Jeyaraman et al. BMC Oral Health  (2024) 24:1084 BMC Oral Health
https://doi.org/10.1186/512903-024-04866-7

Check for
updates

Differentially expressed extracellular matrix
genes functionally separate ameloblastoma
from odontogenic keratocyst

Prasath Jeyaraman', Arularasan Anbinselvam' and Sunday O. Akintoye'”

Abstract

Background Ameloblastoma and odontogenic keratocyst (OKC) are odontogenic tumors that develop from
remnants of odontogenic epithelium. Both display locally invasive growth characteristics and high predilection for
recurrence after surgical removal. Most ameloblastomas harbor BRAFV600E mutation while OKCs are associated with
PATCH1 gene mutation but distinctive indicators of ameloblastoma growth characteristics relative to OKC are still
unclear. The aim of this study was to assess hub genes that underlie ameloblastoma growth characteristics using
bioinformatic analysis, ameloblastoma samples and mouse xenografts of human epithelial-derived ameloblastoma
cells.

Methods RNA expression profiles were extracted from GSE186489 gene expression dataset acquired from Gene
Expression Ominibus (GEO) database. Galaxy and iDEP online analysis tools were used to identify differentially
expressed genes that were further characterized by gene ontology (GO) and pathway analysis using ShineyGO.
The protein-protein interaction (PPI) network was constructed for significantly upregulated differentially expressed
genes using online database STRING. The PPl network visualization was performed using Cytoscape and hub gene
identification with cytoHubba. Top ten nodes were selected using maximum neighborhood component, degree
and closeness algorithms and analysis of overlap was performed to confirm the hub genes. Epithelial-derived
ameloblastoma cells from conventional ameloblastoma were transplanted into immunocompromised mice to
recreate ameloblastoma in vivo based on the mouse xenograft model. The top 3 hub genes FN1, COL | and IGF-1
were validated by immunostaining and quantitative analysis of staining intensities to ameloblastoma, OKC samples
and mouse ameloblastoma xenografts tissues.

Results Seven hub genes were identified among which FN1, COLTA1/COL1A2 and IGF-1 are associated with
extracellular matrix organization, collagen binding, cell adhesion and cell surface interaction. These were further
validated by positive immunoreactivity within the stroma of ameloblastoma samples but both ameloblastoma
xenograft and OKC displayed only FN1 and IGF-1 immunoreactivity while COL 1 was unreactive. The expression levels
of both FN1 and IGF-1 were much lower in OKC relative to ameloblastoma.
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Conclusion This study further validates a differentially upregulated expression of matrix proteins FN1, COL | and
IGF-1 in ameloblastoma relative to OKC. It suggests that differential stromal architecture and growth characteristics of
ameloblastoma relative to OKC could be an interplay of differentially upregulated genes in ameloblastoma.
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Introduction

Ameloblastoma is a highly recurrent odontogenic tumor
of epithelial origin [1]. Incidence rate of ameloblastoma
is about 0.5 to 1 per million people per year making it
a relatively rare and understudied disease [2, 3]. Recent
advances on the genetics of ameloblastoma have provided
more insights on ameloblastoma growth characteristics,
clinico-pathological correlations, maxillo-mandibular
site distribution within the jaws and microenvironmen-
tal factors that promote ameloblastoma recurrence [4-7].
The 2022 World Health Organization (WHO) classifica-
tion of odontogenic tumors now includes adenoid amelo-
blastoma as part of benign ameloblastomas in addition
to conventional, unicystic, extraosseous/peripheral and
metastasizing ameloblastomas while ameloblastic carci-
noma is still the lone malignant type [8, 9]. About 80%
of ameloblastomas harbor mutations in the mitogen-acti-
vated protein kinase (MAPK)-related B-raf proto-onco-
gene (BRAF) [1] and a smaller subset display mutation
of smoothened (SMO), a G protein-coupled receptor
and signaling effector component of hedgehog (Hh) sig-
naling pathway [1, 4, 10]. Considering that MAPK and
Hedgehog signalling pathways are actively involved in
tooth development in both the maxilla and mandible,
it is intriguing that BRAF mutation is more common in
mandibular ameloblastoma while KRAS, FGFR2 and
SMO mutations are more common in maxillary amelo-
blastomas [4]. Remnants of the dental epithelium per-
sists as epithelial residues long after tooth development
and eruption into the oral cavity. While these epithelial
remnants normally remain quiescent and inactive, it is
believed that their reactivation can be associated with
development of several inflammatory, cystic, and neo-
plastic lesions in the jaw such as ameloblastoma and
odontogenic keratocyst (OKC) [11].

