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1,25-dihydroxyvitamin D3 suppresses
lipopolysaccharide-induced interleukin-6
production through aryl hydrocarbon
receptor/nuclear factor-κB signaling in oral
epithelial cells
Hao Li1* , Wei Li2 and Qi Wang2,3

Abstract

Background: Antiinflammatory effect of 1,25-dihydroxyvitamin D3 (1,25D3) has been reported in periodontitis, but
the exact mechanisms remain unclear. Oral epithelial cells are recently highlighted as an important regulator of
inflammation in this disease. This in vitro study was established to investigate the effect of 1,25D3 on key
proinflammatory cytokine IL-6 production and aryl hydrocarbon receptor (AhR)/nuclear factor-κB (NF-κB) signaling
in oral epithelial cells upon the stimulation of lipopolysaccharide (LPS) from periodontal pathogens.

Methods: OKF6/TERT-2 oral keratinocytes were incubated with LPS and different concentrations of 1,25D3, and
levels of IL-6 production were determined using enzyme-linked immunosorbent assay (ELISA). Expression of vitamin
D receptor (VDR), and activation of AhR was examined using western blot analysis, and phosphorylation of NF-κB
was detected using cell-based protein phosphorylation ELISA.

Results: 1,25D3 inhibited LPS-induced IL-6 overexpression in OKF6/TERT-2 cells. Additionally, 1,25D3 increased VDR
expression and AhR activation, and repressed NF-κB phosphorylation. Furthermore, 1,25D3 suppressed IL-6
expression and enhanced VDR expression and regulated AhR/NF-κB signaling activation in a dose-dependent
manner after 48 h treatment.

Conclusions: These results suggest that 1,25D3 may inhibit LPS-induced IL-6 overexpression in human oral
epithelial cells through AhR/NF-κB signaling. Our findings may provide an explanation for the antiinflammatory
effect and therapeutic benefit of 1,25D3 in periodontitis.
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Background
Periodontitis is characterized by the loss of periodontal
attachment, including periodontal ligament and alveolar
bone, caused by the host immune response to bacterial
insult [1]. Lipopolysaccharide (LPS) is a key pathogenic
component of periodontal pathogens [2]. It has been
broadly reported to induce host cells like oral epithelial

cells to produce a wide range of proinflammatory cyto-
kines, including tumor necrosis factor-α (TNF-α),
interleukin-6 (IL-6) and interleukin-8 (IL-8), promoting
periodontitis progression [3, 4]. As a crucial stimulator
of alveolar bone resorption, IL-6 is overexpressed in the
periodontium in periodontitis and greatly responsible for
periodontal destruction [5].
Oral epithelial cells are recently highlighted as a critical

regulator of inflammation in periodontitis [6, 7]. In re-
sponse to LPS, they can produce a range of inflammation-
related proteins, leading to potent inflammatory responses
in periodontal diseases. Upon LPS stimulation, nuclear
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factor-κB (NF-κB), a key regulator of inflammation-related
gene transcription, can be activated in oral epithelial cells,
resulting in the production of proinflammatory cytokines,
such as IL-6 [8, 9]. Regulating the inflammatory response
in oral epithelial cells is considered to be a potential strat-
egy for periodontitis treatment.
An increasing amount of literature demonstrates the

antiinflammatory effect of steroid hormone 1,25-dihydroxy-
vitamin D3 (1,25D3) in different inflammatory diseases,
including Crohn’s disease and diabetes [10, 11]. It is the ac-
tive form of vitamin D3, and possesses little adverse effects
in clinical application [12]. It acts on vitamin D receptor
(VDR), and subsequently exerts immunomodulatory func-
tions in many epithelial cells, including oral epithelial cells
[13, 14]. Current research has shown that supplementation
with different forms of 1,25D3 regulates the expression of
inflammatory cytokines, such as TNF-α and IL-8, in oral
epithelial cells, and reduces alveolar bone loss in periodon-
titis [15, 16]. These findings indicate the therapeutic effect
of 1,25D3 in periodontitis and the regulation of inflamma-
tory responses by 1,25D3 in oral epithelial cells. However,
the exact mechanisms remain unclear.
Aryl hydrocarbon receptor (AhR), a nuclear transcrip-

