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Abstract 

Background:  Peri-implantitis is a biological complication that affects soft and hard tissues around dental implants. 
Implantoplasty (IP) polishes the exposed implant surface, to decontaminate it and make it less prone to bacterial 
colonization. This study investigates whether a higher clinical crown-to-implant-ratio (CIR) reduces implant fracture 
resistance and whether implants are more fracture-prone after IP in the presence of 50% of bone loss.

Methods:  Forty-eight narrow platform (3.5 mm) 15 mm long titanium dental implants with a rough surface and 
hexagonal external connection were placed in standardized bone-like resin casts leaving 7.5 mm exposed. Half were 
selected for IP. The IP and control groups were each divided into 3 subgroups with different clinical CIRs (2:1, 2.5:1 and 
3:1). The implant wall width measurements were calculated using the software ImageJ v.1.51 through the analysis of 
plain x-ray examination of all the samples using standardized mounts. A fracture test was performed and scanning 
electron microscopy was used to evaluate maximum compression force (Fmax) and implant fractures.

Results:  IP significantly reduced the implant wall width (P < 0.001) in all reference points of each subgroup. Fmax 
was significantly higher in the 2:1 subgroup (control = 1276.16 N ± 169.75; IP = 1211.70 N ± 281.64) compared 
with the 2.5:1 (control = 815.22 N ± 185.58, P < 0.001; IP = 621.68 N ± 186.28, P < 0.001) and the 3:1 subgroup (con‑
trol = 606.55 N ± 111.48, P < 0.001; IP = 465.95 N ± 68.57, P < 0.001). Only the 2.5:1 subgroup showed a significant 
reduction (P = 0.037) of the Fmax between the controls and the IP implants. Most fractures were located in the plat‑
form area. Only 5 implants with IP of the 2:1 CIR subgroup had a different fracture location (4 fractures in the implant 
body and 1 in the prosthetic screw).

Conclusions:  IP significantly reduces the fracture resistance of implants with a 2.5:1 CIR. The results also suggest that 
the CIR seems to be a more relevant variable when considering the resistance to fracture of implants, since signifi‑
cant reductions were observed when unfavorable CIR subgroups (2.5:1 and 3:1 CIR) were compared with the 2:1 CIR 
samples.
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Background
Implant failure appears to have several causes: biologi-
cal, mechanical or iatrogenic [1–3]. Peri-implantitis (PI) 
is one of the major concerns among clinicians, as it may 
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affect 34% of patients and 21% of implants and lead to 
implant loss [4].

Several approaches to implant surface decontamina-
tion have been studied. They include air-powder abra-
sion, ultrasonic and manual debridement (using plastic, 
carbon stainless steel, graphite or titanium curettes), 
implantoplasty (IP), laser therapy and sterile saline 
rinses, among others [5–8]. Mechanical debridement 
has also been complemented by the use of a number 
of substances, such as citric acid, hydrogen peroxide, 
cetylpyridinium chloride, tetracycline, ethylenediamine 
tetraacetic acid or chlorhexidine [9]. IP is a common pro-
cedure that consists of polishing rough implant surfaces 
outside the bony envelope, making them less prone to 
bacterial accumulation, as surface roughness may be risk 
factor for peri-implant disease. IP is effective in the long 
term for arresting bone loss caused by PI, both alone and 
in combination with surgical regenerative procedures 
and does not seem to be associated with any biological 
or mechanical complication of importance [9–13]. How-
ever, thermal increases during the procedure that could 
affect the bone, lower resistance to fractures due to 
reducing the thickness of the implant walls, and the local 
and systemic biological repercussions that the dispersion 
of titanium particles might have in the long term have 
been signaled as potential problems of IP performance 
[14–19].

Increasing bone loss due to PI was shown to increase 
clinical crown-to-implant ratio (CIR), which, in turn, 
was reported to reduce the resistance to fracture of 
intact dental implants [20, 21]. Also, IP, which is often 
used as a part of the treatment of PI, reduces the 
thickness of the implant walls and might weaken the 
strength of implants [15]. Since the effect of the CIR on 
implants treated with IP has not been addressed yet, it 
would be of great interest to assess whether IP is a safe 
technique when implants with high CIRs are involved. 

Furthermore, since the maximum failure strength of 
bone level implants is expected to remain high after IP, 
narrow implants were selected to simulate an unfavora-
ble scenario. Indeed, according to a recent report by 
Bertl et al., narrow diameter implants have a significant 
lower resistance strength compared with regular diam-
eter implants [22].

