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Abstract

Background: Titanium implants in the oral cavity are covered with a saliva-derived pellicle to which early
colonizing microorganisms such as Streptococcus oralis can bind. The protein profiles of salivary pellicles on titanium
have not been well characterized and the proteins of importance for binding are thus unknown. Biofilm bacteria
exhibit different phenotypes from their planktonic counterparts and contact with salivary proteins may be one

factor contributing to the induction of changes in physiology. We have characterized salivary pellicles from titanium
surfaces and investigated how contact with uncoated and saliva-coated titanium surfaces affects metabolic activity
in adherent cells of S. oralis.

Methods: Salivary pellicles on smooth titanium surfaces were desorbed and these, as well as purified human saliva,
were subjected to two-dimensional gel electrophoresis and mass spectroscopy. A parallel plate flow-cell model was
used to study binding of a fresh isolate of S. oralis to uncoated and saliva-coated titanium surfaces. Metabolic
activity was assessed using the Baclight CTC Vitality Kit and confocal scanning laser microscopy. Experiments were
carried out in triplicate and the results analyzed using Student's t-test or ANOVA.

Results: Secretory IgA, a-amylase and cystatins were identified as dominant proteins in the salivary pellicles.
Selective adsorption of proteins was demonstrated by the enrichment of prolactin-inducible protein and absence of
zinc-as-glycoprotein relative to saliva. Adherence of S. oralis to titanium led to an up-regulation of metabolic activity
in the population after 2 hours. In the presence of a salivary pellicle, this effect was enhanced and sustained over
the following 22 hour period.

Conclusions: We have shown that adherence to smooth titanium surfaces under flow causes an up-regulation of
metabolic activity in the early oral colonizer S. oralis, most likely as part of an adaptation to the biofilm mode of life.
The effect was enhanced by a salivary pellicle containing slgA, a-amylase, cystatins and prolactin-inducible protein
which was, for the first time, identified as an abundant component of salivary pellicles on titanium. Further studies

are needed to clarify the mechanisms underlying the effect of surface contact on metabolic activity as well as to
identify the salivary proteins responsible for enhancing the effect.
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Background

The human oral cavity harbours a large number of different
bacterial species which are found in complex, multi-species
biofilms. On teeth, these biofilms are commonly known as
dental plaque. Critical to the formation and development
of plaque is the adherence of pioneer species such as
Streptococcus oralis, Streptococcus mitis and Streptococcus
gordonii as well as Actinomyces naeslundii to the salivary
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pellicle which coats the tooth surface [1,2]. Once biofilm
formation has been initialized and the nascent tooth
surface is colonized, co-adherence of later colonizers leads
to the formation of mature oral biofilms [3]. The
early development of biofilms on dental implants has
not been well characterized but the sequence of microbial
colonization is thought to be similar to that for teeth in
the same oral cavity [4,5].

Teeth and dental implants, as well as the mucosal
surfaces, are covered with a pellicle which is a thin
film of adsorbed proteins mainly derived from saliva.
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Pellicle proteins provide an array of potential receptors for
the attachment of the early colonizers. A combination of
in vivo and in vitro studies using antibody-based and
proteomics approaches, has shown that the acquired
enamel pellicle contains a range of different salivary
proteins including lysozyme, histatins, statherins [6],
a-amylase, cystatins, secretory IgA (sIgA), lactoferrin
and proline-rich proteins (Prps) [7] as well as the
large salivary mucin, MUCS5B [8]. For a comprehensive
summary of proteins detected in enamel pellicles see
Siquiera et al., 2012 [9]. The composition of an adherent
pellicle, as well as the density and conformation of the
proteins present in it, is generally thought to be influenced
by the physico-chemical properties of the substratum but,
as yet, the overall composition of the salivary pellicles
formed on differently modified titanium surfaces are
unknown. Despite the existence of only a few studies,
some salivary proteins including cystatins, sIgA, a-amylase
and proline-rich proteins have been identified in the
adherent pellicle formed on titanium in vitro using
Western blotting [10,11]. However in all such studies,
the methods used to prepare saliva for use as a pellicle can
have a large impact on the results obtained. For instance,
filtering and centrifugation techniques may remove major
populations of salivary proteins leading to the formation
of salivary pellicles which are not representative of those
present in vivo.