tion factor, has been reported to play an important role
in inflammatory modulation during recent years [17].
Upon binding to its ligand, AhR translocates from the
cytoplasm into the nucleus, and then activates the tran-
scription of target genes including cytochrome P450
1A1 (CYP1A1) and downstream inflammatory cytokines.
AhR activation can improve immune homeostasis in epi-
thelial cells, such as intestinal epithelial cells [18], and its
activation can be observed in oral epithelial cells upon
stimulation with oral commensal bacterium Streptococ-
cus mitis [19]. Current research has shown the crosstalk
between AhR and NF-κB signaling in chronic inflamma-
tory response of bronchial epithelial cells [20]. Addition-
ally, activation of AhR signaling can be enhanced by 1,
25D3 in different immune cells like monocytic cells and
kidney epithelium-derived cells [21]. These findings sug-
gest that 1,25D3 might modulate inflammatory response
in periodontitis through regulating AhR/NF-κB signal-
ing. In this report, we cultivated OKF6/TERT-2 oral ker-
atinocytes with LPS and different concentrations of 1,
25D3, and examined the changes of IL-6 expression and
AhR/NF-κB signaling activation.

Methods
Cell culture
Human oral keratinocytes (OKF6/TERT-2), kindly provided
by Dr. J. Rheinwald (Harvard University, Boston, MA), were
cultured in accordance with the protocols as described pre-
viously [22]. The cells were plated at 1 × 105/well in 96-well
plates in keratinocyte serum-free medium containing Por-
phyromonas gingivalis (P. gingivalis) LPS (Sigma-Aldrich, St.

Louis, MO) (1 μg/ml) and 1,25D3 (Sigma-Aldrich, St. Louis,
MO) (0 nM, 10 nM, 20 nM, or 30 nM), and incubated for 6
h, 12 h, 24 h or 48 h [23]. 1,25D3 was dissolved in ethanol,
and ethanol was chosen as vehicle (ethanol volume was
0.1% of culture medium solution).

Enzyme-linked immunosorbent assay (ELISA) for IL-6
Culture supernatants were collected at 6 h, 12 h, 24 h and
48 h after LPS and 1,25D3 incubation, and IL-6 concentra-
tions were detected using a commercially available ELISA
kit (R&D Systems, Minneapolis, MN) according to the man-
ufacturer’s instructions [22]. The solution absorbance was
measured at 450 nm using a microplate reader (Thermo
Fisher Scientific, Waltham, MA) for quantity calculation.

Western blot analysis
At every predetermined time point, cultured cells in each
group were harvested. Total protein extracts from cultured
cell lysates were prepared in RIPA buffer with 1% proteinase
and 1% phosphate inhibitors, and the expression of VDR,
AhR and CYP1A1 was examined using western blot analysis.
The protocol of western blot analysis was performed as pre-
viously reported [24]. Protein samples were subjected to elec-
trophoresis on 8% sodium dodecyl sulfate-polyacrylamide
gel, and transferred to polyvinylidene difluoride membranes.
Afterwards, the membranes were probed with primary
monoclonal antibodies against VDR (1:200), AhR (1:500),
CYP1A1 (1:300) and glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) (1:500), and then incubated with horserad-
ish peroxidase (HRP)-conjugated secondary antibodies (1:
2000). Antibody complexes were detected using the Super-
Signal West Pico Chemiluminescent Substrate System. All of
the antibodies were from Santa Cruz Biotechnology (Santa
Cruz, CA).

Cell-based enzyme-linked immunosorbent assay for NF-κB
Percentage of NF-κB p65 phosphorylation was measured
using commercially available cell-based protein phos-
phorylation ELISA kits (R&D Systems, Minneapolis,
MN) as previously reported [22]. At 6 h, 12 h, 24 h and
48 h after LPS and 1,25D3 incubation, OKF6/TERT-2
cells in 96-well plates were fixed by addition of 4% for-
maldehyde, and incubated with monoclonal anti-total
NF-κB p65 or anti-phosphorylated NF-κB p65. Then,
the cells were incubated with HRP-conjugated secondary
antibody at a dilution of 1:1000 [22]. The absorbance of
each well was detected at a wavelength of 570 nm using
a multifunctional microplate reader (Thermo Fisher Sci-
entific, Waltham, MA), and afterward the percentage of
NF-κB p65 phosphorylation was calculated.

