Dental). A resin cement (Panavia V5 Clear, Kura-
ray Noritake Dental) was applied to each veneer, placed 

on its corresponding resin die, and seated with finger 
pressure for one minute. Then the excess cement was 
removed and restoration was light cured for 20  s from 
palatal and labial surfaces. The specimens were stored in 
distilled water for 24 h at 37 °C.

Measurement of vertical marginal discrepancy
The vertical marginal discrepancy was examined using a 
stereomicroscope (Olympus Model SZ61, Tokyo, Japan) 
at ×40 magnification (Fig.  2). The measurements were 
conducted by the same researcher, whereby the discrep-
ancy between the resin dye and the laminate veneer 
restorations at four points (midpoints of mesial, distal, 
cervical, and palatal finish line) at the finish line was 
examined (Fig.  3). Three repetitive measurements were 
taken, and the mean value was recorded for this point 
value [19, 20].

Load-to-failure test and failure mode
A load-to-failure test was conducted using a universal 
testing machine (Instron, Canton, MA, USA). The load 
was applied perpendicular to the lingual surface of the 
resin die, positioned 1  mm away from the incisal edge 
of the laminate veneer (LV) restoration, at a cross-head 
speed of 0.5  mm/min. To ensure consistent test condi-
tions, a mounting jig and custom-made plunger were 
employed. The load applied was recorded at the point of 
failure [21–23]. (Fig. 4)

The failure modes were then evaluated macroscopically 
on the fractured surfaces. The failure modes were: cohe-
sive failure (laminate fracture), adhesive failure (debond-
ing of laminate), mixed failure (adhesive and cohesive 
failure), and root fracture.

Statistical analysis
The minimum required sample size was determined by 
analysing previous research data using the Minitab Pro-
gram (Minitab 22, Minitab LLC) [21]. To assess the dif-
ferences in obtained data across the four study groups, 
we set a significance level (alpha-type error) of 0.05 and 
a statistical power (beta power) of 0.80. Based on these 
criteria, a minimum sample size of 10 samples per group 
was calculated.

The vertical marginal discrepancy and load-to-failure 
data were analysed using the IBM SPSS Statistics Stan-
dard Concurrent User V 26 (IBM Corp., Armonk, New 
York, USA) statistical package program. The conformity 
of numerical data to a normal distribution was assessed 
using the Shapiro-Wilk test, while the homogeneity of 
variances was evaluated using the Levene test. Compari-
sons between groups were conducted using a Two-Way 
Analysis of Variance. Bonferroni correction was applied 
to adjust for all pairwise comparisons. Statistical signifi-
cance was defined as p < 0.05.

Fig. 1 A laminate veneer sample on the resin die
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Results
Measurement of vertical marginal discrepancy
Table  1 displays the outcomes of the two-way ANOVA 
and Bonferroni test carried out on data regarding mesial, 
distal, cervical, palatal, and mean vertical marginal inter-
vals. The results of the two-way ANOVA revealed sig-
nificance in all regions except for the distal. Notably, the 
vertical marginal discrepancy of LDLV samples was sig-
nificantly greater than that of MZLV samples across all 
thickness types, with particularly noteworthy differences 
observed in the cervical, palatal, and mean data (Fig. 5).

Load-to-failure test and failure mode results
Based on the results of the two-way ANOVA, a statisti-
cally significant difference was found in load-to-fracture 
values between MZLV and LDLV manufactured in all 
thicknesses (p < 0.001). (Table 2)

According to the Bonferroni test results, the load-to-
fracture values for 0.5  mm, 0.7  mm, and 1.0  mm thick-
nesses are statistically similar within the MZLV group. In 
the LDLV group, the load-to-fracture values for 0.7 mm 
and 1.0  mm thicknesses are statistically similar. In con-
trast, the value for 0.5  mm thicknesses is statistically 

Fig. 2 Examination of VMD with stereomicroscope
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lower than those for 0.7 mm and 1.0 mm (p < 0.001). In 
the MZLV group, the load-to-fracture value is statisti-
cally lower than in the LDLV group for the 0.7 mm and 
1.0  mm thickness groups; however, it is higher in the 
0.5 mm group (p = 0.039).