Histologically, ameloblastoma resembles the enamel
organ of a developing tooth with a stroma devoid of
dental mesenchyme [1]. Most ameloblastoma lesions
are benign, but they exhibit locally aggressive growth
characteristics and high recurrence rate [1]. Like amelo-
blastoma, OKC is a cystic jaw lesion that arises from
odontogenic epithelium, demonstrates locally aggres-
sive growth and high recurrence potential but its
molecular signature is associated with PATCH1 gene
mutation [12]. PATCHI inhibits Hh signalling pathway
by repressing activity of SMO. Compared to ameloblas-
toma, SMO mutation in OKC is rare, but both share the
effects of a dysregulated Hh signalling. Contrarywise,

BRAF mutation is well established in ameloblastoma but
reports on etiological association of BRAF mutation with
OKC are still unclear and conflicting [13-15]. Although
both ameloblastoma and OKC develop from odontogenic
epithelial remnants, a comparison of their gene expres-
sion profiles showed that early dental epithelium markers
were differentially upregulated in ameloblastoma com-
pared to upregulation of squamous epithelial differen-
tiation markers in OKC [16]. So ameloblastoma reflects
epithelial differentiation toward the enamel organ while
OKC differentiation is in the direction of keratinocytes
[16]. Hence, there are both similarities and differences
in the pathophysiological and recurrence characteristics
of ameloblastoma and OKC attributable to their molecu-
lar etiological differences. Ameloblastoma recurrence is
attributable to post-surgical remnants of invasive odon-
togenic epithelium and OKC recurrence is associated
with post-surgical daughter/satellite cysts that reactivate
to promote recurrence [1]. Single cell transcriptomics
and cell cycle analysis have also revealed that presence
of high cycling ameloblastoma cells are associated with
cell survival, self-renewal and tumor cell reactivation that
result in ameloblastoma recurrence [17].

A clear understanding of the locally invasive growth
characteristics of ameloblastoma is needed to enable the
development of therapeutic targets. Ameloblastoma is a
highly recurrent tumor and there are still no biological
markers to predict which ameloblastoma will recur post-
treatment. Therefore, the aim of this study was to assess
biological indicators of aggressive growth properties of
ameloblastoma relative to OKC using gene expression
datasets, ameloblastoma and OKC tissue samples and
xenografts derived from epithelial-derived ameloblas-
toma cells. Further insights into these biological markers
have the potential to lead to therapeutic targets and pre-
dictors of post-treatment recurrence [5, 7, 18].

Materials and methods

RNA sequencing data collection

We downloaded the GSE186489 gene expression
data from Gene Expression Omnibus (GEO) data-
base (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE186489), based on GPL16791 Illumina
HiSeq 2500 (Homo sapiens) platform. The dataset
includes gene expression data from three ameloblastoma
and three odontogenic keratocyst (OKC) samples.
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Identification of differentially expressed genes

The online data analysis platforms Galaxy and iDEP
(integrated Differential Expression and Pathway analy-
sis) [19] were used to analyze the gene dataset. From
the Galaxy platform, FASTQ files were extracted using
Sequence Read Archive (SRA) numbers for the dataset
GSE186489. RNA STAR was used to align the sequence
using reference genome (hg38) after checking the qual-
ity with FastQC. Gene counts were obtained using fea-
tureCounts and inputted into the iDEP platform for the
differential gene expression analysis. Significant differen-
tially expressed genes (DEGs) were identified by applying
the cut off for p value (<0.05) and |log2 fold change| =2
as previously described [20].