Statistical methods
All experiments were performed in triplicate with inde-
pendent samples. The results were expressed as the
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mean ± SD, and statistical significance was analyzed by
one-way ANOVA followed by SNK-q multiple compari-
sons. Pearson’s correlation coefficient was used to detect
the correlation between IL-6, VDR, AhR or CYP1A1
levels and 1,25D3 concentrations, and between phos-
phorylation of NF-κB p65 and 1,25D3 concentrations,
when cells were treated with LPS and 1,25D3 for 48 h.
SPSS 20.0 software (SPSS Inc., Chicago, IL) was used for
statistical analysis. A p-value < 0.05 in two tailed analysis
was considered to be statistically significant.

Results
Effects of 1,25D3 on LPS-induced IL-6 production
Culture supernatants of OKF6/TERT-2 cells were de-
tected using ELISA at every predetermined time point.
We found that LPS markedly upregulated IL-6 produc-
tion at each time point (Fig. 1). 1,25D3 treatment was
not effective on LPS-induced IL-6 expression after 6 h or
12 h, but 1,25D3 at 20 nM and 30 nM effectively de-
creased the IL-6 production after 24 h and 48 h (Fig. 1).
The correlation between IL-6 levels and 1,25D3 concen-
trations after 48 h treatment was statistically significant
(r = 0.985; p < 0.05).

Effects of 1,25D3 on VDR expression
It is well established that 1,25D3 regulates biological events
by binding to VDR [25], and increased VDR expression has

usually been observed in 1,25D3 activation [26–28]. We ex-
amined VDR expression in OKF6/TERT-2 cells using west-
ern blot analysis. As shown in Figs. 2 and 3, no significant
difference of VDR expression was observed among all
groups after 6 h or 12 h incubation. However, cells cultured
in the medium containing 20 nM and 30 nM 1,25D3
showed significantly enhanced VDR expression after 24 h
and 48 h, compared with those in the medium with 0 nM
and 10 nM 1,25D3. The correlation between VDR levels
and 1,25D3 concentrations after 48 h treatment was statisti-
cally significant (r = 0.949, p < 0.05).

Effects of 1,25D3 on LPS-induced AhR and CYP1A1
expression
To further investigate the potential mechanism of the
suppression of LPS-induced IL-6 upregulation by 1,
25D3, we examined the expression of AhR and CYP1A1
in OKF6/TERT-2 cells using western blot analysis. As
shown in Figs. 2 and 4, cultivation of OKF6/TERT-2
cells with LPS greatly enhanced AhR expression after 6
h, 12 h, 24 h and 48 h. No significant difference of AhR
expression was observed among all LPS-treated cells for
6 h and 12 h. However, cultivation with 20 nM and 30
nM 1,25D3 for 24 h and 48 h obviously increased LPS-
induced AhR expression. The correlation between AhR
levels and 1,25D3 concentrations after 48 h treatment
was statistically significant (r = 0.872; p < 0.05).

Fig. 1 IL-6 production in LPS-treated oral epithelial cells was detected using ELISA. OKF6/TERT-2 cells were cultured for 6 h (a), 12 h (b), 24 h (c) or
48 h (d), in the presence of LPS (1 μg/ml) and 1,25D3 (0, 10, 20, or 30 nM). 1,25D3 at 20 nM and 30 nM significantly inhibited LPS-induced IL-6
production after 24 h and 48 h treatment. * p < 0.05, significantly different vs. control group. # p < 0.05, vs. LPS control
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Fig. 2 VDR, AhR and CYP1A1 expressions in LPS-treated oral epithelial cells were examined using western blot analysis. OKF6/TERT-2 cells were
cultured for 6 h (a), 12 h (b), 24 h (c) or 48 h (d), in the presence of LPS (1 μg/ml) and 1,25D3 (0, 10, 20, or 30 nM)

