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Abstract
Objectives  Canine-induced root resorption (CIRR) is caused by impacted canines and CBCT images have shown to 
be more accurate in diagnosing CIRR than panoramic and periapical radiographs with the reported AUCs being 0.95, 
0.49, and 0.57, respectively. The aim of this study was to use deep learning to automatically evaluate the diagnosis of 
CIRR in maxillary incisors using CBCT images.

Methods  A total of 50 cone beam computed tomography (CBCT) images and 176 incisors were selected for 
the present study. The maxillary incisors were manually segmented and labeled from the CBCT images by two 
independent radiologists as either healthy or affected by root resorption induced by the impacted canines. We 
used five different strategies for training the model: (A) classification using 3D ResNet50 (Baseline), (B) classification 
of the segmented masks using the outcome of a 3D U-Net pretrained on the 3D MNIST, (C) training a 3D U-Net for 
the segmentation task and use its outputs for classification, (D) pretraining a 3D U-Net for the segmentation and 
transfer of the model, and (E) pretraining a 3D U-Net for the segmentation and fine-tuning the model with only the 
model encoder. The segmentation models were evaluated using the mean intersection over union (mIoU) and Dice 
coefficient (DSC). The classification models were evaluated in terms of classification accuracy, precision, recall, and F1 
score.

Results  The segmentation model achieved a mean intersection over union (mIoU) of 0.641 and a DSC of 0.901, 
indicating good performance in segmenting the tooth structures from the CBCT images. For the main classification 
task of detecting CIRR, Model C (classification of the segmented masks using 3D ResNet) and Model E (pretraining 
on segmentation followed by fine-tuning for classification) performed the best, both achieving 82% classification 
accuracy and 0.62 F1-scores on the test set. These results demonstrate the effectiveness of the proposed hierarchical, 
data-efficient deep learning approaches in improving the accuracy of automated CIRR diagnosis from limited CBCT 
data compared to the 3D ResNet baseline model.
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Introduction
Aside from aesthetic and occlusion concerns, one of the 
most significant effects of an impacted canine is pressure 
on the adjacent tooth root, which disrupts the blood sup-
ply, leading to root resorption (RR) [1]. Canine-induced 
root resorption (CIRR) is a common condition that can 
affect various teeth in the maxillary arch. RR of maxil-
lary lateral incisors is common (50%). Additionally, RR 
of mild severity is more common (62%), with resorption 
more frequently located in the middle (52%) and api-
cal (42%) thirds of the root [2]. These findings highlight 
the variability and prevalence of CIRR in different parts 
of the maxillary arch and underscore the importance of 
accurate diagnostic methods. CIRR is an asymptomatic 
condition that, on rare occasions, may result in inci-
sor or adjacent premolar loss [3]. Two-dimensional (2D) 
radiographs offer limited evaluation of CIRR due to the 
superimposition of structures and geometric distor-
tion [4]. With the advancement of high-resolution cone 
beam computed tomography (CBCT), more accurate and 
3D evaluations are possible, leading to increased detec-
tion of CIRR. Using CBCT to evaluate the extent and 
severity of RR can provide more accurate management 
from no treatment to root canal therapy and extraction 
[5]. Recent studies have highlighted the effectiveness of 
CBCT imaging over 2D radiography in detecting root 
resorption lesions [6]. However, clinicians’ ability to 
appropriately detect the severity of these lesions can still 
vary greatly [7]. Despite the effectiveness of 3D imaging 
in diagnosis of CIRR, this highlights the persisting chal-
lenges in accurately diagnosing and evaluating CIRR, 
which calls for the creation of automated and objective 
diagnostic techniques utilizing artificial intelligence tech-
niques (Figure 1).

Artificial intelligence (AI) has become increasingly 
prominent in dentistry, particularly for the segmenta-
tion of anatomical landmarks from cone-beam com-
puted tomography (CBCT) images, which is essential 
for treatment planning and monitoring in orthodontics. 
AI automates the identification of landmarks such as the 
sella, nasion, and menton, thereby improving the preci-
sion of orthodontic assessments [8] and enabling better 
diagnosis [9] and treatment planning [10] of conditions 
such as CIRR. However, the application of deep learning 
in medical diagnosis faces challenges, including the lack 
of labeled data and the high dimensionality and complex-
ity of CBCT images [11]. Data-efficient deep learning 

approaches can handle small datasets and extract mean-
ingful features from images [12] without compromising 
their performance [13]. This can enable faster and more 
accurate diagnosis of CIRR. Compared to many other 
3D medical image classification studies that have used 
datasets with hundreds of CT/CBCT images [14], we 
achieved high classification performance using only 50 
CBCT images, demonstrating the potential of our hierar-
chical deep learning system to learn from limited labeled 
3D data, which is particularly beneficial in fields like 
dentistry and medical imaging where data annotation is 
costly and time-consuming.