The recognition that microbial biofilms are an important
factor associated with the failure of dental implants [12]
has led to many investigations of bacterial adhesion to
titanium surfaces. In vivo, where adherence of bacteria and
salivary pellicle formation occur in parallel, S. oralis and S.
mitis were amongst the predominant early colonizers on
titanium-coated glass surfaces and no Actinomyces species
were found [13]. In vitro, the presence of saliva on both
smooth or moderately-rough surfaces has been shown to
both increase and decrease the adherence of the early
colonizer, S. oralis, [10,14] while binding of A. naeslundii
to titanium was unaffected by the presence of a salivary
pellicle [11]. Overall, the results of studies of bacterial
adherence to titanium in the presence of saliva have not
yielded a clear picture and while some of the differences
seen may attributable to the saliva used, variation in the
bacterial strains and types of titanium surface may also
contribute to the lack of consensus.

While biofilm development is important for the deve-
lopment of oral disease, a crucial contributory factor is the
physiology and level of activity of the adhered bacteria.
Bacterial adaptation to the biofilm mode of life is known
to be associated with major changes in transcription and
protein synthesis [15]. For example, in Porphyromonas
gingivalis comparative transcriptomic analysis revealed
that a large number of genes are differentially expressed in
biofilm cells compared to their free-floating counterparts
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[16]. In a study in Streptococcus mutans, the relative rate
of synthesis of at least 25 different proteins was enhanced
within 2 hours of attachment to a glass surface. These
proteins were mostly associated with carbohydrate
catabolism [17] suggesting that changes in metabolic
activity may occur during adhesion to surfaces. Little
is currently known, however, about the metabolic status of
cells during interactions with pellicle proteins in the early
stages of biofilm formation. The aim of this work was to
study how adherence to titanium surfaces affects the meta-
bolic activity of the early colonizer S. oralis and to determine
the effect of a salivary pellicle on this process. To shed light
upon which salivary proteins may influence adherence and
metabolic activity, the predominant proteins present in a
salivary pellicle formed on titanium have been identified.

Methods

Bacteria and culture conditions

A fresh clinical isolate of S. oralis (89C) was obtained from
a patient with an on-going peri-implant infection after
ethical approval had been obtained from the Faculty of
Odontology [14]. Bacteria were grown overnight on blood
agar in an atmosphere of 5% CO, in air at 37°C. Colonies
were suspended in 120 ml phosphate buffered saline
[0.15M NaCl, 10mM NaH,PO,, pH 7.4 (PBS)] to give an
ODgoonm = 0.6. For the flow-cell experiments, an equal
volume of PBS was added to halve the cell concentration
prior to biofilm formation, whereas for the planktonic
experiments the original bacterial suspension was mixed
with an equal volume of either PBS, or 50% whole human
saliva to give a final concentration of 25% saliva.

Collection and preparation of saliva

Whole saliva collected on ice over 1 hour from ten healthy
individuals was pooled and prepared as described previously
[18] after ethical approval had been obtained from the
Faculty of Odontology. Briefly, the sample was mixed with
an equal volume of PBS, stirred gently overnight at 4°C and
centrifuged in a Beckman Coulter Avanti J-E centrifuge
(Beckman JA 20 rotor; Beckman Coulter, Brea, CA)
(20 minutes, 30 000 g, 4°C). The supernatant was
then subjected to isopycnic density-gradient centrifuga-
tion in CsCl/0.1M NaCl in a Beckman Coulter Optima
LE-80K Ultracentrifuge (Beckman 50.2 Ti rotor, starting
density 1.45 g ml™") at 36000 rpm for 90 hours at 15°C.
Fractions containing bacteria were discarded and those
remaining were pooled, dialysed against PBS and stored
at—20°C.

Titanium surfaces

The titanium surfaces used in this study were of commer-
cially pure grade IV titanium, which was smooth, with an
average surface roughness (S,) of 0.1 pm [14]. The plates
(99 x 25 x 0.8 mm) were turned, cleaned with detergent,
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rinsed with distilled water and sterilized using y irradiation
(ELOS Pinol A/S).