Fig. 3 Relative expression of VDR in LPS-treated oral epithelial cells was calculated after western blot analysis. OKF6/TERT-2 cells were cultured for
6 h (a), 12 h (b), 24 h (c) or 48 h (d), in the presence of LPS (1 μg/ml) and 1,25D3 (0, 10, 20, or 30 nM). 1,25D3 at 20 nM and 30 nM significantly
increased VDR expression after 24 h and 48 h treatment. * p < 0.05, significantly different vs. control group. # p < 0.05, vs. LPS control
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At every indicated time point, LPS enhanced CYP1A1
expression in OKF6/TERT-2 cells (Figs. 2 and 5). 1,
25D3 treatment for 6 h and 12 h was not effective on
LPS-induced CYP1A1 expression in cells, whereas cells
with 20 nM and 30 nM 1,25D3 incubation for 24 h and
48 h showed increased CYP1A1 expression, compared
with those with 0 nM and 10 nM 1,25D3 (Figs. 2 and 5).
After 48 h, the correlation between CYP1A1 levels and
1,25D3 concentrations was statistically significant (r =
0.923; p < 0.05).

Effects of 1,25D3 on LPS-upregulated NF-κB
phosphorylation
We measured NF-κB p65 activation using cell-based
protein phosphorylation ELISA kits. All cells stimulated
with LPS exhibited enhanced phosphorylation of NF-κB
p65 at every predetermined time point, compared with
those unstimulated cells (Fig. 6). Different concentra-
tions of 1,25D3 treatment for 6 h and 12 h did not sig-
nificantly decrease NF-κB p65 phosphorylation under
LPS stimulation. However, after 24 h and 48 h incuba-
tion, 20 nM and 30 nM 1,25D3 showed obvious suppres-
sive effect on LPS-induced NF-κB p65 phosphorylation
in cells (Fig. 6). The correlation between NF-κB p65
phosphorylation levels and 1,25D3 concentrations after

48 h treatment was statistically significant (r = 0.861; p <
0.05).

Discussion
To date, accumulating evidence has shown the protect-
ive function of 1,25D3 in inflammatory diseases [10, 11].
However, in clinical studies, the effect of vitamin D on
periodontal diseases still remains controversial. Some
human research showed that lower serum levels of 25-
hydroxyvitamin D3, the stable form of 1,25D3 in the
body, were significantly related to periodontitis [29, 30].
However, several investigators demonstrated that serum
vitamin D levels or vitamin D supplementation did not
seem to be associated with periodontal status [16, 31].
These different observations may partly be attributed to
wrong study designs, poorly paired case-controls, and
short follow-up duration, etc. Compared with human
clinical studies, research on in vitro models has less
uncontrollable variables, so different periodontal cells,
including oral epithelial cells, cocultured with the viru-
lence factors from periodontal pathogens, have been
used to establish in vitro models for investigating peri-
odontal diseases.
LPS from periodontal pathogens, including P. gingivalis,

is one of the major virulence factors in periodontitis. It can
induce the overexpression of different proinflammatory

Fig. 4 Relative expression of AhR in LPS-treated oral epithelial cells was calculated after western blot analysis. OKF6/TERT-2 cells were cultured for
6 h (a), 12 h (b), 24 h (c) or 48 h (d), in the presence of LPS (1 μg/ml) and 1,25D3 (0, 10, 20, or 30 nM). 1,25D3 at 20 nM and 30 nM significantly
enhanced LPS-induced AhR expression after 24 h and 48 h treatment. * p < 0.05, significantly different vs. control group. # p < 0.05, vs. LPS control
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cytokines detrimental to periodontal tissues, such as IL-6
[4]. Former studies have shown that IL-6 is a potent stimu-
lator of periodontal bone resorption [6]. Downregulated
production of IL-6 is correlated with attenuation of inflam-
matory response in periodontitis [32]. In this study, LPS
markedly increased IL-6 expression levels in OKF6/TERT-
2 cells at each time point, indicating the proinflammatory
effect of LPS on oral epithelial cells. Additionally, 1,25D3
treatment effectively decreased the IL-6 production after
24 h and 48 h, though it was not effective after 6 h or 12 h,
suggesting the inhibitory effect of 1,25D3 on inflammatory
response in oral epithelial cells. 1,25D3 is a recently discov-
ered determinant of immune response in inflammatory dis-
eases, such as Crohn’s disease and diabetes [10, 11]. It has
been reported that elevated levels of the stable form of 1,
25D3 in serum exhibit positive effects on the regulation of
excessive inflammatory states in periodontitis [33]. 1,25D3
application also suppresses the production of IL-6 by
monocytes after LPS stimulation [33].
1,25D3 regulates multiple physiological processes, includ-