Previous studies have demonstrated the applicability of 
AI in segmenting impacted teeth, such as supernumerary 
maxillary teeth on panoramic images [15], mandibular 
third molars in both panoramic [16] and CBCT images 
[17], and impacted canines in both panoramic [16] and 
CBCT images [18]. Although several studies aim to seg-
ment teeth on CBCT images, CIRR is given less atten-
tion. Given the importance of early diagnosis of canine 
impaction and the high prevalence of CIRR, as well as the 
growing number of CBCTs indicated for this purpose, 
we conducted a study to propose an automated approach 
for diagnosing CIRR in maxillary incisors. The primary 
aim of this study is to develop and evaluate deep learn-
ing models for the automatic diagnosis of CIRR from 
CBCT images. Specifically, we compare various deep 
learning architectures to determine which model offers 
the best performance in terms of accuracy, precision, 
recall, specificity, and F1-score. The proposed methods 
have the potential to improve the accuracy and efficiency 
of root resorption diagnosis in clinical practice, enabling 
early detection and treatment planning. The outcome of 
the present study could constitute the first step in the 
development of a more complex system for orthodontic 
treatment planning in patients with impacted maxillary 
canines. Moreover, it can be extended to other dental and 
medical applications that require the analysis of complex 
3D images with limited data.

Methods and materials
Study design
This study was designed as a diagnostic accuracy study 
aimed at evaluating the effectiveness of deep learning 
models in diagnosing CIRR using cone-beam computed 
tomography (CBCT) images. The study design follows 
the Standards for Reporting Diagnostic Accuracy Studies 

Conclusion  The proposed approaches are effective at improving the accuracy of classification tasks and are helpful 
when the diagnosis is based on the volume and boundaries of an object. While the study demonstrated promising 
results, future studies with larger sample size are required to validate the effectiveness of the proposed method in 
enhancing the medical image classification tasks.

Keywords  Deep learning, Cone beam computed tomography, Impacted tooth, Root resorption
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(STARD) and Checklist for Artificial Intelligence in Med-
ical Imaging.

(CLAIM) guidelines to ensure comprehensive and 
transparent reporting of diagnostic accuracy [19, 20].

In the present study, a novel framework based on the 
U-Net architecture using a two-stage training approach 
is proposed. We first pretrained our model by manually 
segmenting 3D volumes of the tooth structure. Subse-
quently, we fine-tuned the pretrained model for the final 
task, which was the detection of CIRR. We hypothesized 
that the model’s prior knowledge of a simpler task (here, 
tooth segmentation) enhances its performance on the 
downstream task.

Dataset and data preparation
Images for this study were selected from the CBCT 
images of 50 patients visiting the dental clinic of Shahid 
Beheshti University of Medical Sciences between 2019 
and 2021. Included data were from patients that referred 
for various dental and maxillofacial conditions particu-
larly those with suspected impacted canines. Efforts were 
made to minimize bias by using a diverse dataset, which 

included patients of varying ages and genders. The inclu-
sion criteria were as follows:

1.	 Patients who had undergone CBCT imaging for the 
evaluation of impacted canines (with unilateral or 
bilateral impacted maxillary canines).

2.	 Patients who were diagnosed with either healthy 
incisors or CIRR.

3.	 Patients aged 15 years or older [4].

Exclusion criteria included:

1.	 Patients with previous orthodontic treatment that 
could affect the diagnosis of CIRR.

2.	 Patients with severe dental anomalies in the anterior 
maxillary sextant.

3.	 Scans with significant artifacts such as motion 
artifacts, beam hardening artifacts, or metal streak 
artifacts.

4.	 Scans with poor contrast or inadequate sharpness 
that could hinder the accurate identification of 
anatomical structures.