Characterization of saliva pellicles

Two titanium plates, separated by a rubber spacer with
thickness of 1.6 mm, were mounted in a flow-cell and
the surfaces coated with 50% whole human saliva
overnight. After this time the flow-cells were drained
and the surfaces washed (2 x2 mins) with PBS on a
rocking plate. To remove the surface-associated pellicles,
a mixture of Tween 80 (0.006 v/v%) and Triton X-100
(0.012 v/v%) was introduced and the whole flow-cell placed
in an ultrasonic bath for 1 hour. The contents were then
drained and collected before repeating this step for an
additional 15 minutes. Protein desorbates collected after
each wash were pooled and the protein concentration deter-
mined using a 2D Quant kit (GE Healthcare Life Sciences).
A volume corresponding to 20 pg protein was subjected to
2DE. Briefly, the desorbate was diluted with rehydration
buffer and placed in a re-swelling cassette with 18 cm pH
4-7 linear IPG strips (GE Healthcare Life Sciences) on top.
Rehydration was undertaken at room temperature for 30
hours under silicone oil. Isoelectric focusing was carried out
using a Multiphor II (GE Healthcare Life Sciences) with
cooling water at 15°C supplied by Pharmacia Multitemp II.
The focusing was initiated at 150 V for 1 hour and contin-
ued at 300 V for 3 hours, 600 V for 3 hours, 1200 V for 12
hours and finally 3,500 V for 20 hours. After focusing, the
IPG strips were stored at —80°C. Before running in the
second dimension, the IPG strips were equilibrated first in
50 mM Tris buffer pH 6.8 containing 2% SDS, 26% glycerol
and 16 mM DTT for 15 minutes and then in 50 mM Tris
buffer pH 6.8 containing 2% SDS, 26% glycerol, 250 mM
iodoacetamide and 0.005% bromophenol blue for another
15 minutes. The equilibrated IPG strips were embedded on
top of 14% polyacrylamide gels (20 x20x0.1 cm)
using 0.5% (w/v) molten agarose. SDS-PAGE was
performed at a constant current of 15 mA gel™, 10°C, over-
night in a PROTEAN 1II xi cell (Bio-Rad) with rainbow
high-range molecular mass standards (GE Healthcare Life
Sciences) run on the acidic side of the IPG strips. Gels were
stained with Coomassie brilliant blue or silver according to
the protocols from GE Healthcare Life Sciences.

Identification of proteins on 2D gels by LC-MS/MS

Spots of interest were excised manually from Coomassie
brilliant blue stained 2DE gels of whole saliva and subjected
to LC-MS/MS as described previously [19]. Briefly, proteins
were reduced with DTT (60°C, 20 minutes), alkylated with
iodoacetamide (25°C, 10 minutes) and then digested with
trypsin (37°C, 8 hours). Tryptic peptides were separated
and subjected to MS. Peptide peaks were deconvoluted
automatically and mass lists in the form of Mascot Generic
Files used as the input for Mascot MS/MS Ions searches of

Page 3 of 9

the NCBInr database using the Matrix Science web server
(www.matrixscience.com).

Determination of surface coverage and viability

Viability of cells suspended in PBS or 25% whole saliva
was assessed by staining a drop of the suspension with
the Live/Dead BacLight staining kit (Life Technologies,
Stockholm, Sweden) at baseline (time 0), after 2 and 24
hours and viewing with an inverted confocal laser scan-
ning microscope (CSLM) (Eclipse TE2000, Nikon Corp.).
The vertical, parallel plate flow-cell system used has been
described previously (14). Briefly, S. oralis cells were passed
over two titanium surfaces (99.25 x 25.25 x 0.8 mm)
separated by a 1.6 mm rubber spacer, which were either
uncoated or had been coated with saliva overnight. All
experiments were carried out at 37°C and a laminar flow of
42 ml h™" was used to model the daily flow of saliva over
the oral surfaces. All solutions were introduced through the
lower inlet and outflow occurred through the upper valve.
Initially, surfaces were rinsed with PBS for 30 minutes. The
same bacterial suspension was then introduced into two
flow-cells; one containing two uncoated surfaces and the
other containing two saliva-coated surfaces for 2 or 24
hours at 37°C. After this time, the flow-cells were washed
with PBS (as above) for 30 minutes to remove loosely
attached bacteria from the surfaces. Surface coverage and
viability of surface-associated cells were assessed on one
of the titanium plates in each flow-cell using Live/Dead
BacLight staining. Experiments were carried out three
times using independent bacterial cultures.