The main study hypothesis was that a high CIR nega-
tively affects the fracture resistance of narrow implants 
treated with IP in a situation of 50% bone loss. There-
fore, the main objectives of this research were: (1) to 
analyze whether an increased CIR reduces the fracture 
resistance of implants with IP versus control implants, 
and (2) to assess whether implants subjected to IP are 
more prone to fracture in comparison with control 
implants, regardless of the CIR, in the presence of 50% 
bone loss. A secondary aim was to describe the changes 
in implant wall width after IP.

Materials and methods
An in  vitro study was conducted using 48 type V tita-
nium narrow platform implants, 3.5  mm in diameter 
and 15  mm long, with a rough surface and a hexagonal 
external connection (Ocean E.C., Avinent Implant Sys-
tem S.L., Santpedor, Spain). Half of the sample was ran-
domly allocated to the IP group. The apical half of each 
implant was inserted, leaving 7.5 mm exposed, in stand-
ardized bone-like resin casts (EA 3471 A and B Loctite®, 
Henkel AG and Company, Düsseldorf, Germany) with 
a ≥ 3 GPa modulus of elasticity in accordance with Inter-
national Organization for Standardization (ISO) standard 
14801:2016 (third edition) [23]. Both groups were divided 
into 3 subgroups of 8 implants each, which received 
screwed hemispherical loading abutments of one of three 
heights: 7.5 mm, 11.25 mm and 15 mm, simulating clini-
cal CIR of 2:1, 2.5:1 and 3:1, respectively (Fig. 1).

Fig. 1  a Study design, groups and subgroups; b sample before IP; c sample after IP
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Implantoplasty
IP of the exposed implant surface was performed using a 
high-speed air-powered hand piece (Bora Blackline LED, 
Bien-Air Dental SA, Langgasse, Switzerland) with an 
abutment protecting the connection. After removing the 
threads of the exposed portion of the implants, using an 
oval-shape tungsten carbide bur (H379 314,023; Komet 
Dental, Lemgo, Germany), the surface was polished with 
two-step silicon carbide polishers (9618,314,030 and 
9608,314,030; Komet Dental, Lemgo, Germany) until it 
was macroscopically flat and smooth. A new set of burs 
was used for each sample. The procedure was performed 
by an experienced surgeon with 2.8 × magnification 
loupes (Galilean HD and Focus™ LED 6000  k, ExamVi-
sion ApS, Samsø, Denmark), under copious water irriga-
tion and adequate light conditions, similar to a clinical 
scenario, although the cast was held by the operator and 
turned by hand. The time spent on each procedure was 
recorded. When the IP procedure was finished, the sur-
face was cleaned with water and dried with air.

Radiographic implant wall width measurements
The implant wall width was measured through plain x-ray 
examination of all the samples, in the initial position 
and rotated through 120° and 240°, using standardized 
mounts. All the measurements were made using ImageJ 
v.1.51 (National Institutes of Health, Bethesda, Maryland, 
USA), based on a fixed 1.9 mm reference provided by the 
manufacturer. A calibrated investigator (BLA) performed 
the examination with 400X amplification and searched 
for perforations of the implant walls. The measurements 
were made at the middle of the first (R1) and tenth (R2) 
threads and at the end of the prosthetic screw hole (R3), 
as shown in Fig. 2. To test intraexaminer agreement and 
consistency, the assessment of 6 randomly selected sam-
ples (54 measurements) was repeated after 2 weeks. The 
intraclass correlation coefficients were 0.96 (95% con-
fidence interval (95%CI) 0.93–0.98; P < 0.001) and 0.96 
(95% CI 0.92–0.98; P < 0.001), showing excellent reliabil-
ity and consistency.

The mean value of the three measurements (rota-
tion of 0°, 120° and 240°) was recorded for each location 
and implant. The measurements in the IP group were 
subtracted from those of their control analogues, thus 
obtaining the thinning of the implant for each variable.

Fracture tests
Metallic hemispherical load abutments (n = 48) were 
digitally designed, milled and screwed onto each implant 
according to subgroup (Fig.  3a–c), using prosthetic 
screws (Avinent® Implant System, Santpedor, Spain) at 
32 N/cm, as recommended by the product manufacturer. 