Figure. 1  Graphical abstract illustrating the study design and different deep learning approaches explored for diagnosing canine-induced root resorp-
tion from cone-beam computed tomography images (made in Biorender.com) []
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All patients who met the inclusion criteria and none of 
the exclusion criteria during the specified period were 
included in the study.

CBCT images were obtained using a NewTom VGi 
CBCT scanner (Verona, Italy). The following parameters 
were used for image acquisition: 110 kVp, 40 mAs, and 
5.4  s exposure time, with an 8 × 8  cm field of view. We 
included both high-resolution images (with a voxel size 
of 150 μm) and standard-resolution images (with a voxel 
size of 300 μm).

We exported the CBCT images in the form of DICOM 
files. Open-source 3D Slicer software version 5.0.3 
(https://www.slicer.org/) [21] was used to read and mod-
ify the DICOM files. Then, using 3D Slicer cropping fea-
tures, we segmented the regions of interest (ROIs), which 
were the maxillary central and lateral incisors. The ROIs 
were exported in nrrd format for further steps. Each seg-
mented ROI from CBCT images was analyzed indepen-
dently and considered as a distinct unit. In other words 
our analysis is conducted at the tooth level, allowing for 
detailed assessment and characterization of each maxil-
lary incisor.

Ground truth annotations
We used two independent annotation procedures for 
segmentation and classification tasks. During segmenta-
tion, the aim was to construct a segmentation mask of 
the hard tissue structure of the tooth. Two maxillofacial 
radiologists annotated the ROIs independently, and the 
final mask was the outcome of the intersection of two 
segmentation masks. The time taken for each segmenta-
tion was recorded using a stopwatch. Prior to segmen-
tation, the radiologists were trained and calibrated in 
a joint meeting. For segmentation mask annotation, we 
used 3D Slicer. We first applied the thresholding function 
to eliminate the background and then used the painting 
feature to refine the voxel-by-voxel mask on the axial sec-
tions. The masks were verified on the coronal and sagittal 
planes for accuracy.

For the classification task, patients were divided into 
those with and without CIRR. Root resorption in loca-
tions not related to the impacted canine or due to other 
possible reasons, such as previous orthodontic treat-
ments, was not considered a CIRR. The criterion for 
classifying samples as CIRR was a change in contour and 
outline at the apex of the tooth or on the lateral root sur-
face compared to the normal root anatomy. Blunting and 
irregularities of incisors positioned in contact with the 
impacted canine were considered CIRR. Here, two inde-
pendent maxillofacial radiologists annotated the samples. 
Annotation was based on raw CBCT images and previ-
ous reports in the university picture archiving and com-
munication system. Any disagreements were resolved 

through consensus. In the event that a consensus was not 
reached, the case was excluded.

The ground truth was extracted from the same CBCT 
images used in the study. Specifically, the same CBCT 
images were processed with the deep learning (DL) algo-
rithm for both segmentation and classification tasks. 
The time taken for the AI to segment each image was 
recorded using a stopwatch.

Data partitions
Internal validation was performed using a stratified sam-
pling approach to ensure a balanced distribution of CIRR 
cases across training, validation, and test sets. In the seg-
mentation task, we used 69 extracted ROIs (53 healthy 
and 16 resorbed teeth), 55 of which were used for train-
ing and validation sets. The other 14 were used for the 
test set.

In the classification task, 70% (n = 122, 99 healthy 
and 23 resorbed samples) of the samples were used for 
the training set. Moreover, 15% (n = 26, 21 healthy and 
5 resorbed samples) and 15% (n = 28, 22 healthy and 6 
resorbed samples) of the ROIs were selected for the vali-
dation set and test set, respectively. The sampling strategy 
for each set was stratified sampling, where the ratio of 
patients with and without CIRR was approximately simi-
lar. The validation set was used for hyperparameter tun-
ing, while the test set was used for reporting the model 
outcome on unseen data. Performance metrics such as 
mean intersection over union (mIoU) and Dice coeffi-
cient (DSC) for segmentation, and accuracy, precision, 
recall, and F1 score for classification, were computed for 
the evaluation.

