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Abstract

Background: One promising way of reducing caries is by using sucrose substitutes in food. rubusoside is a
prototype sweet substance isolated from the leaves of the plant Rubrus suavissimus S. Lee. (Rosaceae), and is rated
sweeter than sucrose. The purpose of this study was to investigate the effects of rubusoside on Streptococcus
mutans growth, acidogenicity, and adherence to glass in vitro.

Methods: The effects of rubusoside on the growth and glass surface adhering of Streptococcus mutans were
investigated by measuring the optical density of the culture at 540 nm with a spectrophotometer. Rubusoside
influence on Streptococcus mutans acidogenicity was determined by measuring the pH of the culture. Sucrose,
glucose, maltose, fructose and xylitol were designed to compare with rubusoside.

Results: S. mutans growth in the rubusoside-treated group was significantly lower than that in the sucrose, glucose,
maltose and fructose groups (p < 0.05) except for xylitol group (p > 0.05). Sucrose-treated S. mutans exhibited the
highest adherence to glass, and rubusoside-treated S. mutans exhibited the lowest. S. mutans adherence to a glass
surface and acidogenicity with sucrose were significantly reduced by rubusoside.

Conclusions: Rubusoside may have some potential as a non-cariogenic, non-caloric sweetener.
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Background

Dental caries is a multifactorial and chronic bacterial dis-
ease that involves the destruction of tooth hard tissue
structure. It is directly caused by the acid produced by oral
bacteria fermentation of dietary carbohydrates in dental
plaque [1]. Dental plaque represents a microbial ecosys-
tem in which non-mutans bacteria (mainly non-mutans
streptococci and Actinomyces) are the key microorgan-
isms responsible for maintaining dynamic stability on the
tooth surface (dynamic stability stage) [2, 3]. Subjects that
frequently consume a considerable amount of ferment-
able carbohydrates, select for bacteria that ferment
these carbohydrates and produce acids. This leads to
more sugar fermentation and thus acid production, in-
creasing the cariogenic bacteria even more. Acidogenic
(acid-producing) and aciduric (acid-tolerating) bacteria
such as the classic Streptococcus mutans, Streptococcus
sobrinus and Lactobacillus spp., and the later discovered
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Bifidobacterium spp., lower the pH to levels at which
enamel is demineralized, which can result in caries [4]. S.
mutans is the major microbial etiological agent of dental
caries, due to its ability to adhere to the tooth surface, by
producing sticky extracellular polysaccharides from su-
crose, and to ferment sucrose and other sugars to acids
which attack the tooth enamel [5, 6]. There has been
broad consensus that quantity and frequency of consump-
tion of sucrose-containing foods is correlated with caries
incidence [7, 8] Strict, long-term restriction of cariogenic
sugars undoubtedly results in significant caries reduction.
However, considering the human preference for sweet
food items, restriction of cariogenic sugars without offer-
ing alternatives is impractical [9]. Therefore, especially for
patients who are susceptible to dental caries, the use of
non-cariogenic sugar substitutes should be considered.
Plants contain a number of highly sweet compounds,
several of which are used commercially in one or more
countries, particularly in Japan [10]. Rubusoside is a
prototype sweet substance isolated from the leaves of the
plant Rubrus suavissimus S. Lee. (Rosaceae), a natural
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non-toxic traditional Chinese medicine [11]. Historic-
ally, Rubrus suavissimus S. Lee leaves have been used
by people in the Guangxi province (People’s Republic of
China) as tea to drink and to prevent and cure diseases.
Rubusoside, structurally characterized in the early 1980s,
is a diterpene glycosides consisting mainly of steviol and
dextrose (C32H50013) [12], (Fig. 1) and was rated as
sweeter than sucrose. Rubusoside is investidated to be a
low toxicity, light side effect material. Liang et al studied
the acute and chronic toxicity of Rubusoside. They found
that Rubusoside had no toxicity on the development,
hematology, function of the liver and kidney and histology
in rats [13]. Rubusoside widely used as a natural sweetener
for seasoning and additive in food industry [12]. The
purpose of this study was to investigate the effects of
Rubusoside on in vitro S. mutans cariogenic properties
and to determine possibility to use as a non-cariogenic
sugar substitute.

Methods

Saccharides

A highly purified preparation of rubusoside (98 % pure)
was kindly provided by Guangxi Jinxiu Shengtang
Pharmaceutical Co. Ltd. (China). Sucrose, glucose, mal-
tose, fructose and xylitol were reagent-grade (Sigma,
Saint Louis, MO, USA).

