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Abstract
Background Tooth loss significantly impacts oral function and overall health deterioration. Dental caries and 
periodontal disease are major contributors to tooth loss, emphasizing the critical need to prevent these conditions. 
Genetic studies have played a crucial role in deepening our understanding of the underlying mechanisms of these 
diseases. While large-scale genome-wide association studies (GWAS) on dental caries and periodontal disease have 
been conducted extensively, research focusing on Asian populations remains limited. Given substantial genetic and 
lifestyle variations across ethnicities, conducting studies across diverse populations is imperative. This study aimed 
to uncover new insights into the genetic mechanisms of these diseases, contributing to broader knowledge and 
potential targeted interventions.

Methods We conducted a GWAS using genome data from 45,525 Japanese individuals, assessing their self-reported 
history of dental caries and periodontal disease. Additionally, we performed a meta-analysis by integrating our results 
with those from a previous large-scale GWAS predominantly involving European populations.

Results While no new loci associated with periodontal disease were identified, we discovered two novel loci 
associated with dental caries. The lead variants of these loci were intron variant rs10974056 in GLIS3 and intron variant 
rs4801882 in SIGLEC5.

Conclusion Our study findings are anticipated to advance understanding of the underlying mechanisms of dental 
caries and periodontal disease. Thes insights may inform better management strategies for patients affected by these 
conditions.

Keywords Oral cavity, Dental caries, Periodontal disease, Genetics, Genomics, Epidemiology, Genome-wide 
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Background
The oral cavity plays important roles in verbal and non-
verbal communication, diet intake, conversation, and 
physical appearance. Oral functions include chew-
ing, formation and transfer of food masses, swallowing, 
articulation, taste, tactile sensation, and saliva secretion, 
all of which are basic functions necessary for a healthy 
life. Undoubtedly, teeth play a crucial role in oral func-
tions. However, a decrease in the number of remaining 
teeth can influence food selection behavior, often leading 
to the avoidance of foods that are difficult to chew. This 
raises the risk of developing lifestyle-related diseases and 
malnutrition [1, 2]. Hence, tooth loss may lead not only 
to a decrease in oral function but also to deterioration 
in general health [3, 4]. Caries and periodontal diseases 
are major factors responsible for tooth loss, and oral bac-
teria have been reported to cause these diseases (e.g., 
periodontal disease, Porphyromonas gingivalis; caries, 
Streptococcus mutans) [5, 6]. The management of peri-
odontal disease via attempted removal of bacteria is only 
partially effective for periodontitis and fails in high-risk 
individuals [7]. Thus, it is crucial to consider the interac-
tions among the host response, genetic and environmen-
tal factors, and microbiology. A large-scale genome-wide 
association study (GWAS) has been conducted on the 
onset of these diseases [8]. However, such studies in 
Asian populations are limited. Therefore, we conducted 
a GWAS using data from Japanese populations to obtain 
new insights into the mechanisms of tooth decay and 
periodontal disease.

Methods
Study participants
Data were sourced from Japanese direct-to-consumer 
(DTC) genetic testing services “Genequest ALL,” 
“Euglena MyHealth,” and “HealthData Lab,” which are 
provided by Genequest Inc. (Tokyo, Japan), Euglena 
Co., Ltd. (Tokyo, Japan) and Yahoo! Japan Corporation 
(Tokyo, Japan), respectively. We included individuals 
aged ≥ 18 years who agreed to participate in the study. 
The participants completed online questionnaires about 
sociodemographic factors, lifestyle habits, and medical 
history.

DNA sampling, genotyping, quality control, and genotype 
imputation
Collection and stabilization of saliva samples were con-
ducted utilizing either the Oragene DNA Collection Kit 
(DNA Genotek Inc., Ottawa, Ontario, Canada) or Gene-
Fix Saliva DNA Collection Kit (Cell Projects Ltd., Harri-
etsham, Kent, UK). Genotyping was executed employing 
various Illumina Infinium BeadChips: Global Screening 
Array v1 + Custom BeadChip (Illumina, San Diego, CA, 
USA), which contains 704,589 markers; Global Screening 