Tests to measure the maximum compression force (Fmax), 
i.e. the maximum force reached before implant fracture, 
were performed at a constant speed of 1  mm/min with 
a universal servo-hydraulic mechanical testing machine 
(MTS Bionix 370 Load Frame, MTS®, Eden Prairie, 
USA), applying a compression load to the implants with 
a 661.19H-03 MTS Load Cell of 15 kN capacity. All the 
samples were held in the same device, a manufactured 
stainless-steel clamping jaw that allowed compression 
loads to be applied at a constant angle of 30º from the 
vertical axis (Fig. 3d), in accordance with ISO 14801:2016 
(third edition), except for the supracrestal 50% of the 
total implant length. The tests were monitored by the 
MTS Flextest 40 Controller (MTS®, Eden Prairie, USA), 
which measured Fmax and recorded real-time data.

Scanning electron microscopy (SEM) (Quanta 200®, 
FEI, Hilsboro, Oregon, United States) screening of the 
fractured implants was used to determine the fracture 
location.

Statistical analysis
The sample size calculation was performed with Stata 
v.14 software (StataCorp®, College Station, USA). Con-
sidering Fmax as the primary outcome measure, an 
analysis of variance with an α risk of 0.05 and a statisti-
cal power of 80% was performed. The mean fracture 
resistance values published by Gehrke [24] were used. 

Fig. 2  Radiographic measurements of the implant wall width. Left: 
control implant; right: IP implant. Blue lines: length at middle of the 
first (R1) and tenth (R2) threads and at the end of the prosthetic screw 
hole (R3), perpendicularly to the long axis of the implant; red line: 
1.9 mm reference
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Assuming a standard deviation of 500 N, the sample size 
was established as 8 implants per subgroup.

The implant characteristics were presented as abso-
lute and relative frequencies for categorical outcomes. 
The normality of the scale variables (Fmax and implant 
wall width) was explored using the Shapiro–Wilk test, 
P–P scatterplot graphs and box plots. Since Fmax and the 
implant wall width variables had a normal distribution 
the mean and the standard deviation (SD) were used.

To analyze the effects of the procedure (IP or control) 
on Fmax, of the crown length (7.5, 11.25 or 15 mm), and 
of the interaction between these two variables, a two-way 
ANOVA was performed. The ANOVA assumptions were 
assessed using the Shapiro–Wilk test for normality and 
Levene’s test for homoscedasticity. Pairwise comparisons 
between subgroups, using Tukey’s correction for multi-
plicity of contrasts, were made for each procedure and 
CIR. An unpaired t test was used to identify differences 
in implant wall width between the control and IP groups 
at every reference point. In each area of interest, Pearson 
correlation coefficients were computed to quantify the 
correlation between implant wall width and Fmax. The 
associations between categorical variables were assessed 
with either Pearson’s χ2 test or Fisher’s exact test.

The statistical analysis was carried out with Stata14 
software (StataCorp®, College Station, TX, USA). The 
level of significance was set at P < 0.05.

Results
Fracture tests
No correlations between implant wall width meas-
urements and Fmax were observed at any of the refer-
ence points (Table  1). Significant reductions in Fmax 

between the control and IP implants were only found 
in the 2.5:1 CIR subgroup (P = 0.037), although all 
the IP samples showed less resistance to fracture than 
their respective controls (Table  2, Fig.  4). In both 
IP and control groups, the implants with a 2:1 CIR 
showed a higher Fmax (control = 1276.16  N ± 169.75; 
IP = 1211.70  N ± 281.64) than those with a 2.5:1 CIR 
(control = 815.22  N ± 185.58; IP = 621.68  N ± 186.28) 
and 3:1 CIR (control = 606.55  N ± 111.48; 
IP = 465.95  N ± 68.57). No significant differences were 
observed between the 2.5:1 and 3:1 subgroups (control 
P = 0.064; IP P = 0.206) (Table 3, Fig. 4).

Most fractures (n = 43) were located in the platform 
area (Fig.  5a, b). The only 5 exceptions were found in 
implants with IP of the 2:1 CIR subgroup [4 fractures in 
the implant body (Fig. 5c) and 1 in the prosthetic screw 
(Fig. 5d)].

Radiographic implant wall width measurements
The mean reduction in the implant wall width after IP 
was 0.41 (CIR 2:1), 0.41 (CIR 2.5:1) and 0.37 mm (CIR 
3:1) at R1; 0.46 (CIR 2:1), 0.45 (CIR 2.5:1) and 0.46 mm 
(CIR 3:1) at R2 and 0.45 (CIR 2:1), 0.43 (CIR 2.5:1) and 
0.4 mm (CIR 3:1), at R3 (Table 1). In all the subgroups, 
IP was associated with a statistically significant reduc-
tion in width at reference points 1–3 (P ≤ 0.05, inde-
pendent samples t test) and a similar value was found 
at each reference point (P > 0.05 in all cases; one-way 
ANOVA) regardless of the crown length subgroup of 
the implant. No perforation of the inner threads of the 
implants were observed.