Gene ontology and pathway analysis

Differentially expressed genes (DEGs) were further
characterized by gene ontology (GO) and pathway
analysis using ShineyGO [21]. The false discovery rate
(FDR) threshold was set to 0.05 and the GO terms were
obtained for biological process (BP), cellular components
(CC), molecular functions (MF) and pathway enrichment
using Reactome [22].

Protein-protein interaction network and hub gene analysis
The Protein-Protein Interaction (PPI) network was con-
structed for significantly upregulated DEGs using online
database STRING (version 12.0) (https://string-db.org/)
with the confidence score of 0.9 to get the most signifi-
cant interactions. Then, the PPI network visualization
was performed using Cytoscape (version v3.10.1) and
hub gene identification with the plugin cytoHubba [20].
The top 10 nodes were selected using three algorithms
(Maximum Neighborhood Component (MNC), Degree
and Closeness) and analysis of overlap was performed to
confirm the hub genes.

Tissue processing

Ameloblastoma surgical samples (n=13) were used for
validation of the top pathway genes identified. Amelo-
blastoma tissues were collected from patients enrolled
in protocol 849,919 approved by University of Pennsyl-
vania Office of Regulatory Affairs Institutional Review
Board (IRB). Representative portions of the samples
were fixed in 4% paraformaldehyde (PFA). Additionally,
archival paraffin-embedded OKC tissue blocks (n=2,
provided courtesy of Dr. Abdul-Warith Akinshipo, Lagos
University Teaching Hospital, Lagos Nigeria) were used
for comparative analysis. From both ameloblastoma and
OKC, 5 pum sections were stained with hematoxylin-eosin
for histological analysis while unstained sections were
used for immunohistochemical analysis. Another rep-
resentative portions of ameloblastoma patient samples
were processed to establish primary epithelial-derived
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ameloblastoma cells (EPAMCs) as previously reported
[7]. Two board-certified oral pathologists confirmed the
diagnosis of the ameloblastoma samples based on cur-
rent World Health Organization (WHO) classification of
odontogenic tumors [8, 23].

Mouse xenograft model of ameloblastoma

Mouse in vivo tumor model was used to further assess
biological function of the top gene interactions. Mouse
model of ameloblastoma was based on patient-derived
xenograft was used to recreate in vivo ameloblastoma.
The animal protocol (# 806165) was approved by the
University of Pennsylvania Institutional Animal Care
and Use Committee. Described briefly here, the isolated
and characterized EPAMCs from conventional amelo-
blastoma were revived and seeded in triplicate flasks
[7]. Approximately 2x10° EPAMCs attached to 40 mg
of spheroidal hydroxyapatite/tricalcium phosphate (HA/
TCP, particle size 0.5-1.0 mm, Zimmer, Warsaw, IN)
were transplanted into subcutaneous pockets of 4-week-
old immunocompromised nude female mice (Charles
River Laboratories, Wilmington, MA) as previously
described [7]. Prior to EPAMC transplantation, animals
were anesthetized with combination of medetomidine
(0.5-1 mg/kg body weight) and ketamine (70-100 mg/
kg body weight). A combination of lidocaine/bupiva-
caine (1:1 ratio) was used to anesthetize the surgical site
to control peri-operative pain. All animal transplants
were performed using triplicate animals and each animal
received 3 to 4 grafts to minimize individual animal vari-
ability. At the conclusion of EPAMC transplantation, the
effect of medetomidine was reversed with atipamezole
(1 mg/kg body weight) and meloxicam-XR (6 mg/kg body
weight) was used to control post-operative pain. At week
4, animals were euthanized with carbon dioxide delivered
using euthanasia apparatus. Euthanasia was confirmed by
cervical dislocation. The xenografts were harvested, fixed
with 4% PFA in PBS (pH 7.4), decalcified in 10% EDTA
(pH 8.0), embedded in paraffin and 5 pm sections were
stained with hematoxylin/eosin (H&E) for histological
evaluation.