ing immunity, through binding to VDR, a key protein in 1,
25D3-induced signaling [23]. After binding to 1,25D3, VDR
interacts with the heterodimer partner retinoid X receptor,
and modulates downstream inflammation-related signaling
[13]. 1,25D3 treatment has been found to enhance VDR
expression in different epithelial cells, such as colonic

epithelial cells and pulmonary artery epithelial cells, ameli-
orating excessive inflammatory response [14, 34]. Here, we
observed that VDR protein expression was increased in
cells after 24 h and 48 h 1,25D3 incubation, indicating that
1,25D3 could significantly exert its biological function at
these time points. As VDR expression was enhanced, IL-6
production was decreased in cells with LPS stimulation,
suggesting the inhibitory effect of 1,25D3 on LPS-induced
IL-6 production in oral epithelial cells.
To investigate the underlying mechanism of the effect

of 1,25D3 on IL-6 production in oral epithelial cells, we
detected AhR and its downstream protein CYP1A1 in
OKF6/TERT-2 cells using western blot analysis. We
found that exposure of OKF6/TERT-2 cells to LPS in-
creased AhR expression at every predetermined time
point. In addition, 1,25D3 treatment for 24 h and 48 h
enhanced LPS-induced AhR expression and decreased
IL-6 production. These observations suggest that 1,25D3
may inhibit LPS-induced IL-6 production through acti-
vating AhR signaling. Consistent with our study, LPS ex-
posure can increase AhR expression in other immune
cells, such as dendritic cells [35]. Production of proin-
flammatory cytokines in intestinal epithelial cells can be
attenuated by upregulation of AhR activity [36]; and en-
hanced AhR activation alleviates inflammatory diseases,
including colitis, in experimental animals [36, 37].

Fig. 5 Relative expression of CYP1A1 in LPS-treated oral epithelial cells was calculated after western blot analysis. OKF6/TERT-2 cells were cultured
for 6 h (a), 12 h (b), 24 h (c) or 48 h (d), in the presence of LPS (1 μg/ml) and 1,25D3 (0, 10, 20, or 30 nM). 1,25D3 at 20 nM and 30 nM significantly
increased LPS-induced CYP1A1 expression after 24 h and 48 h treatment. * p < 0.05, significantly different vs. control group. # p < 0.05, vs.
LPS control
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CYP1A1 activity is often used to assess the level of
AhR activation [38]. After binding to the AhR nuclear
translocator, AhR translocates from the cytoplasm to the
nucleus to modulate the expression of CYP1A1 [38]. We
found an increase in CYP1A1 expression in cells treated
with LPS, compared with vehicle controls, suggesting
the activation of AhR signaling by LPS. Previous re-
search has shown a decline in the efficacy of immune
system and excessive inflammatory response in AhR
knockout mice [36]. Activation of AhR signaling is es-
sential to maintain immune homeostasis in colon epithe-
lial cells under the condition of LPS stimulation [36].
After 1,25D3 incubation for 24 h and 48 h, LPS-induced
CYP1A1 production in cells was enhanced and IL-6 level
was decreased. These results indicate that downregula-
tion of IL-6 production by 1,25D3 may be attributed to
the activation of AhR signaling. In monocytic cells, 1,
25D3 augments the activation of AhR signaling and induc-
tion of CYP1A1 by AhR agonist [21]. VDR can interact with
AhR signaling, and regulates CYP1A1 transcription [21].
NF-κB signaling is central in regulation of inflammatory