The results of the failure modes are presented in 
Table  3. No cohesive fractures were detected in the 
MZLV samples. Adhesive failure was more prevalent in 
MZLV samples, occurring in 100% of the 1 mm thickness 
samples, 80% of the 0.7 mm thickness samples, and 70% 

of the 0.5 mm thickness samples. In LDLV samples, the 
type of failure was influenced by the material thickness. 
Cohesive fractures were more prevalent in 0.5 mm LDLV 
samples, whereas adhesive failure was observed in 1 mm 
LDLV samples. Figure  6 illustrates the failure modes 
observed in the samples from this study.

Discussion
Zirconia and lithium disilicate materials have gained 
increasing popularity for laminate veneer restorations 
due to their superior mechanical properties and ease of 
fabrication using CAD-CAM systems. The null hypoth-
esis of this study posited that there would be no statisti-
cally significant differences in VMD and load-to-fracture 
between CAD-CAM MZLVs and LDLVs manufactured at 
different thicknesses. However, the study findings reveal 
a notable distinction in load-to-failure test outcomes 
between materials, with thickness exerting an influence 
on this parameter. Regarding VMD, although thickness 
appears to not affect marginal adaptation, the choice 
of material significantly influences this aspect. Conse-
quently, the null hypothesis is only partially accepted.

The choice of the maxillary right central incisor 
was deliberate, as central incisors are among the most 
prominent teeth in the mouth, often raising significant 
aesthetic concerns addressed by clinicians [5, 24]. The 
restoration preparations followed the guidelines provided 
by manufacturers for veneers as 1.5 mm incisal reduction 
[21]. The study by Arora et al. [25] and Vaidya et al. [26] 
concluded based on the result of their studies that the 
butt joint is the most effective preparation for ceramic 
veneers if incisal coverage is desired. Consequently, in 

Fig. 4 Representative diagram of load-to-failure test

 

Fig. 3 Schematic presentation of VMD at the Cervical (C), Mesial (M), Palatal (P), and Distal (D) areas
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the present study, a palatal butt joint and labial chamfer 
finish lines were employed at specified depths. Replica-
prepared central incisor teeth were obtained using a 3D 
printer to ensure standardization, mirroring the method-
ology employed in the studies conducted by Jurado et al. 
[5]

The adhesive resin is shielded against repeated expo-
sure to oral fluids through a tight fit between the 
restorative margins and the tooth structure. This reduc-
tion minimizes the occurrence of progressive chemi-
cal, mechanical, and physical disintegration, which are 
known to lead to issues such as recurrent deterioration, 
microleakage, and the formation of stress concentrations 
[27, 28]. Ensuring a sufficient marginal fit in laminate 
veneers holds significant importance [29].

Baig et al. [16], in their systematic review and meta-
analysis evaluating the marginal and internal fit of por-
celain laminate veneers, included research findings 
suggesting that zirconia laminate veneers offer improved 
marginal fit compared to lithium disilicate veneers. The 
observed effect may be attributed to inherent disparities 
in the production methods. In the present study, both 
CAD-CAM materials were fabricated using a 5-axis mill-
ing machine, thus eliminating potential discrepancies 
arising from variations in production methods. In line 
with the outcomes reported in the studies referenced by 
Baig et al. [16], the VMD was significantly reduced in 
MZLVs compared to LDLVs in the present study.

Hasan et al. [15], in their study investigating the mar-
ginal chipping of machinable zirconia and lithium disili-
cate ceramic veneer restorations of various thicknesses 
(0.3 and 0.5 mm), observed that zirconia veneer restora-
tions exhibited less chipping, resulting in a reduced VMD 
in comparison to lithium disilicate veneer restorations. 
Our study yielded similar findings.