Immunohistochemical assessment

Ameloblastoma, EPAMCs mouse xenografts and OKC
tissues were processed for immunostaining using stan-
dard protocols. The tissue sections were deparaffinized in
100% xylene and rehydrated in series of graded ethanol
followed by antigen retrieval at 95 °C for 20 min using
Antigen Unmasking Solution, Citric Acid Based (H-3300,
Vector Laboratories, Newark, CA. USA). Endogenous
peroxidase was blocked with BLOXALL® Endogenous
Blocking Solution (SP-6000, Vector Laboratories, New-
ark, CA. USA) for 10 min at room temperature. The sec-
tions were then blocked with normal blocking solution
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Principal Component Analysis and Differentially expressed
genes in OKC and Ameloblastoma
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Fig. 1 Differential gene expression analysis and hub gene identification. (A) Principal component analysis shows the clear difference between three am-
eloblastoma (AM) and three odontogenic keratocyst (OKC) samples as well as the small variation between the OKC patients. (B) Heatmap of differentially
expressed genes (DEGS) in ameloblastoma shows 560 downregulated and 1282 upregulated genes. (C) Volcano plot shows the DEGs in ameloblastoma
with the major hub genes labelled. The significant DEGs (p <0.05 and |log2 fold change|>2) is indicated by the red (upregulated) and blue (downregu-
lated) dots. A horizonal dashed line indicate p<0.05 and vertical dashed lines mark fold change >2. (D) Seven hub genes were identified from the top
10 nodes of three cytohubba algorithms, Maximum Neighborhood Component (MNC), Degree and Closeness (E) Visualization of the PPI network of

identified hub genes

(VECTASTAIN® Elite ABC-HRP Kit, PK-6200, Vector
Laboratories, Newark, CA. USA) at room temperature
for 1 h followed by incubation at 4 °C overnight with each
of the following primary antibodies: Fibronectin (FN1)
monoclonal antibody (1:300, Cat # 66042-1-Ig, Protein-
tech, Rosemont IL. USA), Collagen I (COL 1) antibody
(1;500; Cat # ab138492, Abcam, Waltham, MA) and
Insulin-like Growth Factor-1 (IGF-1) polyclonal antibody
(1:50; Cat # bs-0014R, Bios Inc, Woburn, MA) and iso-
type control non-immune serum. Subsequently, tissue
sections were rinsed with PBS before incubating at room
temperature for 30 min with VECTASTAIN® biotinylated
universal secondary antibody and ABC reagents (Vec-
tor Laboratories, Newark, CA). Finally, specimens were
stained with DAB Substrate Kit (SK-4100, Vector Labora-
tories, Newark, CA) and counterstained with hematoxy-
lin (26030-20, Electron Microscopy Sciences, Hatfield,
PA). Microscopic evaluation of immunoreactivity and
image capture was performed using Nikon Eclipse 80i
(Nikon Instruments, Melville, NJ) equipped with SPOT
Flex digital camera (Diagnostic Instruments, Sterling
Heights, MI). The immunostaining image intensities were
quantified using Image ] (Fiji v2.0.0; National Institutes
of Health, Bethesda, MD). and its color-deconvolution
plugin to isolate the red, green and blue spectra of DAB
images as previously described [24]. The brown DAB-
stained images were converted to binary black and white
images. Optical density of stained randomly selected four
regions of interest (ROI) was calculated and normalized

to its respective control tissues to obtain average mean
intensity per unit area.