Array-24 v3.0 + Custom BeadChip, which contains 
655,471 markers; HumanCore-12 + Custom BeadChip, 
which contains 302,073 markers; HumanCore-24 + Cus-
tom BeadChip, which contains 309,725 markers; and 
InfiniumCore-24 + Custom BeadChip, which contains 
308,500 markers. Participants were divided into two 
groups based on the chip used because of the differ-
ences in the marker sets across these genotyping chips. 
Population A used the Global Screening Array v1 + and 
Global Screening Array-24 v3.0 + Custom BeadChips 
(595,105 common markers), while population B uti-
lized the HumanCore-12+, HumanCore-24 + and Infini-
umCore-24 + Custom BeadChips (289,930 common 
markers). Quality control and association analysis were 
conducted separately for each cohort.

The quality control criteria for variant filtering 
included: call rate per variant < 0.95, Hardy–Weinberg 
equilibrium exact test p-value < 1 × 10− 6, minor allele fre-
quency < 0.01, and exclusion of variants not located on 
autosomes. For participant filtering, criteria included: 
inconsistent sex information between the genotype and 
the questionnaire, call rate per subject < 0.95, closely 
related pairs identified via the identity-by-descent 
method (PI_HAT > 0.1875), and estimated non-Japanese 
ancestry. Quality control analyses were performed using 
PLINK [9, 10] (version 1.90b3.42) and Eigensoft [11] 
(version 6.1.3) software. To predict non-Japanese ances-
try, a principal component analysis (PCA) was conducted 
using genomic data of African (YRI), European (CEU), 
Chinese (CHB), and Japanese (JPT) populations from the 
International HapMap Project [12]. The data were then 
visualized through PCA plots, and only data belonging to 
the Japanese cluster were used for further analyses.

For genome-wide genotype imputation, a pre-phasing/
imputation stepwise approach was applied using EAGLE2 
[13] (version 2.4) and Minimac3 [14] (version 2.0.1). The 
imputation reference panel was 1000 Genomes Phase 3 
[15] (version 5). Variants demonstrating low imputation 
quality (R2 < 0.3) and minor allele frequency (< 0.01) were 
excluded from further analyses. Finally, we used dosage 
data for 8,306,085 variants for the following GWAS.

Phenotype measurement
Phenotype data on sociodemographic factors, lifestyle 
habits, and medical history were collected from study 
participants via online questionnaires. These question-
naires included a list of medical conditions and diseases, 
asking participants to indicate any they currently have 
or have had in the past. The individuals who checked for 
“dental caries” were treated as cases, whereas those who 
did not check for “dental caries” were treated as controls. 
Similarly, those who checked for “periodontal disease” 
were treated as cases, and those who did not check for 
“periodontal disease” were treated as controls.
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Genome-wide association and meta-analysis
We examined the associations between genetic vari-
ant dosages and the prevalence of dental caries and 
periodontal disease using a logistic regression model, 
assuming additive genetic effects. For each population, a 
genome-wide association study (GWAS) was conducted 
with adjustments for age, sex, and the first five principal 
components using PLINK (version 2.00a3). We combined 
the statistical data from both populations using a fixed-
effects model and the inverse-variance weighting method 
with METAL software [16] (version 2011-03-25).

Genomic heritability was estimated from the GWAS 
summary statistics using LD Score Regression (LDSC) 
[17]. The analysis utilized LD score and weight files from 
the 1000 Genomes Phase 3 East Asian (EAS) population 
reference. To identify genes significantly associated with 
the phenotypes, we conducted a gene-based associa-
tion analysis using MAGMA (Multi-marker Analysis of 
GenoMic Annotation) [18]. The GWAS summary sta-
tistics were annotated with gene information from the 
GENCODE v19 reference genome [19]. Genes identi-
fied with p-value less than 0.001 in the MAGMA analy-
sis were further analyzed for functional annotation and 
pathway enrichment using Metascape [20].