responses in many diseases through binding to κB-sites in
the promoter region of a variety of proinflammatory genes,
including several cytokines [39]. In periodontitis, NF-κB p65
can be significantly activated by P. gingivalis LPS, and its
phosphorylation is closely associated with IL-6 production

and periodontal damage [22, 40]. Different reports have
shown the inhibition of NF-κB p65 activation can reduce in-
flammatory process and attenuate tissue destruction in the
periodontium [41, 42]. Here, we examined NF-κB p65 acti-
vation using cell-based protein phosphorylation ELISA. We
also observed that NF-κB p65 phosphorylation and IL-6
production were enhanced in cells stimulated with LPS at
each time point, compared with unstimulated cells. More-
over, NF-κB p65 phosphorylation and IL-6 production were
decreased after 24 h and 48 h 1,25D3 treatment, suggesting
the suppression of LPS-induced IL-6 expression by 1,25D3
through NF-κB p65. Furthermore, the inhibitory effect of 1,
25D3 accompanied with enhanced AhR activation was
found in cells, suggesting that the effect of 1,25D3 on IL-6
production may be regulated through AhR/NF-κB signaling.
Previous studies have shown that AhR signaling can inhibit
NF-κB activity and IL-6 induction to attenuate inflammatory
response in bone marrow stromal cells, which are also im-
portant cells in periodontal tissues [43]. In different cells,
such as bronchial epithelial cells, AhR signaling not only
represses NF-κB activation by strong NF-κB activator LPS,
but also reduces the binding of NF-κB to its cognate enhan-
cer sequence, leading to amelioration of inflammatory
responses [20, 44].
A variety of signaling pathways are implicated in in-

flammatory modulation by 1,25D3. Previous research

Fig. 6 Phosphorylation of NF-κB in LPS-treated oral epithelial cells was examined using cell-based protein phosphorylation ELISA. OKF6/TERT-2
cells were cultured for 6 h (a), 12 h (b), 24 h (c) or 48 h (d), in the presence of LPS (1 μg/ml) and 1,25D3 (0, 10, 20, or 30 nM). 1,25D3 at 20 nM and
30 nM significantly suppressed LPS-induced NF-κB phosphorylation after 24 h and 48 h treatment. * p < 0.05, significantly different vs. control
group. # p < 0.05, vs. LPS control
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has shown that 1,25D3 negatively regulates the expres-
sion of Toll-like receptor (TLR) 2 and 4, the specific re-
ceptors for P. gingivalis LPS, in human monocytes
stimulated by LPS [45]. As the upstream proteins of NF-
κB signaling, TLR 2 and 4 can interact with adaptor
molecule myeloid differentiation primary response gene
88 upon LPS stimulation, and subsequently activates
NF-κB pathway, leading to the production of inflamma-
tory cytokine, such as IL-6 [46, 47]. A report on den-
dritic cells has also shown the regulation of AhR on TLR
signaling through TNF receptor-associated factor 6 after
LPS conditioning [48]. These studies suggest that the
inhibitory effect of 1,25D3 on NF-κB activation and in-
flammatory cytokine expression in oral epithelial cells
treated with LPS may also be associated with the cross-
talk between AhR and TLR signalings. However, further
experiments are required, such as detection of TLR and
NF-κB signalings in AhR or CYP1A1 knockdown peri-
odontal cells in the periodontitis environment after 1,
25D3 treatment, to fully address the interaction between
different pathways and the precise mechanisms of 1,
25D3 in periodontitis attenuation.

Conclusions
In conclusion, we observed that 1,25D3 inhibited LPS-
upregulated IL-6 production in OKF6/TERT-2 cells.
Additionally, 1,25D3 increased AhR and CYP1A1 ex-
pression, and suppressed the activation of NF-κB. These
effects of 1,25D3 could be found in a dose-dependent
manner after 48 h treatment. The results suggest that 1,
25D3 may suppress LPS-induced IL-6 overexpression in
oral epithelial cells through AhR/NF-κB signaling. The
present study extends the previous findings on the anti-
inflammatory functions of 1,25D3 in periodontitis.
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