Results

Differential gene expression analysis and hub gene
identification

Principal component analysis (PCA) plot of datasets of
ameloblastoma and OKC patient samples illustrate dif-
ferences between ameloblastoma and OKC. The amelo-
blastoma samples showed concordance by clustering
together, but there was a minor variation among the OKC
samples as one of the samples (OKC-3) did not cluster
with the other two samples (Fig. 1A). Heatmap (Fig. 1B)
and volcano plot (Fig. 1C) were used to visualize the sig-
nificant DEGs between ameloblastoma and OKCs. The
heatmap of 1842 DEGs showed there were 560 down-
regulated and 1282 upregulated genes in ameloblastoma
relative to OKC (see Supplementary Table and Fig. 1B).
Venn diagram was used to identify seven overlapping hub
genes from the top 10 nodes of three cytohubba algo-
rithms, Maximum Neighborhood Component (MNC),
Degree and Closeness (Fig. 1D). The PPI network visual-
ization is presented in Fig. 1E.

GO and pathway enrichment analysis

The top 10 enriched GO terms for biological process (BP)
(Fig. 2A), cellular component (CC) (Fig. 2B), molecular
function (MF) (Fig. 2C) and Reactome pathways (Fig. 2D)
were identified by GO enrichment and Reactome

Gene Ontology and Pathway Enrichment Analysis
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Fig.2 Gene ontology and pathway enrichment analysis. The bar graphs display the Top 10 enriched gene ontology terms for biological process (A), cel-
lular components (B), molecular functions (C) and the Top 10 enriched Reactome pathways (D)
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Table 1 Identification of top 10 hub genes by three cytoHubba

algorithms

Maximum Neighborhood Component (MNC) Algorithm

FN1 Fibronectin 1

COL1AT Collagen type lalpha 1 chain

COL1A2 Collagen type I alpha 2 chain

LUM Lumican

COL3A1 Collagen type lll alpha 1 chain

ITGB3 Integrin subunit beta 3

ACAN Aggrecan

IGF1 Insulin like growth factor 1

COL5A2 Collagen type V alpha 2 chain

MMP9 Matrix metallopeptidase 9

Degree Algorithm

FN1 Fibronectin 1

COL1A2 Collagen type I alpha 2 chain

COL1A1 Collagen type lalpha 1 chain

FBN1 Fibrillin 1

LUM Lumican

COL3A1 Collagen type lll alpha 1 chain

ITGB3 Integrin subunit beta 3

ACAN Aggrecan

ENPP1 Ectonucleotide pyrophospha-
tase/phosphodiesterase 1

IGF1 Insulin like growth factor 1

Closeness Algorithm

FN1 Fibronectin 1

ITGB3 Integrin subunit beta 3

COL1A2 Collagen type I alpha 2 chain

IGF1 Insulin like growth factor 1

COL1AT Collagen type I alpha 1 chain

VTN Vitronectin

FBN1 Fibrillin 1

LUM Lumican

COL3A1 Collagen type Il alpha 1 chain

SPARC Secreted protein acidic and

cysteine rich

pathway analysis for the significantly upregulated DEGs
in ameloblastoma. It revealed that the major gene ontol-
ogy terms and pathways were related to the extracellular
matrix organization, collagen binding, cell adhesion and
cell surface interactions. The Reactome pathway analysis
showed the major pathways are associated with extracel-
lular matrix organization, degradation of extracellular
matrix, collagen synthesis, formation and degradation,
integrin cell surface interactions and regulation of Insu-
lin-like Growth Factor (IGF) transport and uptake by
IGF-binding proteins.

Protein-protein interaction network and hub gene
identification

The Protein-Protein Interaction (PPI) network was cre-
ated in STRING for the significantly upregulated genes
and visualized using Cytoscape. The resulting interaction
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network included 1276 nodes and 588 edges. The top
10 nodes from the three cytoHubba algorithms (MNC,
Degree and Closeness) (Table 1) were used to identify
the hub genes. The overlapping genes in the three algo-
rithms (Fig. 1D) were considered as hub genes. These
included fibronectin 1(FN1), collagen type I alphal chain
(COL1A1), collagen type I alpha 2 chain (COL1A2), lumi-
can (LUM), collagen type III alpha 1 chain (COL3Al),
integrin subunit beta 3 (ITGB3) and insulin-like growth
factor 1(IGF-1) (Fig. 1E; Table 1). Among these, FNI,
COL1A1/COL1A2 and IGF-1 related to extracellular
matrix organization, collagen binding, cell adhesion and
cell surface interaction were selected for validation by
immunohistochemistry using human ameloblastoma,
mouse ameloblastoma xenograft and OKC tissues.

