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Abstract 

High-resolution micro-computed tomography is a powerful tool to analyze and visualize the internal morphology of 
human permanent teeth. It is increasingly used for investigation of epidemiological questions to provide the dentist 
with the necessary information required for successful endodontic treatment. The aim of the present paper was to 
propose an image processing method to automate parts of the work needed to fully describe the internal morphol-
ogy of human permanent teeth. One hundred and four human teeth were scanned on a high-resolution micro-CT 
scanner using an automatic specimen changer. Python code in a Jupyter notebook was used to verify and process 
the scans, prepare the datasets for description of the internal morphology and to measure the apical region of the 
tooth. The presented method offers an easy, non-destructive, rapid and efficient approach to scan, check and preview 
tomographic datasets of a large number of teeth. It is a helpful tool for the detailed description and characterization 
of the internal morphology of human permanent teeth using automated segmentation by means of micro-CT with 
full reproducibility and high standardization.
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Introduction
Successful endodontic treatments require a precise 
knowledge of the external and internal morphology of 
the teeth [1]. For both surgical and non-surgical inter-
ventions it is necessary to know both the complex three-
dimensional root canal system with its configurations as 
well as the details of the apical region of the tooth. This 
knowledge is necessary to select the correct instruments 
and materials, thus aiding in important treatment deci-
sions. It also helps to avoid errors that can occur dur-
ing various steps of clinical endodontic treatment, such 
as preparation of the access cavity, rinsing, shaping and 

filling of the root canal system [2]. For example, these 
errors can include perforations during trepanation or 
failure in preparing the root canals. A detailed descrip-
tion and understanding of the root canal system is, there-
fore, essential for the clinical practitioner. At present, 
there are numerous imaging methods for the morpho-
logical description of teeth presented in the literature, 
including the clearing technique [3], optical microscopy 
[4], two-dimensional radiography, scanning electron 
microscopy, or three-dimensional imaging techniques 
such as cone beam computer tomography and micro-
computed tomography (micro-CT) [5].

Micro-computed tomography (micro-CT) is a method 
to non-destructively image the internals of objects of 
interest, namely biomedical samples at high resolution, 
i.e. in the micrometer range. Micro-CT imaging is well 
suited for the three-dimensional (3D) investigation of 
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teeth since it needs no specialized sample preparation 
in contrast to what is often needed to image soft tissue 
samples [6–8]. Combined with software rendering, it is a 
non-destructive, high-resolution, 3D imaging technique 
that can precisely depict small morphological struc-
tures (< 20 µm) in teeth thus making it superior to other 
ex vivo methods and therefore, suggested as a gold stand-
ard in the field [9–11]. Micro-CT is increasingly used for 
investigation of epidemiological questions to provide the 
dentist with necessary information that is a prerequisite 
for successful endodontic treatment [12–14].

Clinically relevant for the dentist are both the root 
canal configuration and the physiological procedure. 
Both parameters are important, as they give information 
about the expected anatomical conditions and the size of 
the physiological foramen for clinical purposes. Due to 
the batch-scanning capabilities of recent desktop micro-
CT systems large cohorts of teeth can be efficiently 
scanned with minimal manual intervention, generating 
terabytes of raw data for further analysis. Such a large 
amount of data necessitates an efficient, reproducible and 
automated framework to analyze such large tomographic 
datasets. Previous works have already analyzed large 
batches of teeth, but only for a small region of each tooth 
[15, 16] and with a considerable degree of manual input 
required for tooth segmentation [12, 17]. The hereby 
presented protocol provides an automated segmentation 
method for ex  vivo research on extracted human teeth 
using a four-digit root canal configuration code as well as 
detection and measurement of the physiological foramen 
parameters. We achieved this by using free and open-
source software [18], considerably increasing the impact 
and availability of our method for collaborators and other 
users in the field.

Materials and methods
The whole workflow performed for this manuscript is 
depicted in Fig.  1. Details of each step are explained in 
this section.

Tooth selection
A total of 104 extracted human permanent mandibular 
canines were collected from university medical centers in 
southwest Germany and Switzerland. All included teeth 
were extracted for reasons unrelated to the study and are 
so-called excess material. The teeth were single-rooted 
and investigated according to their morphological crite-
ria. Inclusion criteria for teeth selection were complete 
coronal and root development and the absence of root 
fracture and resorption, endodontic treatment no radic-
ular caries. Calculus as well as hard and soft tissue was 
removed as well as possible using an ultrasonic scaler. 
Afterwards, the teeth were placed for one hour in a 3% 

hydrogen peroxide ultrasonic bath and then stored in 
70% ethanol [5, 12, 15, 17, 19].