Data preprocessing and augmentation
For all the training procedures, all images were initially 
resized to 16*16*16 voxels, converted to PyTorch tensor, 
and normalized with a 0 mean and 1 variance. Then, a 
combination of random augmentations was performed. 
This random augmentation was selected from a set of five 
options with the same probability. The five options were 
random flip, random elastic deformation, random anisot-
ropy, random affine and no augmentation. All the noted 
augmentation implementations used default parameters. 
For classification, using data augmentation approaches, 
we increased the number of training samples from 122 
to 2980. Furthermore, to address the imbalanced dataset, 
oversampling the class with a lower sample was achieved 
by augmenting.

Model architecture and training details
The fundamentals of the implemented architectures are 
available in the supplementary material.

The index test involved the use of deep learning models 
to automatically diagnose CIRR.

https://www.slicer.org/
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For this reason, we used the following training strate-
gies and model structure:

Model A (Baseline)	 We used 3D ResNet50 
for end-to-end classification. Here, we used the 
pretrained weights of the MedicalNet framework 
proposed by Chen et al. [22], which were pretrained 
on 23 medical datasets. It has been reported that it 
overperformed the randomly initialized model in 
medical image segmentation tasks by a large margin. 
We froze the model’s weights and trained two 
additional fully connected layers.

Model B	 We used a 3D U-Net pretrained 
on the 3D MNIST dataset. Then, we passed the 
nonaugmented data through the model. Then, we 
used segmented masks for classification using 3D 
ResNet.

Model C	 We trained a 3D U-Net for the 
segmentation task using our data. Then, we used the 
output of the model (3D masks) for classification 
using 3D ResNet.

Model D	 We pretrained a 3D U-Net for the 
segmentation task using our data. Then, after 
replacing the last layer with fully connected layers, 
we fine-tune the model for our downstream 
classification task.

Model E	 We pretrained a 3D U-Net for the 
segmentation task using our data. Then, after 
replacing the model’s decoder with a new randomly 
initialized decoder, we fine-tune the model for our 
downstream classification task.

For models C, D, and E, we trained a single randomly 
initialized 3D U-Net and used it in different mentioned 
approaches. The training was performed on a Tesla K80 
and Tesla T4 graphic processor unit (Nvidia Corporation, 
Santa Clara, CA, USA) through the Google Collabora-
tory platform. Hyperparameter tuning was performed 
based on a randomized search strategy. For training the 
3D U-Net model, the learning rate, weight decay, batch 
size, and number of epochs were set to 2*10− 4, 10− 3, 13 
and 50, respectively. Dice loss was used with the Adam 
optimizer to perform the segmentation tasks. For the 
classification models, we used different hyperparameters 
for each approach, which are presented in Table  1. As 

there are different models with different learning rates 
and batch sizes and some of them use pretrained weights, 
the number of epochs varies accordingly. We used binary 
cross-entropy loss with the Adam optimizer for all the 
classification tasks.

Evaluation
For the segmentation task evaluation (which was used for 
models C, D, and E), the mean intersection over union 
(mIoU) and DSC were reported. These metrics were 
defined as follows:

	
mIoU =

Area of Intersection (model outcome and GT )

Area of Union

	
DSC =

2 ∗ Area of Intersection

Sum of Areas (model outcome and GT )

For the classification task evaluation, the classification 
accuracy, precision, recall (sensitivity), and F1-score were 
reported. These metrics were defined as follows:

	
Classif ication accuracy =

TP + TN

#All samples

	
Precision =

TP

TP + FP

	
Sensitivity/Recall =

TP

TP + FN

	
Specificty =

TN

TN + FP

	
F1− score =

2 . P recision .Recall

Precision + Recall

TP, TN, FP, and FN represent the number of true posi-
tives, true negatives, false positives, and false negatives, 
respectively. Moreover, we reported the confusion matrix 
of each model’s output in the test set. Since our test set 
was imbalanced, the criteria for selecting the best model 
were based on the F1 score.

Statistical analysis
The interobserver agreement for the manual segmenta-
tion of the ROIs and annotation of root resorption were 
analyzed to ensure consistency across the raters. The 
intraclass correlation coefficients (ICCs) were calculated 
to assess the reproducibility of the ratings provided by 
the two independent maxillofacial radiologists. Kohen’s 
Kappa was calculated to measure the agreement between 
the two raters. All statistical analyses were performed 
using Python version 3.7.