The literature describes a broad spectrum of marginal 
opening values, influenced by factors such as the type of 
restoration and its location [30]. Baig et al. [31] reported 
the mean and standard deviation (SD) values of 66.4 
(42.2) µm for zirconia and 36.6 (32.1) µm for lithium dis-
ilicate ceramic. In our study, the mean and the SD values 
were 27.95 ± 3.77, 31.77 ± 7.09, and 38.32 ± 8.90 for MZLV 
and 57.85 ± 13.19, 72.02 ± 8.18, 63.75 ± 12.45 for LDLV, 
respectively 1.0, 0.7 and 0.5  mm. More precisely, the 
maximum marginal discrepancy for CAD-CAM restora-
tions has been reported to range between 40 and 90 μm 
in the literature [31–33]. As indicated by the results of 
the present study, although the average VMD value is 
greater in LDLVs compared to MZLVs, it remains within 
clinically acceptable limits for both materials.

To assess the load to failure of laminate veneers in vitro, 
various loading angles of 90° [24, 34, 35] and 135° [11] 
have been suggested. Similar to the study of Saker and 
Özcan [21], the veneers were positioned at a 90-degree Ta
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angle to the long axis of the tooth structure to specifically 
evaluate the horizontal component of the load exerted on 
the palatal surface of maxillary incisors by mandibular 
incisors. Given that ceramic material is more susceptible 
to fracture under tensile loads, this investigation loaded 
the veneers at a 90-degree angle to the long axis of the 
tooth structure. This approach was intended to assess 
only the horizontal component of the load applied to 
the palatal surface of maxillary incisors by mandibular 

incisors. Additionally, this angle prevents the sliding of 
the Instron crosshead on the specimens’ palatal surface 
[22, 23].

Lawson et al. [36] found that the material type sig-
nificantly influenced crown fracture load in their study, 
which compared the fracture load of lithium disilicate 
and zirconia crowns. The lower failure load of LDLV 
was anticipated due to their lower flexural strength com-
pared to MZLV. Additionally, Yan et al. [37] reported that 

Table 2 Two-way ANOVA and Bonferroni test results of load-to-failure test
Thickness Test statistics†

1 mm 0.7 mm 0.5 mm
−
x ± ss

−
x ± ss

−
x ± ss F p

Material
MDLV 289.10 ± 28.70A 261.79 ± 42.21A 271.13 ± 38.18A 0.947 0.394
LDLV 339.89 ± 36.23xB 336.22 ± 31.27xB 228.39 ± 76.54yB 19.708 < 0.001
Test Statistics‡

F 6.336 13.607 4.487
P 0.015 0.001 0.039
Thickness effect: F = 1.190 p = 0.457
Material Effect: F = 0.591 p = 0.532
Thickness x Material Effect: F = 9.430 p < 0.001
−
x : mean, ss: Standart deviations, †: Intragroup comparison between thicknesses, Superscripts x and y indicate differences in thickness, ‡:comparison between 
materials, Superscripts A and B indicate differences in material measurements. Groups with the same superscripts are statistically similar

Fig. 5 Graphical presentation of VMD values of mesial, distal, cervical, palatal and mean values
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despite 5Y-Z material exhibiting a higher biaxial flex-
ural strength than lithium disilicate, the fracture load of 
lithium disilicate bonded to a resin tooth die (18.6 GPa) 
exceeded that of 5Y-Z.

According to the load-to-failure test results, MZLV 
showed lower values (261.79 ± 42.21, 289.10 ± 28.70  N) 
than LDLV (336.22 ± 31.27, 339.89 ± 36.23  N) at thick-
nesses of 0.7 and 1.0  mm, while demonstrating higher 
values at a thickness of 0.5  mm (271.13 ± 38.18, 
228.39 ± 76.54  N). While there was no significant differ-
ence in load-to-failure values between different thick-
nesses of MZLVs, LDLVs with a thickness of 0.5  mm 
exhibited significantly lower results than those with 
thicknesses of 0.7  mm and 1.0  mm. When comparing 
the materials, a notable difference in thickness is evident. 
Although LDLVs with thicknesses of 0.7 mm and 1.0 mm 
demonstrated higher load-to-failure values, LDLVs with 
a thickness of 0.5  mm exhibited a significantly smaller 
difference compared to MDLVs with the same thickness. 
This variance may be attributed to the increased occur-
rence of adhesive failure in MDLVs with thicknesses of 
0.7 mm and 1.0 mm.

