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Abstract

Background: Dental caries is the result of a complex interplay among environmental, behavioral, and genetic
factors, with distinct patterns of decay likely due to specific etiologies. Therefore, global measures of decay, such as
the DMFS index, may not be optimal for identifying risk factors that manifest as specific decay patterns, especially
if the risk factors such as genetic susceptibility loci have small individual effects. We used two methods to extract
patterns of decay from surface-level caries data in order to generate novel phenotypes with which to explore the
genetic regulation of caries.

Methods: The 128 tooth surfaces of the permanent dentition were scored as carious or not by intra-oral
examination for 1,068 participants aged 18 to 75 years from 664 biological families. Principal components analysis
(PCA) and factor analysis (FA), two methods of identifying underlying patterns without a priori surface
classifications, were applied to our data.

Results: The three strongest caries patterns identified by PCA recaptured variation represented by DMFS index
(correlation, r = 0.97), pit and fissure surface caries (r = 0.95), and smooth surface caries (r = 0.89). However,
together, these three patterns explained only 37% of the variability in the data, indicating that a priori caries
measures are insufficient for fully quantifying caries variation. In comparison, the first pattern identified by FA was
strongly correlated with pit and fissure surface caries (r = 0.81), but other identified patterns, including a second
pattern representing caries of the maxillary incisors, were not representative of any previously defined caries
indices. Some patterns identified by PCA and FA were heritable (h? = 30-65%, p = 0.043-0.006), whereas other
patterns were not, indicating both genetic and non-genetic etiologies of individual decay patterns.

Conclusions: This study demonstrates the use of decay patterns as novel phenotypes to assist in understanding
the multifactorial nature of dental caries.

Keywords: Dental caries genetics, Heritability, Permanent dentition, Pit and fissure surfaces, Smooth surfaces, Tooth
surfaces, Principal components analysis, Factor analysis, Patterns of tooth decay, Patterns of dental caries

Background the non-uniform risk across tooth surfaces of the full
Dental caries is a disease affecting most adults and  dentition leading to distinct patterns of dental decay, as
caused by the complex interplay of numerous environ-  previously described [13-25]. Patterns of decay have
mental, behavioral [1,2], and genetic risk factors [3-12].  been used to explore caries etiology under the assump-
The etiology of dental caries is further complicated by  tion that different risk factors lead to distinct caries pat-

terns. A well-known example is the maxillary anterior
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the most common indices used for studying the epide-
miology of caries are DMFT and DMES (i.e., counts of
the number of decayed, missing, or filled teeth/surfaces),
which do not assess specific decay patterns. As global
measures of tooth decay, DMFT and DMES indices may
not be optimal for investigating genetic and environ-
mental factors that manifest as specific patterns of caries
across the dentition. Separating the global level of caries
into components or patterns with distinct etiologies may
be critical for identifying risk factors of modest effect
sizes, such as specific genetic loci contributing to tooth
decay.

Previous descriptions of caries patterns have usually
assumed and compared a priori classifications of tooth
surfaces [14-22,25], which often differed among studies,
leading to inconsistencies that demonstrate the limited
utility of a priori surface classifications. A few studies
have modeled the patterns of childhood tooth decay
without a priori assumptions and have identified distinct
patterns reflecting caries of the maxillary incisor sur-
faces and pit and fissure surfaces, among others
[13,23,24].

To our knowledge, no assessment of permanent denti-
tion caries patterns in adults without a priori surface
classifications has previously been performed. In this
study we utilized two related analytic methodologies for
identifying the underlying patterns within our dataset:
principal components analysis (PCA) and factor analysis
(FA). Three specific purposes of this study were (1) to
identify the patterns of dental caries in the permanent
dentition of adults without a priori assumptions about
tooth surface classifications; (2) to determine the rela-
tionship between identified patterns of decay and a
priori measures of decay such as DMFS index, decay of
pit and fissure surfaces, and decay of smooth surfaces;
and (3) to assess the heritability of identified patterns of
decay.

Methods

Recruitment and data collection

The Center for Oral Health Research in Appalachia
(COHRA) was created to identify the community-,
family-, and individual-level predictors of oral health
outcomes in the Appalachian population [26], a vulner-
able subpopulation with poorer oral health compared to
the greater US population [27-29]. COHRA participants
were recruited by household as previously described
[6,7,26], whereby eligible households were required to
include at least one biological parent-offspring pair with
the child being 1 to 18 years of age. All members of eli-
gible households were invited to participate without
regard to their oral health status, demography, or biolo-
gical or legal relationships. Written informed consent
was provided by all adult participants. Assent with
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parent or guardian written consent was provided on
behalf of all child participants. The study was approved
by the COHRA research committee and the Institutional
Review Boards of the University of Pittsburgh and West
Virginia University.