Validation of extracellular matrix protein expression by
immunohistochemical analysis

The EPAMCs formed appreciable ameloblastoma tumor
nodules within 4 weeks (Fig. 3) at time point the xeno-
grafts were harvested. Representative immunostained
tissue sections showed that ameloblastoma stromal cells
were immunoreactive to FN1, IGF-1 and COL 1 while
the epithelial cells and epithelial islands were non-reac-
tive (Fig. 4). Ameloblastoma xenograft and OKC pre-
sented similar immunoreactivity to both FN1 and IGF-1
but COL 1 reactivity was minimal to no reactivity (Fig. 4).
Relative qualitative analysis of immunostaining intensi-
ties based on optical density measurements showed that
EN1 demonstrated strongest staining intensity in both
ameloblastoma and xenograft tissues unlike OKC (Fig. 5).

Discussion

Ameloblastoma and OKC are odontogenic pathologi-
cal lesions associated with dental epithelium [25]. The
present study accessed GEO database and analyzed pub-
licly available GSE186489 gene expression data from
ameloblastoma and OKC patients to further understand
similarities and disparities between both locally inva-
sive odontogenic lesions. We conducted bioinformatics
analysis of ameloblastoma and OKC transcriptome and
identified 1282 upregulated genes and 560 downregu-
lated genes in ameloblastoma versus OKC. Furthermore,
we assessed the DEGs in the GO, performed pathway
analysis and used immunostaining to provide mechanis-
tic insights into pathogenesis and growth characteristics
of ameloblastoma.

Our analysis revealed that genes disparately upregu-
lated in ameloblastoma are related to the extracellular
matrix organization, degradation of extracellular matrix,
collagen binding, collagen biosynthesis, collagen deg-
radation, cell adhesion and cell surface interactions. We
also identified the following seven hub genes (Table 1),
FN1, COL1A1, COL1A2, LUM, COL3A1, ITGB3 and
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Mouse xenograft model
of ameloblastoma

Fig. 3 Representative mouse image showing appreciable ameloblastoma tumor nodules (black arrows) formed within 4 weeks by transplanted EPAMCs.
The ruler adjacent to the mouse allows for comparison of the tumor size with the whole animal size

IGF-1 as upregulated in ameloblastoma using protein-
protein interaction and network analysis. Similarly, FN1
and COL1A1 were also identified as hub genes in another
study that analyzed two microarray datasets GSE132124
(n=8 ameloblastoma samples) and GSE38494 (n=15
ameloblastoma samples). However, ameloblastoma was
compared to the normal tissue in this study [26]. These
support numerous reports that dysregulation of the
extracellular matrix plays modulatory roles in ameloblas-
toma invasion and progression. They also suggest that
ameloblastoma interacts with the extracellular matrix
and related proteins such as collagen, fibronectin, lumi-
can and growth factors like IGF-1.

Tumor cell interaction with extracellular matrix
proteins plays a major role in tumor progression and

aggressiveness and collagen remodeling in the tumor
stroma facilitates the local invasiveness of tumor cells
[27, 28]. Additionally, extracellular matrix remodeling
and altered growth factor signaling by cancer associated
fibroblasts in the tumor microenvironment (TME) pro-
mote tumor cell proliferation, angiogenesis and inva-
siveness in numerous cancer types [29-31]. Reports on
the interplay of extracellular matrix proteins and growth
factors on the locally aggressive growth properties of
ameloblastoma are still limited. In this study, we assessed
expressions of FN1, COL I and IGF-1 in ameloblastoma,
mouse ameloblastoma xenografts and OKC using immu-
nohistochemistry to validate RNA sequencing data.