Additionally, we conducted a meta-analysis with 
GWAS summary statistics from a previously reported 
study [8] using a p-value based and sample-size weight-
ing method with the METAL software [16]. We con-
sidered the sum of Decayed, Missing, and Filled tooth 
surfaces (DMFS) and dentures in the previously reported 
study as indicators of dental caries, whereas periodonti-
tis and loose teeth in the pre-reported study were con-
sidered as indicators of periodontal disease. The previous 
study utilized data from the Gene-Lifestyle Interactions 
in Dental Endpoints (GLIDE) consortium, UK Biobank 
(UKB), and BioBank Japan (BBJ). In the GLIDE and BBJ 
datasets, phenotypes were assessed by trained assessors 
or dental professionals, while in the UKB dataset, phe-
notypes were self-reported. Dental caries in GLIDE were 
evaluated using the DMFS index, resulting in continuous 
data with a sample size of 26,792. For periodontal disease 
in GLIDE, there were 17,353 cases and 28,210 controls. 

In UKB, there were 77,714 cases and 383,317 controls for 
dental caries, and 18,979 cases and 442,052 controls for 
periodontal disease. The BBJ dataset did not include den-
tal caries data, but it included 3,219 cases and 209,234 
controls for periodontal disease.

The significance threshold in the GWAS was set at a 
genome-wide significance level of p < 5 × 10⁻⁸ to account 
for multiple testing. For newly identified loci, region plots 
were generated using LocusZoom.

Results
Genome-wide association analysis of dental caries and 
periodontal disease
The characteristics of the participants are presented 
in Table 1 and S1. This study included 30,859 cases and 
14,666 controls for dental caries and 7,059 cases and 
38,466 controls for periodontal disease. The number of 
females in the dental caries group was higher than that in 
the control group. The proportions of cases of dental car-
ies and periodontal diseases by age group are presented 
in Table S2. Compared to the 2022 dental survey [21] 
results in Japan, where over 90% of individuals aged over 
30 had experienced dental caries, our study indicates a 
prevalence of around 70%. Similarly, for periodontal dis-
ease, previous surveys reported that over 50% of older 
age groups were affected, whereas our study indicates a 
prevalence of about 30%. This discrepancy may be due 
to the fact that the previous survey involved examina-
tions by dental professionals, whereas our current survey 
relied on self-reports, potentially leading to an underesti-
mation of cases.

We performed a GWAS for each population and a 
meta-analysis of dental caries and periodontal disease 
(Figure S1-S6). We identified several associated loci at 
the genome-wide suggestive level (p-value < 1 × 10− 5), 
as shown in Tables S3 and S4. However, no associated 
loci were found at the genome-wide significance level 
(p-value < 5 × 10− 8). The top-associated variants were 
rs140784657 in the intergenic region for dental caries 
and rs12624579 in the SYNDIG1 intron for periodontal 
disease. All 47 lead variants significantly associated with 
dental caries in a pre-reported GWAS [8] showed p-val-
ues > 0.05 in our study (Table S5). This discrepancy could 
be attributed to the smaller sample size in our study and 
the frequency differences between European and Japa-
nese populations. Similarly, the previously significant 
intron variant rs12461706 in the SIGLEC5 gene, associ-
ated with periodontal disease in the same GWAS [8], 
was not significant in our study (p-value = 0.466, Table 
S6). One possible reason for this is the considerable fre-
quency difference of rs12461706 between European and 
Japanese populations (0.40 and 0.062, respectively).

We estimated the SNP-based heritability (h²) of 
our phenotypes from the GWAS summary statistics 

Table 1 Characteristics of the study participants
Case Control

Dental caries
N 30,859 14,666
Female (%) 47.4 38.0
Age, years (mean ± SD) 50.4 ± 12.4 48.1 ± 13.3
Periodontal disease
N 7,059 38,466
Female (%) 44.9 44.3
Age, years (mean ± SD) 55.1 ± 12.0 48.6 ± 12.6
SD, standard deviation
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using linkage-disequilibrium score regression (LDSR) 
[17]. The total observed-scale heritability was found 
to be h2 = 0.0258 ± 0.0155 for dental caries and 
h2 = 0.0519 ± 0.0182 for periodontal disease. We con-
ducted a gene-based association analysis using MAGMA 
[18] (Table S7 and S8). In the gene-based test, only the 
association between ADGRL2 and dental caries had a 
q-value of false discovery rate (FDR) < 0.05. Genes with 
p-values < 0.001 in the MAGMA analysis were further 
examined using Metascape [20] for functional annotation 
and pathway enrichment. Functional annotation revealed 
several enriched biological processes and pathways (refer 
to Table S9 and S10).