Determination of metabolic activity

To investigate metabolic activity of planktonic cells, an ali-
quot was removed from the same bacterial suspension
used for the viability measurements, placed in an ibidi
flow-cell chamber and the cells incubated with the
BacLight CTC Vitality Kit (Life Technologies, Stockholm,
Sweden) in a humid chamber at 37°C for 2 hours. The
slides were then viewed using a CSLM. To investigate
the metabolic activity of adhered cells, the second
titanium plate in each flow-cell, was incubated with the
BacLight CTC Vitality Kit as above and the cells then
counterstained with 4, 6-diamidino-2-phenylindole (DAPI,
Life Technologies, Stockholm, Sweden). Stained cells were
visualized using a CSLM.

Image analysis and statistics

For samples stained with the Live/Dead BacLight staining
kit, ten random images each with an area of 127.3 um?
were taken for image analysis. Images were analysed using
the biolmage_L software package to quantitate the average
surface coverage as well as the proportion of live
(green) and dead (red) cells [20]. For samples stained
with the BacLight CTC Vitality Kit to assess metabolic
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Cells in suspension

Adherent cells

0 hr

Percent live cells: 99+0.3%

2hr 24 hr

Percent live cells: 94+3%

Surface coverage: 245110 ym? Surface coverage: 96+52.8ym?

Percent live cells: 80+4.5%

Figure 1 Images showing biofilm formation by S. oralis on uncoated titanium surfaces. Bacteria suspended in PBS were allowed to form
biofilms on titanium surfaces in a parallel plate flow-cell system for 2 and 24 hours. The viability of the cells was assessed by Live/Dead Baclight
staining and viewing with CSLM. Surface coverage on the titanium plates was assessed from ten random images using the bio/mage_L software
package. The scale bars represent 10 um and the inserts show cells in twofold enlargement.

activity, image analysis was performed by observing at
least 1000 cells and counting the number of metabolically
active cells (red/pink) and non-active cells (unstained in
the suspension samples or counterstained blue on the
titanium surfaces). The results obtained were evaluated
using Student’s ¢-test to compare two groups or a one-way
ANOVA with the Bonferroni post-test to compare three
groups. A confidence interval of 95% was chosen and
p values below 0.05 were considered significant.

Results

Biofilm formation on titanium in flow-cells

The biofilm-forming ability of S. oralis was investigated
in a flow-cell system containing two uncoated titanium
surfaces. Bacterial colonies dispersed in PBS were intro-
duced into flow-cells and allowed to adhere for 2 or 24

hours. After 24 hours, the average surface coverage was
decreased by 60% compared to that after 2 hours,
suggesting that some of the cells which adhered initially
detached over time (Figure 1). In the initial cell suspen-
sion the level of viability was high as revealed by staining
with the BacLight Live/Dead kit. After 2 and 24 hours,
the viability of the adherent populations was not signifi-
cantly different to that of the original suspension, indi-
cating that binding to titanium did not adversely affect
the cells. Since surfaces in the oral cavity are covered with
a salivary pellicle, we investigated the effect of saliva on
adherence and viability of S. oralis. On surfaces coated
with 25% saliva, the average surface coverage after 2 hours
(178 + 103 pm?) was not significantly different to that
seen on the uncoated surfaces (p=0.67) (data not
shown). As for the uncoated surfaces, after 24 hours

Cells in suspension

Adherent cells

0 hr

Percent active cells: 6+1.5%

2hr 24 hr

Percent active cells: 48+5.8% Percent active cells: 20+1.1%

inserts show cells in twofold enlargement.

Figure 2 Images showing metabolic activity of S. oralis in suspension and adhered to uncoated titanium surfaces. Bacteria suspended in
PBS were allowed to form biofilms on titanium surfaces in a parallel plate flow-cell system for 2 and 24 hours. The metabolic activity of the cells
was assessed using the Baclight CTC Vitality Kit. For adhered cells, DAPI was used as a counterstain. Cells were viewed with CSLM and the
proportion of metabolically active (red/pink) cells assessed by manually counting at least 1000 cells. The scale bars represent 10 um and the
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the average surface coverage on the saliva coat had
declined (24.6 +7.4 umz), demonstrating that bacterial
cells also detached from these surfaces over time. The
level of viability of the cells on the saliva-coated surface
was not significantly different to that on the uncoated
surface at the same time point.