Table 1  Final hyperparameters set for training various models
Hyperparameters Model 

A
Model 
B

Model C Model 
D

Model 
E

Learning rate 10 − 4 10 − 3 2*10 − 3 10 − 5 0.01
Total number of 
epochs

100 100 100 50 50

Batch size 128 128 128 128 128
Weight decay 2*10 − 3 0.05 10 − 3 2*10 − 3 0.05
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Ethics
All patient data was anonymized and processed in com-
pliance with relevant data protection regulations to safe-
guard patient privacy. Adhering to recent guidelines for 
AI in dental research, which emphasize the importance 
of transparency, fairness, and accountability in AI appli-
cations [23], we ensured our models were developed in 
accordance. Transparency and explainability were priori-
tized to ensure clinicians can understand the decision-
making processes of the AI models. The Shahid Beheshti 
University Medical Sciences Ethics Committee approved 
this study (IR.SBMU.DRC.REC.1401.044). The study was 
carried out in line with the principles of Declaration of 
Helsinki.

Results
Data
CBCT images of 50 patients (19 males, 31 females) were 
selected for this study. Their average age was 21.18 ± 12.06 
years. Three patients had orthodontic devices. Thirty-five 
of the CBCTs had high resolution. A total of 176 ROIs 
were extracted, which included 34 resorbed teeth and 
142 healthy teeth. The mean value for ICC was 0.9847 
(± 0.0035), reflecting excellent reproducibility of tooth 
segmentation. Interobserver agreement between the two 
radiologists was high (K= 0.9014 ± 0.2130)

Model performance
The average time taken for AI-based segmentation was 
7–30 milliseconds per image while the average time 
taken for manual segmentation, including loading 3D 
Slicer and obtaining the final output by experienced max-
illofacial radiologists, was 11–12 min per image.

In Table 2, we present a summary of the performance 
of the different approaches on the test set. In all the 
cases, the experimental models outperformed the base-
line model. Model C and Model E produced the best 
results among the experiments, with 82% classification 
accuracy (95% CI: 76 − 88%) and an F1 score of 0.6 (95% 
CI: 0.5–0.7).

Figure 2 illustrates various models’ confusion matrices 
when evaluated on the test set. As a pretraining model 
for Model C, Model D, and Model E, our segmentation 
model achieved an mIoU of 0.6 (95% CI: 0.6–0.7) and a 
DSC of 0.9 (95% CI: 0.9–0.9). Figure 3 presents examples 

Table 2  Various models’ outcomes
Accuracy Precision Recall Specificity F1-score

Model 
A (Base-
line)

75.0% (95% 
CI: 68–82)

0.4 
(95% CI: 
0.3–0.5)

0.3 
(95% CI: 
0.3–0.4)

0.9 (95% CI: 
0.8–0.9)

0.4 
(95% CI: 
0.3–0.4)

Model 
B

78.6% (95% 
CI: 72–85)

0.5 
(95% CI: 
0.4–0.6)

0.5 
(95% CI: 
0.4–0.6)

0.9 (95% CI: 
0.8–0.9)

0.5 
(95% CI: 
0.4–0.6)

Model 
C

82.1% 
(95% CI: 
76–88)

0.6 
(95% CI: 
0.5–0.6)

0.7 
(95% CI: 
0.6–0.7)

0.9 (95% CI: 
0.8–0.9)

0.6 
(95% CI: 
0.5–0.7)

Model 
D

78.6% (95% 
CI: 72–85)

0.5 
(95% CI: 
0.4–0.6)

0.7 
(95% CI: 
0.6–0.7)

0.8 (95% CI: 
0.8–0.9)

0.6 
(95% CI: 
0.5–0.6)

Model 
E

82.1% 
(95% CI: 
76–88)

0.6 
(95% CI: 
0.5–0.6)

0.7 
(95% CI: 
0.6–0.7)

0.9 (95% CI: 
0.8–0.9)

0.6 
(95% CI: 
0.5–0.7)

Figure. 2  Confusion matrix of various models’ performance on the test set
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of 3D U-Net results, which demonstrate the ability of our 
models to accurately segment the data.