EN1 is one of the major extracellular matrix proteins
involved in fundamental cellular processes such as cell
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Pattern of immunoreactivity to major hub genes
FN-1

Conventional
ameloblastoma
(follicular type)

EPAMCs

transplant

Odontogenic
keratocyst

Fig. 4 Pattern of immunoreactivity to major hub genes. Immunohistochemical staining of conventional ameloblastoma (top panel), mouse ameloblas-
toma xenograft derived from EPAMCs also isolated from conventional ameloblastoma (middle panel) and OKC (lower panel). The stromal compartments
(black star) of ameloblastoma and mouse ameloblastoma xenografts were strongly immunoreactive to FN1, IGF-1 and COL1 (top panel, columns 2,3 and
4). Similarly, stroma of mouse ameloblastoma xenograft (black star) was immunoreactive to FN1 and IGF-1 (middle panel, columns 2 and 3) but displayed
minimal to no reactivity to COL | (middle panel, column 4). Similarly, the lower panel shows that stromal components (black star) of OKC immunoreacted
with FN1,IGF-1 and COL 1 (lower panel, columns 2, 3 and 4). Additionally, OKC epithelial lining cells displayed (black arrows, column 2) immunoreactivity
to FN-1. Comparative hematoxylin/eosin and negative antibody control tissue sections are shown in columns 1 and 5 respectively [Antibodies to FN1 =fi-
bronectin 1; IGF-1 =insulin-like growth factor 1 and COL I=collagen 1. H&E =hematoxylin/eosin; control=non-immune serum; HA/TPC = hydroxyapatite/

tricalcium phosphate carrier particles]

adhesion, migration, and wound healing [32]. There is
increased expression of FN1 in various types of cancers
including thyroid cancer and melanoma that are positive
for BRAFV600E like ameloblastoma [27, 33-36]. FN1
promotes melanoma tumor proliferation and metastasis
by regulating epithelial mesenchymal transition (EMT)
and BRAFV600E tumor derived fibronectin regulates
BRAF signaling pathway to promote invasion of mela-
noma cells [36, 37]. Previous studies showed abundant
expression levels of FN1 in the stromal compartment of
most types of ameloblastoma with characteristic medium
to high expression levels near the epithelial mesenchy-
mal interface [38, 39]. Our data not only align with these
reports but also showed that high FN1 expression level
was recapitulated in the mouse xenograft model of ame-
loblastoma formed by transplanted EPAMCs (Fig. 4).
EN1 induces EMT in human breast cancer through ERK/
MAPK pathway [40] and fibronectin fibrils regulate EMT
induced by TGEp in vitro [41]. It also promotes tumor

progression in non-small cell lung cancer through inte-
grin avp3/PI3K/AKT/SOX2 signaling pathway [33]. All
these pathways have been associated directly or indi-
rectly with ameloblastoma growth characteristics [1].
Interestingly, downregulation of FN1 in colorectal can-
cer was found to inhibit the carcinogenesis of colorectal
cancer by suppressing tumor migration and proliferation
[42], which makes a case for FN1 as a therapeutic target
for ameloblastoma.

Collagen I (COL I) is a major component of the extra-
cellular matrix and its abundance is associated with
tumor cell proliferation and metastasis of many types of
cancers [43, 44]. COL I is highly expressed in the stroma
of plexiform, follicular and desmoplastic ameloblastoma
[38, 45]. In our study, COL I expression was high in the
stromal compartment of conventional follicular types of
ameloblastoma that we assessed, but interestingly there
was negative immunoreactivity in the EPAMC-induced
mouse ameloblastoma xenograft and OKC (5). The
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negative immunoreactivity in the xenograft could relate
to the lower degree of invasiveness in the ameloblas-
toma xenograft due to partial loss of viable cells during
the transplant procedure. While we found low COL-1
expression levels in OKC, another study that reported a
high COL-1 expression in OKC normalized their results
with normal oral mucosa tissues and not ameloblastoma
only [46]. Transcriptomics analysis that showed upregu-
lated collagen related genes such as COL1A1, COL3A1l
in OKC were also compared to normal oral mucosa and
not ameloblastoma [46]. Our observed higher expression
levels of COL I in ameloblastoma is supported by tumor-
oid analysis in another study. It was reported that unlike
OKC, COL I is required for progression and invasiveness
of ameloblastoma based on extracellular matrix remodel-
ing and altered collagen alignment within the tumor [47].