Microorganisms

Stock cultures of S. mutans Ingbritt 1600 (serotype c)
were maintained at 4 °C on brain-heart infusion agar
slants. Bacterial identity was confirmed before and after
testing previously described by Drucker and Green [14].
Washed cell-suspensions were prepared from 200 mL
samples of brain-heart infusion broth, inoculated with
5 mL starter culture and incubated micro-aerophilically
for 18 h at 37 °C. Cultures were re-incubated with 1 vol-
ume of fresh medium for 1 h, centrifuged at 3000 g for
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Fig. 1 Chemical structures of rubusoside from Rubrus suavissimus
S. Lee
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15 min at 4 °C, and washed three times with cold, sterile,
phosphate-buffered saline (PBS) and resuspended in PBS
to an ODsyp = 1.0 using a spectrophotometer (LAMBDA
BIO 20, PerkinElmer, Massachusetts, USA), correspond-
ing to ~5.0 x 108 CFU/mL. Cell suspensions were used
immediately.

Test solutions and media

Test solutions consisted of Trypticase (2 %), NaCl (0.2 %),
K,HPO, (0.3 %), KHyPO4 (0.2 %), K,CO3 (0.1 %),
MgSOy (0.012 %), and MnSO, (0.0015 %), An appropri-
ate amount of yeast extract and the cysteine in distilled
water which was used as the basic suspending fluid in
all experiments [15].

The test solutions (50 mM of each carbohydrate)
were sucrose, glucose, maltose, fructose, rubusoside,
rubusoside + sucrose and xylitol. Sucrose and the basic
suspending fluid were used as positive and negative
control. Carbohydrate solutions of sweeteners in dH,O
were sterilized by membrane filtration and the pH was
adjusted to 7.4 with 10 mM NaOH.

Saccharides influence on S. mutans growth

The original cell suspension (1 mL) was added to
15 mL of the various test solutions: the basic suspend-
ing fluid; or the basic suspending fluid include saccha-
rides; sucrose, glucose, maltose, fructose, rubusoside,
rubusoside + sucrose or xylitol, and incubated micro-
aerophilically for 48 h at 37 °C. After, test suspensions
were centrifuged at 3000 g for 15 min at 4 °C, and the
cells were washed three times with cold, sterile, PBS and
resuspended in PBS. The suspensions were homogenized
by sonic oscillation. The optical density (OD s549) of the
aqueous phase was then read to compare the cell growth
in the various media used. Experiments were performed
in triplicate.

Saccharides inhibition of S. mutans adherence to a glass
surface

To assess the bacterial adherence of growing cells of
S. mutans to a glass surface, the original cell suspen-
sion (1 mL) was added to 20 ml of the various test
solutions: the basic suspending fluid; or the basic sus-
pending fluid include saccharides; sucrose, glucose,
maltose, fructose, rubusoside, rubusoside + sucrose or
xylitol, in a glass test tube (15 x 150 mm) containing a
glass rod (5x100 mm), and incubated micro-
aerophilically for 48 h at 37 °C. After, the glass rod
was carefully taken out from the culture, and the mi-
crobial deposits on the glass rod were washed for 10 s
with dH,O to remove the cells that grew in close con-
tact with the glass surface but did not actually adhere.
The the glass rod was then suspended in 20 mL of
water by vigorous vibration with a mixer, as adherent
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cells of strains can be removed by being mixed with a
vortex blender. The suspensions were centrifuged at
3000 g for 15 min at 4 °C; and the cells were washed
three times with cold, sterile PBS and resuspended in
sterile PBS. The suspensions were homogenized by
sonic oscillation. Optical density at ODsy4g of the sus-
pensions was measured with a spectrophotometer. Ex-
periments were performed in triplicate.

Saccharides influence on S. mutans acidogenicity

For assaying pH reduction, the original cell suspension
(1 mL) prepared was added to 15 ml of the various test
solutions: the basic suspending fluid; or the basic suspend-
ing fluid include saccharides; sucrose, glucose, maltose,
fructose, rubusoside, rubusoside + sucrose or xylitol, and
incubated micro-aerophilically with shaking for 48 h at
37 °C. After, the pH of the solutions was measured via a
pH-meter (MP230, Mettler-Toledo, Inc., Switzerland).
Experiments were performed in triplicate.

Statistical analysis
Data were analyzed using SPSS 17.0 software by ANOVA,
followed by a post-hoc Newman—Keuls test with a = 0.05.

Result

Saccharides influence on S. mutans growth

The effect of the various Saccharide solutions on S.
mutans growth is shown in Fig. 2. The rubusoside-treated
group was significantly lower than that of the sucrose
(positive control), glucose, maltose and fructose groups
(p <0.05). No significant differences in ODs4y was ob-
served when comparing the rubusoside-treated group
to the xylitol group and negative control (p>0.05).
When rubusoside was incubated with S. mutans in the
presence of sucrose, S. mutans growth was higher than
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that with rubusoside alone (p <0.05), but significantly
lower than in the positive control (sucrose) (p < 0.05).

Saccharides inhibition of S. mutans adherence to a glass
surface

The inhibitory effects of the various saccharides on S.
mutans adherence to a glass surface are summarized in
Fig. 3. In the saccharide groups, sucrose-treated S. mutans
exhibited the highest adherence to glass, and rubusoside-
treated S. mutans exhibited the lowest. When rubusoside
was incubated with S. mutans in the presence of sucrose,
S. mutans adherence to glass was increased, but was
significantly lower than sucrose (p <0.05) ; and did not
significantly differ from that of the negative control.