In total, 732 households were recruited, which com-
prised 2,663 individuals from 740 biological kinships of
1 to 20 family members (mean = 4.72 members). Some
kinships spanned multiple households, whereas other
households contained multiple kinships. Reported famil-
ial relationships were validated using panels of ancestry-
informative [30] and whole-genome [31] genetic marker
data provided by the Center for Inherited Disease
Research at Johns Hopkins University and quality
checked jointly by study investigators and the Coordi-
nating Center for the NIH Genes and Environment
Initiative (GENEVA; [32]).

Dental caries was assessed via visual inspection with
a dental explorer during intra-oral dental examinations
conducted by dentists or research dental hygienists
calibrated with respect to a reference dentist at least
once per year. Inter- and intra-examiner concordances
of caries assessments were high [7,26]. Each tooth sur-
face was scored as sound, pre-cavitated, decayed, filled,
missing due to decay, or missing due to reasons other
than decay, in accordance with the World Health
Organization DMFS/dfs scale and in accordance with
the NIH/NIDCR-approved protocol for assessing den-
tal caries for research purposes [33]. This method of
caries assessment is compatible with that recom-
mended by the PhenX Toolkit (http://www.phenx-
toolkit.org; designed to facilitate combining data across
studies), and the National Center for Health Statistics
Dental Examiners Procedures Manual (See Section
4.9.1.3) [34]. Third molars were excluded from caries
assessment. Edentulous individuals were recruited into
the study but were excluded from caries assessment
and analysis.

Statistical analysis

The analytic goal of the present study was to explore
patterns of dental caries of the permanent dentition in
adults. Therefore we excluded children by restricting
our study sample to the 1,068 participants aged 18 to 75
years. For each participant, surface-level caries data on
128 surfaces (i.e., 4 surfaces for each incisor and canine,
and 5 surfaces for each premolar and molar) were
coded as 0 for sound or missing due to reasons other
than decay, or coded as 1 for pre-cavitated, decayed,
missing due to decay, or filled/restored. Thus, we gener-
ated a matrix of 1,068 participants by 128 indicators of
surface-level caries affection status. This matrix was
used as input for two related methods of extracting pat-
terns within the data: PCA and FA [35].
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PCA uses singular value decomposition of the data
matrix to extract a set of uncorrelated variables (called
principal components scores, PCs) where the first PC (i.
e., PC1) explains the greatest possible amount of varia-
bility in the data in a single dimension, and the second
PC (i.e., PC2) explains the greatest possible amount of
remaining variability in the data in a single dimension
orthogonal to PC1, and so on. The result is a number of
orthogonal PCs equal to the number of original vari-
ables (in our data, 128), with successive PCs each
explaining less and less of the data variability. Each PC
can be defined as a linear combination of the original
variables weighted by their loadings. The first several
PCs may represent important patterns in the data,
essentially assessing underlying signals from a greater
number of correlated phenotype measurements. The
loadings provide a way of interpreting the PCs in terms
of the original variables. In other words, the loadings
describe the pattern of carious lesions across the perma-
nent dentition for a given PC, whereas the actual PCs
indicate the extent/severity of caries of that decay
pattern.

FA is similar to PCA in that it is used to extract latent
variables called factor scores (FACs) from an original
data matrix. Like PCs, FACs are calculated as linear
combinations of the original variables weighted by their
loadings, except that the number of FACs used to
model the patterns in the data is chosen a priori, and
the FACs are not constrained to be orthogonal. In this
study, we modeled the caries data matrix using 10 fac-
tors. Like PCA, the goal of FA is to generate FACs
representing underlying signals in the data matrix that
can then be used as phenotypes, in this case, to identify
the risk factors for dental caries.

In practice, FA and PCA often perform similarly.
However the two methods take opposite perspectives in
extracting patterns from a data matrix: PCA assumes
that the observed variables provide the basis for the pat-
terns, whereas FA assumes that latent patterns provide
the basis for the observed variables. In this way, PCA is
often used for dimension reduction, ie., summarizing
the information from a large number of variables with a
few variables, whereas FA may better represent underly-
ing “endophenotypes”, i.e., unmeasured phenotypes that
manifest as the observed variables. For both PCA and
FA, the loadings define the patterns of decay and the
PCs and FACs describe the severity of disease for their
corresponding patterns.