Previous studies [14, 38] have consistently demon-
strated a decrease in load-to-failure values as the thick-
ness of LDLVs decreases. The findings of the present 
study align closely with these established trends in the 
literature.

The failure mode was impacted by both the type of 
material and, as expected, the thickness of the material. 

According to the failure mode analysis in the present 
study, debonding is identified as the predominant cause 
of failure for zirconia restorations across all thicknesses, 
and for lithium disilicate laminate veneers at thicknesses 
of 0.7 and 1 mm. Conversely, laminate fractures become 
more prevalent in LDLV at a thickness of 0.5 mm.

A palatal butt-joint finish line was utilized in the pres-
ent study and no instances of root fracture were observed 
in any of the materials or thicknesses examined. A meta-
analysis of in vitro studies conducted by Da Costa et al. 
[39] concluded that while there was no statistical dif-
ference in ceramic fractures between both preparation 
types, the butt joint incisal preparation potentially offers 
greater advantages compared to the palatal chamfer in 
terms of ceramic fracture incidence and tooth fracture 
occurrence. The lack of root fracture can be attributed to 
the findings documented by Da Costa et al. [39].

The authors acknowledge the limitations of correla-
tions between in vitro simulations of intraoral function. 
Specifically, the simulations conducted in this study did 
not incorporate thermal or mechanical load cycling. 
Nevertheless, the data obtained on failure mode and 
marginal adaptation provide valuable insights into the 
biomechanical properties of these dental materials. Fur-
ther, in vivo studies are warranted to ascertain the lon-
gevity of zirconia veneers in the oral environment and to 
investigate their modes of failure.

Conclusions
The success of laminate veneer restorations is influenced 
by both the selection of materials and the thickness of 
the restoration. Across all thicknesses, the vertical mar-
ginal fit of MZLV is superior to that of LDLV. Addition-
ally, LDLV demonstrates lower load-to-failure values 
compared to MZLV in samples with a thickness of only 
0.5 mm, while the load-to-failure value is higher in LDLV 
than in MZLV for thicknesses of 0.7  mm and 1.0  mm. 
Furthermore, lamina fracture emerges as the most 
common failure mode in LDLV. Restoration fracture 
represents the catastrophic failure of laminate veneer res-
torations, necessitating restoration reproduction. While 

Table 3 Failure mode analysis results (number of samples - 
percentage ratio)

Cohesive 
(laminate 
fracture)

adhesive 
failure 
(debonding of 
laminate)

mixed 
(adhesive 
and cohesive 
failure)

root 
frac-
ture

MZLV 1 mm 10–100% -
MZLV 0,7 mm 8–80% 2–20% -
MZLV 0,5 mm 7–70% 3–30% -
LDLV 1 mm 10–100% -
LDLV 0,7 mm 2–20% 7–70% 1–10% -
LDLV 0,5 mm 5–50% 4–40% 1–10% -

Fig. 6 Examples of failure modes observed in this study include (A) Cohesive failure, (B) Adhesive failure, and (C) Mixed failure
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debonding is the most frequent failure in MZLV restora-
tions, it should be noted that this failure does not lead to 
catastrophic consequences. Thus, addressing this failure 
is clinically more straightforward and cost-effective. Con-
sidering all these factors, including clinical parameters, 
MZLV restorations may be considered a viable alterna-
tive to LDLV restorations when opting for a thin laminate 
veneer restoration of 0.5 mm.
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