Fig. 3  IP samples after fracture test: a CIR 2:1, b CIR 2.5:1, c CIR 3:1, d fracture test diagram
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Discussion
The main objectives of this in vitro study were to deter-
mine if narrow platform titanium implants with an 
external hexagonal connection subjected to IP were 
more prone to fracture in the presence of 50% bone loss, 
and to analyze if an increased CIR reduces the fracture 
resistance of implants with IP vs. control implants. The 
results of the present study show that IP only signifi-
cantly reduced the Fmax value in the 2.5:1 CIR subgroup. 
Besides, the mean total values of the 3 CIR subgroups 
showed no significant differences in Fmax between the 
control and IP samples (Table 2). CIR seems to be a much 
more relevant variable than IP, since both the IP and con-
trol implants showed significant reductions in Fmax in the 
2.5:1 and 3:1 CIR subgroups when compared to the 2:1 
subgroup (Table  3). Indeed, while IP reduced the mean 
fracture strength by 132.87 N, a higher CIR (2.5:1 or 3:1) 
led to a mean difference of 525.48 N or 707.68 N, respec-
tively (Tables 2, 3).

Similar in vitro protocols have been described previ-
ously, although with different implants, bone insertion 
levels and loading abutments [15, 24–27]. Shemtov-
Yona et  al. used intact 13  mm-long implants with 
different widths and performed similar static tests, 
finding Fmax values of 674  N ± 57 (3.3  mm implants), 
952  N ± 103 (3.75  mm implants) and 1584  N ± 115 
(5 mm implants), showing that implant wall width can 
affect resistance outcomes of intact implants [28]. On 
the other hand, Chan et  al. using internal hexagonal 
implants, compared control and IP samples with differ-
ent widths (3.75 and 4.7  mm) and showed that IP did 
not significantly affect the resistance to fracture of 3.75 
diameter implants (321.7  N ± 21.4 vs. 325.0  N ± 20.7) 
[15]. The fact that our report presents higher Fmax val-
ues (Table 2) might be considered surprising since the 
implant diameter was inferior (3.5 mm), the CIRs were 
unfavorable and the simulated bone level was of 50%. 
This discrepancy might be justified by the fact that our 

Table 1  Implant wall width measurements (mm) of IP and control samples at each reference point (n = 48)

*  Statistically significant difference

MD mean difference (Control—IP)

Reference point Control IP  

Mean (SD) Mean (SD) MD (95%CI) Independent samples 
t test
P value

ANOVA
P value

R1 (first thread)

 2:1 3.44 (0.02) 3.03 (0.04) 0.41 (0.37–0.44) < 0.001* 0.103

 2.5:1 3.44 (0.01) 3.03 (0.04) 0.41 (0.38–0.45) < 0.001*

 3:1 3.45 (0.02) 3.08 (0.04) 0.37 (0.33–0.40) < 0.001*

R2 (tenth thread)

 2:1 3.32 (0.03) 2.86 (0.03) 0.46 (0.42–0.49) < 0.001* 0.949

 2.5:1 3.31 (0.02) 2.86 (0.04) 0.45 (0.41–0.49) < 0.001*

 3:1 3.34 (0.03) 2.89 (0.06) 0.46 (0.41–0.50) < 0.001*

R3 (end of the prosthetic screw hole)

 2:1 3.07 (0.03) 2.62 (0.06) 0.45 (0.40–0.50) < 0.001* 0.163

 2.5:1 3.07 (0.05) 2.64 (0.04) 0.43 (0.38–0.47) < 0.001*

 3:1 3.07 (0.02) 2.68 (0.04) 0.40 (0.36–0.43) < 0.001*

Table 2  Mean fracture strength (N) of the three CIR in the IP and control samples

*  Statistically significant difference

MD mean difference (Control—IP)

CIR Control IP  

Mean (SD) Mean (SD) MD (95%CI) Adjusted P value

2:1 1276.16 (169.75) 1211.70 (281.64) 64.46 (− 117.17 to 246.09) 0.478

2.5:1 815.22 (185.58) 621.68 (186.28) 193.54 (11.91–375.17) 0.037*

3:1 606.55 (111.48) 465.95 (68.57) 140.60 (− 41.03 to 322.24) 0.126

Total 899.31 (323.58) 766.44 (379.19) 132.87 (− 71.95 to 337.69) 0.198
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study employed external hexagonal implants which 
have shown higher Fmax values in comparison with 
internal hexagonal implants in a recent published paper 
[26].