For comparison to the PCs and FACs, we also gener-
ated three a priori caries phenotypes: the DMFS index,
pit and fissure surface caries (PFS), and smooth surface
caries (SMS). These a priori phenotypes are commonly
used in the caries literature. DMFS was calculated as the
number of pre-cavitated, decayed, missing due to decay,
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or filled/restored surfaces. PFS and SMS were calculated
in the same way as DMFS except that counts were lim-
ited to pit and fissure surfaces and smooth surfaces,
respectively. Occlusal surfaces of the premolars and
molars, buccal surfaces of the maxillary molars, and lin-
gual surfaces of the mandibular molars were considered
pit and fissure surfaces. All other tooth surfaces were
considered smooth surfaces.

In order to assess the stability of patterns identified by
PCA and FA, we performed a sensitivity analysis by
repeating PCA and FA on ten random subsets of the
data comprised of 80% of the full sample. We compared
the PCs and FACs obtained from random subsets to
those from the full sample using the Pearson correlation
coefficient, r. PCs 1-4 were extremely stable (r = 0.98 to
1.00), PCs 5-9 were stable (r = 0.86 to 0.95), and PC 10
was moderately stable (r = 0.77) across random subsets.
FACs 1-6 were stable (r = 0.86 to 0.99), and FACs 7-10
were moderately stable (r = 0.69 to 0.82) across random
subsets. Likewise, we assessed the effect of relatives on
PCA and FA by repeating these methods in the maximal
subset of unrelated individuals. PCs 1-10 and FACs 1-8
from the unrelated sample were highly correlated (r >
0.95) with those from the full sample, whereas FAC9
and FAC10 were moderately correlated (r = 0.57, and
0.81, respectively). Altogether, these results suggest that
caries patterns were generally stable and robust to the
inclusion of relatives among the sample.

Heritability estimates of PCs and FACs were calcu-
lated using the variance components approach. This
method models phenotype correlations among all types
of relatives as a function of the expected degree of
genetic sharing (i.e. that parents and offspring share 50%
of their genome, siblings share 50%, half-siblings share
25%, unrelated individuals share 0%, etc.). Details for
this method as applied to our study sample have pre-
viously been reported [6,36]. The heritability estimate is
interpreted as the proportion of phenotype variance
attributable to the cumulative effect of all genes.

All statistical analyses were performed in the R soft-
ware package (R Foundation for Statistical Computing,
Vienna, AU), except heritability estimates which were
obtained from genetic modeling performed in SOLAR
[37]. Principal components analysis was performed
using the prcomp function with default parameters. Fac-
tor analysis was performed using the factanal function
with the Thomson’s regression-based scores option, 10
factors, and other default parameters. Prevalences, corre-
lations, and figures were all generated in R.

Results

Caries prevalences by surface

Surface-level caries data for 1,068 participants (ages 18
to 75 years, mean age of 34.7 years, 63.3% female, 90.0%
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self-reported white) across 128 tooth surfaces were col-
lected. Tooth surfaces that exhibited evidence of pre-
cavitated lesions or decay, were missing due to decay, or
had been filled/restored, were considered carious. Tooth
surfaces that were sound or missing due to reasons
other than decay were considered non-carious. Caries
prevalences per surface (i.e. the proportion of the sam-
ple exhibiting caries on a particular tooth surface) are
shown in Table 1. Surfaces of the anterior maxillary
teeth (i.e., incisor and canines) exhibited greater caries
prevalences than anterior mandibular teeth; whereas
posterior maxillary teeth (i.e., premolars and molars)
exhibited lower pravelences rates than posterior man-
dibular teeth.

Principal components analysis

PCA was performed on the surface-level data in order
to extract the underlying patterns of caries. PC1
explained 26.3% of the variability in the data, PC2
explained 6.7%, and all other PCs explained < 5% (Fig-
ure 1A). Loadings show that except for anterior mandib-
ular surfaces, all other surfaces contribute similarly to
PC1 (Figure 1B) representing a near-global pattern/
extent of decay. Loadings for PC2 show opposite contri-
butions of smooth surfaces and pit and fissure surfaces
(Figure 1C). Loadings for PC3 show opposite contribu-
tions of premolar vs. other surfaces and loadings for
PC4 show opposite contributions of maxillary vs. man-
dibular surfaces (see Additional file 1). Loadings for all
other PCs show complex patterns of contributions from
tooth surfaces that are not easily discernible in the con-
text of PCs 1 to 4, however, general descriptions of the
contributing surfaces are summarized in Table 2.