Subsequently, a meta-analysis was performed using 
GWAS summary statistics from both our study and a 
pre-reported study [8]. We identified two novel loci asso-
ciated with dental caries (Figs. 1a and 2a and b; Table 2 
and S11). The lead variants of the associated loci were 
intron variant rs10974056 in GLI-Similar 3 (GLIS3) and 
intron variant rs4801882 in Sialic Acid-Binding Immu-
noglobulin-Type Lectin 5 (SIGLEC5). However, for peri-
odontal disease, only previously known associated loci 
were identified (Fig. 1b, Table S12). The locus associated 
with periodontal disease on chromosome 19 was not 
replicated in the Japanese population (our study and Bio-
bank Japan (BBJ) in the previously reported study). This 

Fig. 1 Manhattan plots of the meta-analysis of dental caries (a) and periodontal disease (b)
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indicates that this locus may only be associated with peri-
odontal disease in European populations.

Discussion
In GWAS of dental caries in the present study, no loci 
reached the genome-wide significance level; however, 
through a meta-analysis of past large-scale studies, we 
identified two novel loci associated with dental caries. 
The lead variants of the associated loci were intron vari-
ant rs10974056 in GLIS3 and intron variant rs4801882 in 
SIGLEC5. Glis3 protein, a Krüppel-like zinc finger tran-
scription factor, plays a critical role in the regulation of 
pancreatic β-cell development and insulin gene expres-
sion in mice [22]. In humans, GLIS3 gene polymorphism 
is associated with diabetes [23]; additionally, diabetes 
can increase the risk of developing dental caries and 
periodontal disease owing to reduced salivary secretion 
[24]. GLIS3 expression has been reported to be associ-
ated with dental anomalies, although not statistically sig-
nificant25. Therefore, the association between GLIS3 and 
dental caries identified in this study can be considered 
robust. SIGLEC5 is a protein expressed on the surface 
of leukocytes that recognizes glycans containing sialic 
acid, playing a role in suppressing immune response [26]. 
Research indicates that bacteria with sialic glycans can 
bind to SIGLEC5, potentially evading immune response 
[27]. SIGLEC5 gene polymorphisms have been associ-
ated with periodontitis in both European and East Asian 
populations in previous studies28,29. R. Mueller et al. 

suggested that intron variants in SIGLEC5 gene influence 
its expression [30]. We identified a novel locus associated 
with dental caries, specifically intron variant rs4801882 
in SIGLEC5. This SNP is also associated with periodon-
tal disease (see Table S5). Considering this information, 
rs4801882 may influence the expression level of SIGLEC5 
protein, potentially disrupting the oral bacterial ecosys-
tem and affecting the survival of bacteria with sialic acid.

For periodontal disease, we were unable to identify 
any novel loci, and only one significant locus was not 
replicated in the Japanese population. However, previ-
ous studies have reported that the heritability of peri-
odontitis is approximately 50%31,32. The reasons for this 
discrepancy might include the small effect of a single 
variant, the possibility that rare variants not targeted in 
our study are strongly associated, genetic and environ-
mental differences between ethnicities, and inaccuracies 
in self-reporting because individuals do not realize that 
they have periodontal diseases. Considering these pos-
sibilities, further detailed investigations are necessary to 
clarify the association between genetic factors and peri-
odontal disease.

Our study had some limitations. Our phenotypic data 
were collected via web-based self-reports, which may 
be subject to recall bias. Furthermore, relying on self-
reports means that the severity of symptoms was not 
assessed, treating both severe and mild cases equally.

Fig. 2 Region plots of rs10974056 (a) and rs4801882 (b) for the meta-analysis of dental caries
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Conclusion
We identified two novel loci associated with dental car-
ies: the lead variants were intron variant rs10974056 in 
GLIS3 and intron variant rs4801882 in SIGLEC5. How-
ever, we did not identify any novel loci for periodontal 
disease, and only one significant locus did not replicate in 
the Japanese population. These findings are expected to 
contribute to understanding the mechanisms underlying 
dental caries and periodontal disease.
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