Significant differences in implant wall width due to 
the IP procedure were observed at all the reference 
points, but no perforations of the inner threads were 
found. The reduction in implant diameter at each of 
the 3 reference points ranged from 0.37  mm (95% CI 
0.33–0.40 mm) to 0.46 mm (95% CI 0.41–0.50 mm) in 
the IP test samples. Other authors with similar IP pro-
tocols have reported lower reductions [25, 29]. These 
discrepancies might be explained by differences in 
the degree of polishing, but are more likely to be the 

result of different implant geometries, namely thread 
depth and model. Thus, further studies with different 
implants should be carried out, since their design and 
material are likely to affect the implant’s resistance to 
fracture. A similar extent of change was found at each 
reference point (P > 0.05 in all cases; one-way ANOVA), 
regardless of the crown length subgroup of the implant, 
showing the similarity of the IP across all these sam-
ples, which would indicate that the procedure should 
be easy to reproduce.

Previous reports have claimed that implant diameter 
affects stress fatigue behavior and that dental implants 
will attain a critical stress point at lower loadings when 
subjected to IP [15, 27, 28]. The present results cor-
roborate this finding, as lower resistance to fracture 
was observed in the IP groups (Table  2). All the IP 
groups showed less Fmax values than the control groups, 
although these differences were found to be significant 
in only one of the CIR subgroups (2.5:1). Hence, narrow 
platform implants seem to be structurally weakened by 
IP procedures, although the most relevant risk factor for 
mechanical complications in the presence of 50% of bone 
loss seems to be CIR, as the mean Fmax values dropped 
to almost half between the 2:1 and 2.5:1 CIR sub-
groups (mean difference 590.02  N, 95% CI: 371.36  N to 
808.68 N) and by 61.6% between 2:1 and 3:1 (mean differ-
ence 745.75 N, 95% CI: 527.09 N to 964.41 N) (Table 3). 
Bertl et al. [22] having obtained a statistically significant 
reduction of fracture resistance on IP implants, reported 
that the forces required to fracture or deform a narrow 
diameter implant with IP remained high and therefore, 

Fig. 4  Mean fracture strength (N) of the three CIR ratios in the IP and control samples

Table 3  Mean fracture strength (N) of  the  IP and  control 
groups in the three clinical CIR subgroups

*  Statistically significant difference

MD mean difference (CIR1—CIR2)

Group CIR1 CIR2 MD (95% CI) Adjusted P value

Control 2:1 2.5:1 460.94 (242.27–679.60) < .001*

3:1 669.60 (450.94–888.27) < .001*

2.5:1 3:1 208.67 (− 9.99 to 427.33) .064

IP 2:1 2.5:1 590.02 (371.36–808.68) < .001*

3:1 745.75 (527.09–964.41) < .001*

2.5:1 3:1 155.73 (− 62.93 to 374.39) .206

Total 2:1 2.5:1 525.48 (363.58–687.38) < .001*

3:1 707.68 (545.78–869.57) < .001*

2.5:1 3:1 182.20 (20.30–344.10) < .001*
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this reduction has a limited clinical relevance in the 
majority of cases.

In both the IP and control groups, Fmax decreased 
with increasing CIR, although the only significant dif-
ferences were between CIR 2:1 and the other two sub-
groups (Table 3). No significant differences between CIR 
2.5:1 and 3:1 were observed despite the latter’s resist-
ance to fracture being lower in both the IP and control 
implants (Control: 815.22 N vs. 606.55 N; IP: 621.68 N vs. 
465.95 N). This outcome might be related with the lim-
ited sample size and with the observed standard devia-
tions. However, it is important to stress that the lowest 
resistance value was found in the 3:1 CIR subgroup with 
IP (465.95 N ± 68.57).