PC1 was nearly identical to DMFS index (r = 0.969; p-
value < 102%° [i.e., the minimum p-value reported using
the statistics software]; Figure 1D) indicating that the
strongest pattern of caries in the data distinguished
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individuals by global level of decay. PFS, the count of
carious pit and fissure surfaces, was very highly corre-
lated with PC2 after subtracting out PC1 (r = 0.947; p-
value < 1072°; Figure 1E). SMS, the count of carious
smooth surfaces, was highly correlated with PC3 after
subtracting out PC2 and PC1 (r = 0.894; p-value < 10
250, Figure 1E). These correlations show that PC1, PC2,
and PC3 capture the patterns of dental decay corre-
sponding to a priori phenotypes, DMES index, excess
PES (for a given DFMS), and excess SMS (for given
DMES and PFS), respectively.

The heritability (h*) of DMFS index and PCs 1-10
were calculated while simultaneously adjusting for the
effects of age, age”, and sex (Table 3). DMFS index,
PC1, PC5, and PC7 were all strongly heritable (h* = 37%
to 50%; p-values = 0.043 to 0.008) indicating that some
patterns of dental decay were due to genetic etiologies.
Other PCs were not heritable indicating that some pat-
terns of dental decay were not due to genetics. Covari-
ates age, age2, and sex explained about 10% of variation
in PC1 and very little variation for the remaining PCs.

Factor analysis

FA was also performed on the surface-level data to iden-
tify latent patterns of dental decay (Table 2). 10 factors
were extracted which cumulatively explained 44.7% of
the variability of the data. FAC1 was primarily due to
the contributions of molar surfaces, and to a lesser
degree, premolar surfaces (see loadings, Figure 2A).
FAC1 was moderately correlated with DMFS index (r =
0.593; p-value < 10'250), and strongly correlated with
PFS (r = 0.815, p-value < 10°*°%; Figure 2B). Loadings
showed that maxillary incisor surfaces, and to a lesser
degree, maxillary canine surfaces, contribute to FAC2
(Figure 2C). FAC2 was moderately correlated with SMS
(r = 0.523; p-value < 10>°°) and DMFS index (r = 0.453;
p-value < 10°°). See Additional file 1 for loadings of all

Table 1 Caries prevalences per surface across the permanent dentition (N = 1,068)

Surface Right Maxillary teeth Left
2 3 4 5 6 7 8 9 10 11 12 13 14 15
buccal 0.18 0.15 0.09 0.10 0.11 0.13 0.16 0.15 0.13 0.11 0.09 0.10 0.15 020
distal 0.18 021 020 0.18 0.07 0.11 0.16 0.16 0.13 0.08 0.19 021 0.20 0.18
lingual 022 040 0.08 0.07 0.07 0.15 0.15 0.16 0.16 0.08 0.07 0.09 0.39 0.23
mesial 0.16 0.27 0.19 0.12 0.07 0.15 0.17 0.18 0.16 0.09 0.12 0.20 0.25 0.18
occlusal 0.60 0.63 0.30 0.26 0.28 0.31 0.63 0.59
right mandibular teeth left
31 30 29 28 27 26 25 24 23 22 21 20 19 18
buccal 0.29 041 0.11 0.09 0.08 0.04 0.03 0.03 0.03 0.07 0.09 0.10 039 028
distal 0.16 026 0.19 0.08 0.02 0.03 0.03 0.02 0.03 0.02 0.08 0.18 0.26 0.15
lingual 0.16 0.19 0.07 0.02 0.01 0.01 0.02 0.01 0.02 0.02 0.03 0.07 0.21 0.14
mesial 022 0.25 0.1 0.05 0.03 0.02 0.02 0.03 0.02 0.03 0.04 0.10 0.25 0.21
occlusal 0.64 0.60 0.27 0.12 0.14 0.26 0.59 0.61
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PC1 ordered by tooth type, from left to right: maxillary incisors (blue), canines (green), premolars (red), molars (black), mandibular incisors (gray),
canines (yellow), premolars (magenta), molars (cyan). For each tooth, contributions of surfaces are listed in the following order: buccal, distal,
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blue. Scatter plots of (D) PC1 vs. DMFS index, (E) PC2 vs. pit and fissure caries, (F) PC3 vs. smooth surface caries.
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other factors. In general, most FACs showed low corre-
lations with PCs, indicating that the two methods
extracted different patterns from the data. Compared
with the PCs, which represented contributions from
many teeth, a number of FACs primarily represented
contributions of individual teeth (e.g., tooth 20 for
FAC?7, tooth 29 for FACS, tooth 13 for FAC10).