Saccharides influence on S. mutans acidogenicity

The effects of the various saccharides on S.mutans acido-
genicity are summarized in Fig. 4. The terminal pH of
rubusoside-treated S. mutans was significantly higher than
that of the sucrose, glucose, maltose and fructose groups
(p <0.05). No significant differences were observed when
comparing rubusoside-treated S. mutans to the xylitol
group and negative control (p > 0.05).

Discussion

The microbial and dietary factors that cause tooth decay
have been studied scientifically for more than 100 years.
Frequent and/or excessive sugar (especially sucrose)
consumption has been described to play a central role in
caries causation, and S. mutans appeared to play a key role
in metabolizing sucrose to produce lactic acid, which can
demineralize enamel [16]. The cariogenic nature of sucrose
has led to an intensive search for alternative compounds
possessing sweetness without cariogenicity [17]. Sucrose
substitutes that are not metabolized by plaque-forming
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Fig. 2 Effects of various experimental groups on the growth of S. mutans
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Fig. 3 Effects of various experimental groups on the adherence of S. mutans to glass surface

bacteria, particularly S. mutans, have been proposed as a
promising approach to caries prevention [18].

Rubusoside is a naturally sweet substance isolated
from the leaves of the plant Rubrus suavissimus S. Lee.
(Rosaceae), and was rated as sweeter than sucrose. Su-
crose has been established to have the strongest cariogeni-
city, with glucose, maltose and fructose in decreasing
cariogenicity. Xylitol is non-cariogenic and superior to the
other sweetener for caries control [19-21]. In the present
study, we focused on S. mutans growth, adherence and
acid production when incubated with rubusoside, glucose,
maltose, fructose, xylitol, and sucrose.

The results of saccharide effects on S. mutan growth
showed that ODs4 of rubusoside-treated group was sig-
nificantly lower than that of the sucrose (positive control),
glucose, maltose and fructose groups. Moreover, rubuso-
side was significantly less acidogenic than glucose, mal-
tose, fructose and sucrose. However, no significant
differences were observed when rubusoside was compared
to the xylitol group and negative control. These results

indicate that rubusoside, like xylitol, either cannot be me-
tabolized or is metabolized very slowly by S. mutans.

The ability of S. mutans to adhere to and form aggre-
gations as plaque on tooth surfaces is closely related to
its ability to cause caries [5, 22—-24]. Many studies indi-
cate that the production of water-insoluble glucan from
sucrose by extracellular glucosyltransferases (GTF) facili-
tates the bacterial adherence and plays an important role
in the formation of the bacterial aggregates which make
up plaque [5, 23, 25]. Our present study shows that of
the carbohydrate groups, the highest optical density of S.
mutans adhering to a glass rod was found for sucrose
group (positive control) and the lowest for the rubuso-
side group. This result suggests that rubusoside mark-
edly reduce S. mutans. adhesion to solid surfaces. Thus,
we propose that rubusoside is not utilized by GTF of S.
mutans to produce water-insoluble glucan.

Sucrose is cheap, easily produced from sugar cane or
sugar beet, high in calories, and is used as a bulk constitu-
ent of foods, a role which no other sweetener would be
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likely to replace. Although rubusoside is highly sweet, it is
low in calories [11]. Thus, the apparent non-cariogenic
properties of rubusoside suggest a possible role as an addi-
tive to sucrose itself. The results of the present experi-
ments with co-fermentation of rubusoside and sucrose by
S. mutans reveal S. mutans growth and adhesion reduc-
tion. Moreover, the acidogenicity of sucrose was markedly
decreased by the presence of rubusoside. Therefore, rubu-
soside may affect the cariogenicity of sucrose when used
as sweetening additives.

So far, rubusosides mechanism of action is still un-
known. However, it has been established that structure
of rubusoside is a diterpene glycosides consisting mainly
of steviol and dextrose (C32H50013) [12]. From our
study we proposed that its possible mechanism of action
was that as a five-carbon sugar alcohol, rubusoside can-
not be digested by S. mutans.when it is transported into
the cell, where it probably stays bound to the transport
protein. This bond is unbreakable by the usual enzymes
so the transport protein is tied up. The transport protein
cannot go back out to get more glucose to provide the
cell with energy. The reduced number of the transport
protein is the process thought to reduce acid production
in S. mutans.

Conclusion

In the last years, the multifactorial etiology associated to
ecological theory is widely accepted. The literature showed
that caries is not a S. mutans dependent disease [26].
Hence, further in vitro and clinical studies are needed,
particularly for assessment of the role played in the dental
biofilm. In short, from the present study, rubusoside may
not be used as an energy source by S. mutans so that no
significant production of acids by these organisms will be
followed. It may not act as the substrate for the synthesis
of glucan by GTF of S. mutans, however it may inhibit
glucan synthesis from sucrose. It may have some potential
as a non-cariogenic, non-caloric sweetener.
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