Metabolic activity in relation to contact with uncoated
and saliva-coated surfaces

Metabolic activity of S. oralis cells was assessed using
the BacLight CTC Vitality Kit, where metabolically
active cells reduce the colourless tetrazolium salt to an
insoluble formazan product causing them to appear red
(or pink in the presence of the blue DAPI counterstain).
Cells removed from blood agar at time 0 and dispersed
in PBS showed a low level of endogenous metabolic
activity (6 + 1.5%) (Figure 2). Continued incubation of the
cells in PBS had no significant effect on the level of meta-
bolic activity after 2 hours (4 + 0.5%) or 24 hours (2 £ 0.1%).
However, after 2 hours in the flow-cell model, the adherent
population contained a significantly higher proportion of
red cells indicating that metabolic activity was stimulated
by contact with a surface. After 24 hours, the level of
metabolic activity within the adherent population had
decreased but was still significantly greater than in
the original PBS suspension (p <0.01).

The effects of saliva coating on the metabolic activity of
adherent bacteria were then investigated. This revealed
that the levels were significantly higher for cells associated
with the saliva-coated surface after 2 hours and 24 hours
compared to those in the original PBS suspension
(p<0.001) (Figure 3). Incubation of bacteria with
25% saliva in suspension caused no significant change in
metabolic activity over 2 hours (4 + 0.5%) or 24 hours
(3+£0.6%) suggesting that the effect was specific to
salivary proteins adhered to a surface. These data thus
show that adsorbed salivary proteins have the capacity to
elicit a metabolic response that is not seen when the
proteins are present in solution.

Since non-viable cells on the surfaces are not expected
to show metabolic activity, to investigate the level of
metabolic activity as a function of the number of viable
cells, a ratio was calculated for each time point (Table 1).
This revealed that for cells suspended in PBS or saliva,
while viability was maintained, there were no significant
changes in metabolic activity over time. Adherence to an
uncoated surface caused the proportion of the viable
cells that were metabolically active to rise to 50% after 2
hours, whereas binding to a saliva pellicle significantly
increased this level to 98% of the viable cells (p < 0.001).
Thus while initial contact with a surface caused an
increase in metabolic activity within the population, this
was greatly enhanced by the presence of a salivary
pellicle. After 24 hours, the proportion of metabolically
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Adherent cells on saliva-coated surfaces

2hr 24 hr

Percent active cells: 93+2.7% Percent active cells: 69+2%

Figure 3 Images showing metabolic activity of S. oralis adhered
to saliva-coated titanium surfaces. Bacteria suspended in PBS
were allowed to form biofilms on saliva-coated titanium surfaces in
a parallel plate flow-cell system for 2 and 24 hours. The metabolic
activity of the cells was assessed using the Baclight CTC Vitality Kit
with DAPI as a counterstain. Cells were viewed with CSLM and the
proportion of metabolically active (red/pink) cells assessed by
manually counting at least 1000 cells. The scale bars represent 10
um and the inserts show cells in twofold enlargement.

active cells on the uncoated titanium surface had
decreased to 25% whereas on the saliva-coated surface
the level remained at 96%. This suggests that, in addition
to enhancing the initial response to surface contact, the
presence of salivary proteins sustained the increase in
metabolic activity over 24 hours.

Characterisation of saliva coating on titanium surfaces

To identify the major protein components in the bacteria-
free saliva preparation, the material was subjected to 2DE
and proteins visualised by staining with Coomassie brilliant
blue (Figure 4a). This revealed the presence of over 100
spots, of which the majority (70) were picked, and 68 of
these could be identified using LC-MS/MS (Table 2).
Almost all the proteins present were shown to be of
salivary origin, with secretory IgA, zinc-a,-glycoprotein,
members of the cystatin family, a-amylase and prolactin-
induced protein (PIP) as the dominant species in the

Table 1 Proportion of viable bacteria in the population
showing metabolic activity under different conditions