Discussion
Early detection of CIRR is imperative for successful orth-
odontic treatment. Both clinical and radiographic exami-
nations are essential in diagnosing impacted canines 
[24]. The diagnostic process typically begins with a clini-
cal examination and palpation of the alveolar bone, fol-
lowed by radiographic evaluation [25]. Traditionally, 
radiographic assessments of IMCs have utilized two-
dimensional (2D) imaging techniques, such as intraoral 
periapical, occlusal X-rays, panoramic, and cephalomet-
ric radiographs [26]. However, these conventional X-rays 
are often limited by their low diagnostic accuracy due to 
factors such as image distortion, magnification, blurring, 
and the superimposition of different anatomical struc-
tures [27]. Consequently, the adoption of three-dimen-
sional (3D) imaging, specifically CBCT, has gained 
popularity for evaluating the maxillofacial region, as it 
offers superior diagnostic accuracy and detailed visual-
ization of anatomical structures [27]. While offering sig-
nificant advantages, CBCT exposes patients to a higher 
radiation dose compared to 2D imaging techniques like 
panoramic and intraoral radiographs [28]. In spite of 
low-dose protocols that maintain sufficient image quality 
to reduce patient dose, effective doses of CBCT remain 

higher than 2D radiographies [29]. The increased expo-
sure must be justified by its clinical benefits to detect 
and evaluate CIRR. CBCT is the preferred 3D imaging 
modality for evaluating impacted canines and CIRR, with 
a 63% higher detection rate than conventional imag-
ing. However, CBCT scan analysis requires sufficient 
time, skill, and specialized training [30, 31]. The present 
study aimed to introduce an automated approach using 
deep learning for diagnosing CIRR in maxillary incisors 
through CBCT images.

The results of our study indicate that the experimen-
tal models outperformed the baseline model in terms 
of classification accuracy and F1-score. Specifically, 
models C (classification of the segmented masks) and E 
(model pretraining for segmentation and then fine-tun-
ing classification model) exhibited the highest perfor-
mance, achieving a 82% classification accuracy and a F1 
score of 0.62. These findings suggest that our proposed 
approaches are effective in improving the accuracy of 
the classification task. Furthermore, we evaluated the 
performance of our segmentation model, which was 
used as a pretraining model. Our segmentation model 
achieved good performance, suggesting that it could 
accurately segment tooth structures and extract mean-
ingful features to improve the classification models. Our 
approach was able to automatically segment incisors in 
0.07–0.3  s which was approximately 37,000 times faster 

Figure. 3  Segmentation model output. Note the white arrowhead indicating apical CIRR in the right central incisor. a1, a2. Axial view; b1, b2 Coronal 
view; c1, c2 sagittal view and d1, d2 3D rendered view
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than the manual segmentation, highlighting its potential 
to enhance workflow efficiency in clinical settings.

Since 3D image segmentation can be conducted using 
less data than can end-to-end 3D image classification 
[32], we first pretrained our model for segmenting tooth 
volume. Then, we fine-tuned this pretrained model for 
our final task, CIRR classification. This approach suc-
ceeded in outperforming our baseline, with an accuracy 
of 82.14%. The suggested framework is also inspired by 
a clinician’s diagnostic process, which first looks for the 
volume and boundaries of the tooth and determines the 
presence of the CIRR. Such approaches have been used 
in the case of other medical imaging problems [33]. Our 
outcomes showed that this hierarchical approach is help-
ful in conditions where the diagnosis is based on the 
volume and boundaries of an object. Another successful 
approach was based on the classification of segmented 
masks rather than raw images. The tooth volumes were 
first segmented. Then, only the segmented masks were 
fed to the second model. As with the previous approach, 
this exceeded the baseline accuracy by 7.14%. This is 
because CIRR detection relies solely on tooth volume, 
not texture or color. Additionally, classifying masks 
enables the algorithm to aggregate global visual informa-
tion for instancewise classification.

Regarding dental conditions similar to CIRR, where 
obtaining high-quality, annotated data faces considerable 
difficulties, a number of studies have investigated various 
methodological strategies. For example, a particularly 
relevant study by Mohammad-Rahimi et al. [34] investi-
gated the efficacy of using label-efficient self-supervised 
learning (SSL) for detecting external cervical resorption 
on periapical radiographs. They trained and compared 
several SSL models, such as DINO, MoCo v2, and BYOL, 
with transfer learning baselines. The SSL models showed 
improved performance over the baselines, with DINO 
achieving 85.64% mean accuracy.