The heritability estimates of FACs 1-10 are also shown
in Table 3. FAC3 and FAC6 were strongly heritable (h?
= 65.3 and 30.2%; p-value = 0.006 and 0.027, respec-
tively), whereas all other FACs were not heritable. These
results echo the PCA results, showing that some caries
patterns are due to genetic etiologies, whereas others
are not. Significance levels for heritability estimates did
not meet Bonferroni adjustment (for 20 models, requir-
ing p-values < 0.0025 for family-wise significance);
although, correct adjustment for multiple testing is not
clear given the prior significant heritability of DMEFS,
PFS, and SMS indices reported for this sample [6,36].

Discussion

We used two related methods of extracting caries pat-
terns in the permanent dentition from surface-level car-
ies data. PCA yielded many moderate-to-weak patterns,
possibly indicating a high degree of noise or sporadic
(non-patterned) occurrence of dental caries. Moreover,
PCs 1-3 closely recaptured the DMFT, PES, and SMS
indices, an observation that suggests these a priori caries
phenotypes may reflect the predominant patterns of
decay in the permanent dentition, although cumulatively
they account for only 37% of the variability. Some PCs
were heritable, whereas many were not, which suggests
that genetic patterns of decay may be separable from
non-genetic patterns. Unlike PCA, FA did not yield fac-
tors that clearly recaptured a priori phenotypes, with
the exception that FAC1 was correlated with PFS. Max-
illary incisors contributed heavily to FAC2, which is
consistent with previous studies that used multidimen-
sional scaling [24] and cluster analysis [23] to explore
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Table 2 General interpretations of PCA and FA loadings.
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Pattern General interpretation of loadings
PCA
PC1 all maxillary teeth and mandibular premolars and molars
PC2 molars vs. non-molars
PC3 premolars vs. non-premolars
PC4 mandibular teeth vs. maxillary teeth
PC5 2" molars vs. mandibular 1°* molars
PC6 mandibular premolars and 2™ molars vs. mandibular 1°* molar and maxillary molars and 2" premolar
pPC7 maxillary premolars and mandibular molars vs. maxillary molars and mandibular premolars
PC8 complex contributions
PC9 complex contributions
PC10 right vs. left mandibular molars
FA
FACI posterior teeth: premolars and molars
FAC2 maxillary anterior teeth: incisors and canines
FAC3 mandibular canines and premolars
FAC4 maxillary premolars
FACS mandibular incisors and canines
FAC6 non-occlusal premolar and molar surfaces, maxillary lateral incisors, and maxillary canines
FAC7 tooth 20 (left mandibular 2" premolar)
FAC8 tooth 29 (right mandibular ond premolar)
FAC9 maxillary 2" molars
FAC10 tooth 13 (left maxillary ond premolar)

See Additional file 1 for full details

caries patterns in the primary dentition and showed
maxillary incisors formed the second cluster (after other
smooth surfaces). Ten factors were insufficient to
explain the variability of the data, cumulatively account-
ing for approximately 45%.

Like PCA, FA yielded some factors that were highly
heritable indicating that certain caries patterns may be
due to genetic etiologies while others may be due to
non-genetic etiologies. Because the caries patterns pre-
sented in this manuscript are more precisely and agnos-
tically defined than a priori phenotypes, we
conservatively conclude that specific patterns repre-
sented by FAC3 and FAC6 are heritable, rather than
generalizing to broader surface categories such as SMS.
Interestingly, the strongest genetic contribution identi-
fied was for FAC3, which was 65.3% heritable (com-
pared to 41.8% for D1IMFS index) which suggests that
FAC3 may be a better phenotype for gene discovery
than a priori caries phenotypes. A similar conclusion
can be made for PC7 (50.3% heritable). These results
are generally consistent with a previous study comparing
PCA and FA that showed FA may better capture under-
lying genetic signals from correlated phenotype mea-
surements (although both methods perform quite
similarly) [35]. Non-heritable PCs and FACs, presumably
due to effects of non-genetic risk factors, may be

preferred phenotypes for future epidemiological studies
of environmental risk factors for dental caries.