% live cells with
metabolic activity

Environment

0h 2h 24 h
Cells suspended in PBS 6+15 4+05 24003
Cells adhered to uncoated surfaces in PBS - 50+£45 25+26
Cells suspended in 25% saliva - 4+08 3+06
Cells adhered to surfaces coated - 98+43 96£63

with 25% saliva
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kDa 4

Figure 4 2DE gels of whole saliva and the salivary pellicle desorbed from titanium surfaces. Pooled whole human saliva (A) and salivary

pellicles desorbed from titanium surfaces using detergent (B) were subjected to isoelectric focussing on pH 4-7 IPG strips followed by SDS-PAGE

on 14% gels. Gels were stained with Coomassie Blue (A) or silver (B). Spots of interest were picked from the Coomassie gel, identified using
LC-MS/MS and spot identities transferred to the silver gel. An explanation of the labels is given in Table 2.

.

preparation. In addition, kallikrein, fatty acid-binding
protein and von Ebner’s protein were identified.

To identify the proteins present in the salivary pellicle
formed on titanium, surfaces were incubated overnight
with saliva and, after washing, the adhered proteins were
desorbed with detergent and subjected to 2DE (Figure 4b).
Silver staining of the gels revealed around 50 spots of

which all were seen in the Coomassie stained saliva gel.
Secretory IgA, cystatin proteins, a-amylase and PIP were
present but zinc-a,-glycoprotein was absent indicating that
this protein did not adhere to the titanium surface. The
relative intensity of PIP spots in the pellicle was greater
than in the original saliva preparation suggesting that this
protein might be enriched on the titanium surface.
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Table 2 Identities of proteins from whole saliva or salivary
pellicles desorbed from titanium surfaces using detergent
obtained using LC-MS/MS of spots from 2DE gels.

Protein identity Spot % Sequence Detected on
name coverage surface
Amylase amy 45-55 Yes
Calgranulin cal 49 No
Cystatin
S cysS 77 Yes
SA cysSA 37-73 Yes
D cysD 31 Yes
Fatty acid binding protein fab 51 Yes
Immunoglobulin A
J chain IgA/) 37-63 Yes
Heavy chain IgA/h 18-36 Yes
Heavy chain C region lgA/c 21 No
Secretory component sec 32-36 Yes
Bur Bur 11-15 No
Immunoglobulin
Light chain (kappa) lg/k 38-59 Yes
Kallikrein kal 10 No
Prolactin-inducible protein pip 63-67 Yes
Von Ebners’s gland protein vEb 27 No
(lipocalin)
Zinc-a2-glycoprotein ZnGP 23-45 No

Discussion

Early colonizers such as S. oralis initiate biofilm formation
by interacting directly with the salivary pellicle that is
present on oral surfaces. In this study, we have used pelli-
cles of saliva prepared by density-gradient centrifugation
under non-denaturing conditions. The advantage of this
technique is that salivary bacteria, which are pelleted, can
be separated from large macromolecules allowing the
preparation of bacteria-free, ‘native’ saliva in which
even large salivary proteins are present. We have previously
identified the two large salivary mucins (MUC5B and
MUC?7) as well as gp340, lysozyme, lactoferrin, a-amylase,
secretory IgA and statherin in this preparation using ELISA
[21]. In this study, we performed 2DE in combination with
LC-MS/MS to identify lower molecular-weight salivary
proteins (Figure 4a). Secretory IgA was the most abundant
protein as revealed by the presence of several fragments
(secretory component, heavy chain, k-chain and J-chain). In
agreement with analyses of human saliva by other groups
using proteomics approaches [7,22] we were also able to
identify a-amylase, proteins of the cystatin family, zinc-o,-
glycoprotein and PIP. Fatty acid binding protein, kallikrein
and von Ebners gland protein (lipocalin) were present
in minor amounts. In this study we have applied the
methodology to examine the salivary pellicles formed
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on titanium. This showed that sIgA and a-amylase were
the most abundant proteins in the pellicle in addition to
members of the cystatin protein family and PIP (Figure 4b).
Previous studies using SDS-PAGE combined with Western
blot analysis with specific antibodies against salivary
proteins, have shown that a-amylase, sIgA and Prps bind to
titanium [10,11]. Zinc-ay-glycoprotein was absent from the
pellicle desorbate suggesting that this protein does not
adhere to titanium whereas the greater relative abundance
of PIP in the desorbate than in the original saliva prepar-
ation indicates that the protein is enriched on the surface.
Oral bacteria such as S. salivarius, S. parasanguinis and S.
oralis can interact with PIP [23,24], suggesting that this
protein could play an important role in modulating
bacterial colonization of oral surfaces. To our knowledge,
this is the first time that PIP has been identified as an
abundant protein in pellicles on titanium. A 20 kDa
protein corresponding to PIP [25] has previously been
demonstrated to bind to hydroxyapatite but was not
enriched in the same way found here [26]. One limi-
tation of this study however is that it is currently unknown
whether the results are applicable to other titanium
surfaces with differing surface topographies or surface
modifications.