In another study by J. Huang et al. [35], the use of active 
learning techniques for multilabel segmentation and 
periapical lesion identification in CBCT volumes was 
investigated. These techniques rely on uncertainty quan-
tification using a Bayesian U-Net. A higher lesion detec-
tion sensitivity of up to 84% was attained by the active 
learning techniques employing functions such as BALD 
and Max_Entropy, which outperform the nonactive 
learning baseline. These studies show how label-efficient 
methods, such as SSL and active learning, may improve 
model performance when working with small amounts of 
labeled dental imaging data. A further important aspect 
of our research on identifying CIRR is the ability to dis-
tinguish between conditions such as external root resorp-
tion and periapical lesions. A distinct hierarchical deep 
learning strategy was used in our study that leveraged 
segmentation pretraining transfer learning. However, 

investigating SSL and active learning pretraining strate-
gies could improve our models’ performance even more. 
With respect to self-supervised learning (SSL) and active 
learning (AL), our study’s customized deep learning 
method utilizing architectures such as U-Net and ResNet 
has several potential benefits, particularly given the 
unique goal of detecting CIRR from limited CBCT data:

The method suggested in this work offers a more 
explicit and interpretable way of leveraging limited anno-
tated data by using hierarchical learning and pretrain-
ing on a relatively simple task (segmentation). Explicit 
knowledge transfer by learning relevant features about 
tooth structures during segmentation pretraining, which 
is directly applicable to the CIRR classification task, is 
more effective than implicit knowledge transfer in SSL. 
Compared to unsupervised pretraining in SSL, super-
vised pretraining on a smaller labeled segmentation data-
set can provide more significant, task-specific features.

Additionally, fine-tuning the pretrained model on the 
final complex task of classification of the CIRR improves 
the model’s performance on limited data. While SSL 
and active learning approaches have their own benefits, 
such as the ability to leverage unlabeled data or selec-
tively annotate informative samples, these methods are 
not as beneficial as the method here. However, it should 
be noted that the quality and consistency of the annota-
tions, the complexity of the underlying problem, and how 
the related and final tasks are connected can all impact 
how effective the suggested approach is. Additionally, the 
method is adaptable and may be used for other dental or 
medical imaging tasks that are based on a particular ana-
tomical structure’s volume, form, or borders.

A model can only be utilized in clinical practice if it 
has gained clinicians’ trust through accuracy and inter-
pretability. While SSL and AL can reduce the amount of 
labeled data needed, they often require iterative labeling 
and retraining processes, making them time-consum-
ing and resource-intensive, and involve complex, less 
transparent decision-making processes. In contrast, our 
model can be trained in a more straightforward manner 
using fully labeled datasets without the long pretrain-
ing duration required by SSL. This direct application of 
domain-specific knowledge might at times provide a 
faster route to high performance. The interpretability of 
the models used in our work, such as U-Net and ResNet, 
needs careful consideration. Although these models are 
highly effective in classification and segmentation tasks, 
they often function as “black boxes,” making their deci-
sion-making processes less transparent. Clearer insights 
into how decisions are made can be achieved with inter-
pretability techniques such as attention mechanisms and 
saliency maps, which future work might investigate to 
enhance model transparency and clinical trust.
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However, no prior work on using deep learning to 
diagnose CIRR in maxillary incisors with CBCT images 
has been reported. However, a variety of deep learning 
approaches have been used to diagnose dental conditions 
through CBCT. In a study by Setzer et al. [36] in 2020, 
they proposed deep learning to detect apical periodon-
titis in CBCT images of mandibular molars. The study 
reported an accuracy of 91.3% and a sensitivity of 90.3%. 
Although they achieved better results than did the cur-
rent study in an apical periodontitis study, it is important 
to note that CIRR is a more challenging diagnostic task, as 
it might occur as faint changes in the tooth contour with-
out obvious clinical symptoms. Reduwan et al. [37] aimed 
at identifying and classification of external root resorp-
tion (ERR) on 88 CBCT scans of extracted premolars, 
which may not fully represent the complexity of clinical 
cases. In contrast with our study, the ground truth was 
provided by only one radiologist which is prone to bias 
and effects the generalizability of the results. They imple-
mented different classification models such as RF + VGG 
and RF + EFNET and feature selection techniques with 
deep learning to enhance model performance. The study 
reported the overall accuracy, precision, and F1-score of 
81% for the best performing model which was a combi-
nation of FS + RF + VGG models. However, no values 
demonstrating consistency and reliability of the ground 
truth annotations were reported. In another study by Li 
et al. [38] multiple roots were segmented automatically 
in a single CBCT scan using U-net with Attention Gates 
(AGs) and Recurrent Neural Networks (RNNs). They 
achieved an IoU of 0.9 and DSC of 0.9 for roots in the 
maxilla, which is comparable to our results. It is impor-
tant to note that they did not include any resorbed roots, 
which are more challenging to segment due to the irreg-
ular and subtle nature of resorptive changes. Separat-
ing the results of segmenting normal (mIoU = 0.65) and 
resorbed teeth (mIoU = 0.54) highlighted the increased 
complexity of segmenting resorbed dental structures. In 
a recent study by Su et al. [39] alveolar bone and teeth 
were segmented in 4–5 random slices of CBCTs from 
389 patients. 1784 2D slices were labelled by 4 clinicians 
and the overlap of the identified areas was considered as 
PDL space. A mask RCNN with ResNet50 backbone was 
used and reached IoU and DSC values of 0.8 and 0.9 for 
tooth segmentation and a segmentation accuracy of 100% 
for incisors. Although they achieved higher performance, 
their approach involved training 2D neural networks on 
a few slices per CBCT, which might be due to the labori-
ous nature of drawing polygons around anatomic struc-
tures. In contrast, we annotated each tooth in every slice 
in all three planes (axial, sagittal, and coronal) and used 
thresholding to streamline the annotation process.