In the present study, the area mostly affected by 
fracture was the platform, which would suggest that 
the platform is more fragile than the body in narrow 
fixtures. While all the control implants broke at the 
platform, in the IP group with a 2:1 CIR some frac-
tures occurred in the body (n = 4) and prosthetic screw 

(n = 1), suggesting that IP reduces the mechanical 
resistance of the implant body. However, when higher 
CIRs were tested the stress seemed to be directed 
towards the platform and the prosthetic connection, 
and therefore all the fractures occurred in this area. 
Other studies using regular platform implants have 
found that implants subjected to IP usually break at 
the implant body, and although IP does not seem to 
decrease the maximum compression force of regular 
diameter external connection implants significantly, 
it clearly weakens the implant body [25]. Upon test-
ing different CIRs with 3.5  mm intact external hexa-
gon implants, fracture screw and implant platform 
deformation have been reported along with reduced 
resistance to fracture with increasing CIR. Gehrke per-
formed an in  vitro study with 60 implants with 3 dif-
ferent connections and also concluded that increasing 
the crown height significantly reduces the resistance 
to loading [24]. According to this paper, the abutment 
connection type also seems to be a relevant variable in 

Fig. 5  SEM screening: a IP sample platform fracture; b control sample platform fracture; c IP sample body fracture; d prosthetic screw fracture;
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the fracture resistance of dental implants, since morse 
taper implants seem to be less prone to fracture than 
external and internal hexagonal connections. However, 
IP may alter these results. Indeed, a recently published 
paper compared the fracture resistance after IP of three 
connection designs and concluded that external hex-
agonal connection implants have a higher resistance 
to fracture [26]. Another variable that should be taken 
into consideration is the degree of bone loss. This fac-
tor might be relevant since it affects the clinical crown 
height [30].

The present study presents some limitations related 
to its in  vitro design. Firstly, the IP procedures were 
performed by hand to simulate real-life conditions, 
instead of using a milling machine. Although this might 
compromise the standardization of the implant reduc-
tion slightly, it increased the external validity of the out-
comes. Secondly, long implants (15 mm) were selected 
in order to assure adequate retention in the resin dur-
ing the fracture tests. The length and 50% exposure of 
the implant provide information especially for extreme 
bone loss cases. In addition, 3.5  mm wide implants 
were selected because previous reports have shown 
that narrower implants must be addressed carefully 
for IP [15]. Nevertheless, narrow implants are widely 
used and bone loss from PI can affect any implant. 
Consequently, these factors were considered valuable 
for understanding the threshold of fracture resistance. 
Although a 15 mm long implant with a 15 mm long res-
toration is not common, considering a bone level type 
implant it represents a standard 1:1 CIR. Also, when 
PI has caused the loss of 5  mm of bone, the 1:1 clini-
cal CIR of a 10  mm long implant with a 10  mm long 
restoration becomes a clinical CIR of 3:1, similar to that 
of the 15 mm abutment subgroup in this study. In addi-
tion, the static compressive loads at a 30° angle used 
for fracture testing do not replicate the daily complex 
oral function of patients [31]. However, the methodol-
ogy employed complied with ISO guideline 14801:2016 
(third edition), except for the vertical exposure of the 
implant, allowing comparison with previous studies. 
Nevertheless, future research should include dynamic 
fatigue tests to determine the clinical relevance of the 
fracture resistance encountered. According to Gibbs 
et  al., the maximum human clenching force covers a 
wide range, from 98 to 1243 N, and is affected by sev-
eral factors including age, gender and tooth support 
[32]. The top of this range would fracture all the sam-
ples except for the controls with a 2:1 CIR [1276.16 N 
(σ = 169.75)].

Bite force seems to decrease from molar to premo-
lar and to incisor. Maximum bite forces measured in 
male subjects are higher than those of female subjects 

according to Umesh et al. [33]. The same authors found 
maximum bite forces of 744 N in molars, 371 N in pre-
molars and 320 N in incisors.

Considering the above outcomes and comparing them 
with the present data, IP procedures with a CIR of 2:1 
(mean fracture strength 1211.70  N ± 281.64) would 
present a low fracture risk regardless of implant posi-
tion, and fracture risk would be of concern after IP 
in molar regions with a CIR of 2.5:1 (mean fracture 
strength 621.68 N ± 86.28) or 3:1 (mean fracture strength 
465.95 N ± 68.57).

In such cases, it would be advisable for clinicians to 
perform a risk–benefit analysis, since implant fractures 
are more likely to occur. Therefore, as the Young modulus 
of different titanium alloys and ceramic implants varies, 
further research is needed to determine the resistance to 
fracture of new materials used for dental implants.

Conclusions
IP significantly reduces the fracture resistance of 
implants with a 2.5:1 CIR. The results also suggest that 
the CIR seems to be a more relevant variable when con-
sidering the resistance to fracture of implants, since sig-
nificant reductions were observed when unfavorable CIR 
subgroups (2.5:1 and 3:1 CIR) were compared with the 
2:1 CIR samples.
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