In the flow-cell model, S. oralis adhered well to saliva-
coated surfaces after 2 hours - in keeping with other studies
on primary colonizers such as Streptococcus anginosus,
Streptococcus gordonii and Streptococcus sanguinis [10] and
Actinomyces naeslundii [11]. As a group, oral streptococci
are known to express adhesins which have affinity for a
range of proteins present in saliva [27]. In a previous study,
we identified a 1060 amino-acid-containing, LPXTG-linked
protein expressed in strains of S. oralis which bound well to
salivary pellicles and in silico analysis of the S. oralis
genome revealed a further two LPXTG-linked putative
adhesins [14]. Little is however known about specific
adhesins present on S. oralis and the ligands to which
the previously identified adhesins bind are currently
unidentified.

In this study, the fluorescent redox indicator CTC,
which gives rise to red, insoluble product when reduced
by intracellular electron transport activity, was used as a
marker of metabolic activity [28]. This technique has been
used previously to investigate the activity of Staphylococcus
aureus and Staphylococcus epidermidis on albumin-coated
titanium surfaces [29]. In oral streptococci, the major
energy-generating pathway which results in high NADH/
NAD + ratios, and thus red staining within the cells, is the
glycolytic pathway. We have shown that adherence of
cells to uncoated titanium under flow led to an
increase in metabolic activity within the viable bacteria
population from 6% to 50% within the first 2 hours
(Figure 2). This suggests that, even in the absence of
nutrients, surface contact activated energy-generating
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pathways within the cells. During transition from the plank-
tonic to the biofilm mode of life, microorganisms are well
known to undergo major transcriptional and proteomic
changes [15]. For example, synthesis of a range of enzymes
in the glycolytic pathway including dehydrogenases and
kinases has been shown to be enhanced during early
biofilm formation [17]. In addition, transcriptional studies
in P. gingivalis have shown that 18% of the genome is
differentially regulated in adherent cells compared to those
in suspension, with changes in expression of genes associ-
ated with cell envelope synthesis, DNA replication and
metabolism [16]. Since in E coli, it has been proposed that
the activity of the glycolytic pathway is regulated by the
demand for ATP [30], the requirement for energy to drive
anabolic processes associated with surface contact could
explain the increase in metabolic activity seen in our study.
The stimulatory effect of surface contact was doubled by
the presence of a saliva coat, where 93% of the viable popu-
lation was metabolically active after 2 hours (Figure 4,
Table 2) and the effect was sustained over the following 22
hours. This increase was not seen in bacteria in contact
with the same preparation of saliva in solution, suggesting
that the conformation of the proteins is important for the
response. Thus we have shown that surface-associated sal-
ivary proteins have the capacity to influence the metabolic
status of adherent S. oralis cells. However, this study is lim-
ited by the use of one strain of S. oralis and further studies
are therefore required to determine whether the results can
be generalized to other oral bacteria as well as to identify
mechanisms underlying the effect and the salivary
proteins responsible.

Conclusions

In conclusion, we have shown that adherence to smooth
titanium surfaces is associated with an up-regulation of
metabolic activity in the early oral colonizer S. oralis,
most likely as part of an adaption to the biofilm
mode of life. The effect was enhanced by the presence of a
salivary pellicle which was shown to contain a number of
proteins including sIgA, o-amylase, cystatins and PIP
which, for the first time, was identified as an abundant
component of salivary pellicles on titanium. Further
studies are now required to clarify the mechanisms
underlying the effect of surface contact on metabolic
activity as well as to identify the salivary proteins responsible
for the effect.
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