Limitations and future studies
As with any study, the proposed deep learning approach 
for diagnosing CIRR in maxillary incisors through CBCT 
images has limitations. One limitation is the size of the 
dataset used to train the deep learning models. The pri-
mary hypothesis of this work was that, even with a small 
sample size, the proposed hierarchical deep learning 
approach would accurately identify CIRR in maxillary 
incisors from CBCT images. To validate this, a post hoc 
power analysis using Python [40] and scipy library [41] 
was conducted to evaluate the sample size and its suffi-
ciency to train and evaluate the performance of the pro-
posed models. The analysis indicated that the test set 
was smaller than needed for optimal statistical power. 
This limitation was primarily due to the limited acces-
sible data, especially in patients suspected of having 
impacted canines and root resorption. We employed sev-
eral approaches to overcome the limited number of data 
samples. Our first approach was based on the assumption 
that we can transfer the knowledge of our model doing 
more straightforward tasks (here, segmentation) to final 
downstream tasks [42]. Although we employed several 
strategies to maximize the use of available data through 
techniques such as data augmentation and transfer learn-
ing, this constraint could affect the generalizability of the 
models to other datasets or populations.

Another limitation is the requirement for expert anno-
tation of 3D segmentation masks, which can be time-
consuming and labor-intensive. In addition, the quality 
of the segmentation masks could vary depending on the 
expertise of the annotators and consistency in applying 
the defined criteria for determining the segmentation 
boundaries. Furthermore, the proposed deep learning 
approach was tested only on CBCT images of maxil-
lary incisors with CIRR. Future studies should evaluate 
the model’s performance on larger, more diverse datas-
ets, including different tooth types and locations. While 
our proposed method showed encouraging results in 
diagnosing CIRR, a more thorough assessment of the 
model’s clinical usefulness would come from comparing 
it directly to radiologists using the same dataset. Further 
study should include a comparison involving two radiolo-
gists independently review the same CBCT images and 
provide a diagnosis for CIRR. Similar performance met-
rics ought to be calculated for the radiologists’ perfor-
mance to be compared with the model’s.

Conclusion
While our study demonstrated promising results with an 
accuracy of over 80%, it is important to note that the F1 
score suggests the model may still have biases or encoun-
ter difficulties with specific tasks. To the best of our 
knowledge, this paper is the first to develop a deep learn-
ing model for detecting CIRR using CBCT images. The 
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initial findings highlight the need for further research to 
investigate how to address the challenges posed by simi-
lar classes and to optimize the performance of our mod-
els in real-world settings. Future work need to focus on 
refining the model to enhance its robustness and applica-
bility in diverse clinical scenarios.
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