Transcriptomic analysis of AM-1 cells and ameloblas-
toma tissues revealed that extracellular matrix and EMT
related proteins were upregulated in ameloblastoma tis-
sue compared to AM-1 cells possibly due to the pres-
ence of stromal region in the ameloblastoma tissue [48].
To further understand this possible effect, AM-1 cells
were cultured in matrigel and collagen gel to mimic the
tumor stromal environment. The study reported that
ECM remodeling was observed in the tumoroid cul-
tured in collagen gel and not in the matrigel and increas-
ing the type I collagen concentration also significantly
increased the invasion distance of AM-1 cells [48]. Again,
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this showed that collagen rich matrix is essential for the
aggressive growth and invasion of ameloblastoma [48].
High expression of COL I observed in colorectal cancer,
another BRAFV600E-positive tumor was associated with
stemness of cancer cells and metastasis mediated through
integrin/PI3K/AKT/Snail signaling pathway [49]. COL I
also promoted EMT through TGEFp in lung cancer cells
[50]. COL I and FN1 co-promote aggressive phenotype in
breast cancer cells and the activation of AKT and CDC42
signaling pathways via avfp3 integrin resulted in growth
and relapse of glioma tumor [28, 51]. Hence, the interplay
of FN1, COL I and ITGB3 found to be highly upregulated
in ameloblastoma relative to OKC may be a modulator
of the tumor microenvironment and signaling pathways
that enhance its locally aggressive growth properties.
Insulin like growth factors and their receptors are
involved in human dental pulp stem cells proliferation
and odontogenic differentiation through MAPK path-
way. Similarly, IGF-1 interaction with bone morphoge-
netic proteins facilitates development of teeth, bone and
cartilage. Along this line, IGF-1 was highly expressed in
both ameloblastoma and calcifying odontogenic epi-
thelial tumors [52]. We also found that both ameloblas-
toma and EPAMC mouse ameloblastoma xenograft
were strongly positive for IGF-1. Considering higher
IGF-1 gene expression levels in ameloblastoma relative
to OKC (Fig. 5), IGF-1 could be a potential inducer of
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invasiveness and proliferation in concert with integrins as
previously reported in cervical cancers [53].

In ameloblastoma, the native stromal architecture
enhances tumor microenvironment and invasiveness
compared to non-native stromal architecture [54]. Hence,
the current study validates differentially upregulated
expression of matrix proteins FN1, COL I and IGF-1
in ameloblastoma relative to OKC because all the three
genes and related proteins were more highly expressed
throughout the tumor stroma in ameloblastoma. We
identified multiple differentially expressed genes between
ameloblastoma and OKC. Additionally, our validation
studies indicate that the higher expressions of extracel-
lular matrix organizations genes COL 1 and FN-1 com-
bined with higher IGF-1 expression (Fig. 5) could support
an interplay of these differentially upregulated genes in
ameloblastoma. Consequently, these could contribute to
the much more locally-invasive growth characteristics of
ameloblastoma relative to OKC.

This study has some limitations. First, the GSE186489
gene expression data from GEO database analyzed were
obtained from a limited number of ameloblastoma and
OKC patient samples. Second, available information on
the patient samples was limited to identification of the
tumors as primary tumors, so recurrent and metasta-
sizing ameloblastomas were not included. Third, OKC
mouse xenografts were not directly compared by immu-
nohistochemistry with ameloblastoma xenografts. These
direct comparisons are interesting studies to pursue in
future. However, more functional studies that assess the
interplay of FN1, COL 1 and IGF-1 in modulating amelo-
blastoma tumor microenvironment will further enhance
our knowledge of ameloblastoma growth properties as
well as the development of biomarkers and therapeutic
targets for ameloblastoma.
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