The severity of caries significantly increased with age
(or age?) for most patterns (results not shown). Herit-
ability estimates were calculated while simultaneously
modeling age, age”, and sex, although very similar herit-
ability estimates were obtained in unadjusted models for
all patterns except PC1 which exhibited decreased herit-
ability when covariates were omitted (results not
shown). These results are sensible given that altogether,
age, age” and sex accounted for about 10% of variance
in PC1, but very little variance for the other PCs and
FACs.

One of the challenges of using agnostic methods such
as PCA and FA to identify underlying patterns of dental
decay (devoid of a priori surface classifications) is in
interpreting the findings. While some patterns, such as
PC1 (defined by near-uniform loadings across most
tooth surfaces and therefore representing global extent
of decay), and FACs 7, 8 and 10 (each defined by contri-
butions of a single pre-molar), are readily interpretable,
other PCs and FACs may be difficult to relate back to
the original variables. Moreover, there is no clear
method of distinguishing biologically relevant patterns
attributable to distinct risk factors from sporadic pat-
terns due to noise. Sensitivity analysis showed that
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Table 3 Heritability estimates for DMFS index, PCs, and
FACs
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patterns represented by PCs 1-9 and FACs 1-6 were
stable, whereas PC10 and FACs 7-10 were moderately

Phenotype h? h? SE p-value R? stable. The overall stability lends credence to the notion
DMFS 0418 0.164 0.008 0054 that PCs and FACs considered in this study are not due
PCA to chance alone.
PC1 0404 0.160 0.009 0.095 This study benefits from the large sample of related
PC2 0.149 0171 0.190 0017 individuals with detailed surface-level caries assessment,
PC3 0.000 - 0.500 0.037 which facilitated caries pattern extraction and heritabil-
PC4 0174 0234 0231 0004 ity estimation. An additional strength of the analysis was
PC5 0373 0.207 0043 0021 using two different but related methods of extracting
PC6 0027 0236 0455 0.001 caries patterns from the data, which, most importantly,
PC7 0503 0221 0020 0004 did not use a priori pattern definitions.
PC8 0.000 - 0.500 0.003 Despite these strengths, several limitations of this
PCY 0.000 - 0,500 0006 study warrant discussion, including inherent limitations
PC10 0.000 - 0.500 0.001 to assigning tooth surfaces as carious or not. First, caries
FA assessment by visual inspection, though suitable for
FACT 0.157 0.181 0.194 0.033 obtaining data on large numbers of individuals and of
FAC2 0.000 - 0.500 0014 sufficient quality for research purposes, may under-
FAC3 0653 0.198 0.006 0010 represent the true level of disease. Moreover, teeth miss-
FAC4 0274 0239 0135 0058 ing due to decay, for which all surfaces count as carious,
FACS 0019 0.161 0454 0017 and approximal lesions which are often treated by two-
FAC6 0302 0.153 0.027 0.009 surface restorations (leading to filled occlusal surfaces
FAC7 0.000 B 0.500 0015 despite absence of decay) may cause caries assessment
FAC8 0.000 - 0.500 0018 errors. Likewise, the quality of caries assessment may
FACO 0.084 0208 0343 0.006 not be uniform across surfaces of the permanent denti-
FACT0 0342 0.292 0136 0014 tion, which may have caused additional “noise” in the

h? = heritability estimate (i.e., proportion of phenotype variation attributable
to genetics)
h? SE = standard error of the heritability estimate

R? = proportion of phenotype variation attributable to the cumulative effects
of age, age?, and sex

caries measurement. Lastly, prophylactic restorations
may inflate caries assessment. These limitations are una-
voidable for cross-sectional (i.e., single time point) study
designs of dental caries. However, appropriate modeling
techniques, such as methods of pattern extraction
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including PCA and FA, may aid in overcoming theses
limitations of the caries assessment.

Conclusions

To our knowledge, this study is the first exploration of
caries patterns in the permanent dentition in adults
without relying on a priori assumptions or surface clas-
sifications. Overall, this study demonstrates the utility of
methods for extracting caries patterns from surface-level
data and reinforces the complexity of dental caries etiol-
ogy. Because risk factors that manifest as specific decay
patterns may otherwise go unobserved with respect to
global or other a priori caries phenotypes, the use of
patterns as novel phenotypes may assist in understand-
ing the multifactorial nature of dental caries. This study
is one of few but much needed efforts to use decay pat-
terns to define new phenotypes for studying dental
caries.

Additional material

Additional file 1: Provides graphs of loadings for PCs 1-10 and
FACs 1-10.
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