Micro‑CT‑based morphological analysis
The 104 samples were imaged on a Bruker SkyScan 1272 
high-resolution micro-CT machine (Control software 
version 1.1.19, Bruker microCT, Kontich, Belgium). To 
facilitate the scanning of this large batch of samples, we 
used the automatic sample changer to enable us to scan 
batches of 16 teeth without any intervention. In addi-
tion to the sample changer, the machine is equipped with 
a Hamamatsu L11871_20 X-ray source and a XIMEA 
xiRAY16 camera. We used a custom-made sample-
holder to scan the teeth on the sample changer. The 
sample holder was 3D-printed on a Form 2 desktop ste-
reolithography printer (Formlabs, Somerville, Massachu-
setts, USA) and is freely available online (git.io/JJbAZ) as 
part of a library of sample holders [20].

The X-ray source was set to a tube voltage of 80.0 kV 
and a tube current of 125.0 µA, the x-ray spectrum was 
filtered by 1 mm of Aluminium. For each sample, depend-
ing on the sample height, we recorded a set of either 4 
or 5 stacked scans overlapping its height. Each stack was 
recorded with 482 TIFF projections of 1632 × 1092 pixels 
at every 0.4° over a 180° sample rotation. Every single pro-
jection was exposed for 950  ms and 3 projections were 
averaged to greatly reduce image noise. This resulted in a 
scan time of approximately 40 min per stack and between 
2 h and 40 min to 3 h and 15 min per sample. In total, 
we thus scanned for approximately 13 days. On average, 
we recorded 7.88 GB of raw data for each tooth, totaling 
819 GB for all 104 teeth. The obtained projection images 
were subsequently reconstructed into a 3D stack of axial 
PNG images spanning the whole length of each tooth 
with NRecon (Version 1.7.4.6, Bruker microCT, Kontich 
Belgium) using a ring artifact correction of 14. The whole 
process resulted in datasets with an isometric voxel size 
of 10.0 µm. The teeth were all slightly different in height 
and on average we had about 2700 reconstructions per 
teeth and a total of approximately 280,000 files for all 
teeth. The reconstructed PNG slices per tooth are on 
average 3.13  GB in size, totaling approximately 326  GB 
for all 104 teeth.

Image processing
We wrote a Jupyter (version 4.5.0) [21] notebook with 
Python code (version 3.7.3) which allowed for scans to 
be checked as soon as they were reconstructed during 
scanning of the first items in the batch. Re-runs of the 
notebook added newly scanned and reconstructed teeth 
to the analysis, facilitating preliminary checks and analy-
sis of already scanned teeth. The notebook used for the 
analysis presented in this manuscript is freely available 



Page 3 of 9Haberthür et al. BMC Oral Health          (2021) 21:185 	

online [22]. The important steps of the analysis steps are 
described in detail below.

Preparation
In a first step we extracted all necessary parameters from 
the log file of each scan to store into a Pandas (version 

Fig. 1  Workflow of steps performed for this manuscript
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0.25.1) [23] dataframe for comparison and verification of 
all the necessary scan parameters of each scanned tooth 
with all the others. Afterwards, the preview image of 
each scan was loaded and an overview image of all the 
scans was generated (see Fig. 2, in which we show a ran-
domly selected subset of the whole tooth cohort).

We used Dask (version 2.5.2) [24] to read the set of 
axial reconstruction PNG slices for each sample. The 
reconstructions were stored on disk in the Zarr storage 
format [25], an efficient, chunked and compressed array 
representation of the single images. The zarr-representa-
tion of the reconstructions were used for further analysis 
and had a total size of 330 GB on disk.

Dataset cropping
To reduce the size of the data on disk, we cropped the 
datasets to their minimal amount, i.e. to the smallest 
cuboid encompassing the full tooth. This was done by 

segmenting the dataset into tooth and background using 
a common, fixed gray-value threshold for all datasets. 
We denoised this refined dataset by discarding speckles 
with a volume smaller than 1000 voxels with the remove_
small_object function of scikit-image (version 0.15.0) [26] 
and subsequently isolated the biggest object with the 
find_objects function of SciPy (version 1.3.1) [27]. The 
extent of this largest object represents the smallest pos-
sible region in which the tooth is contained. By remov-
ing the empty parts of each three-dimensional dataset 
containing no information about the teeth, we reduced 
the size of all datasets nearly three-fold, to approximately 
1.11 GB per sample, or a total of 115 GB for all 104 teeth 
thus facilitating further handling of the data.

Overview images for visual examination
For quick visual assessment of each of the tooth scans, we 
extracted overview images for each tooth. After cropping 

Fig. 2  Overview images for a random selection of 24 of the 104 teeth. It is immediately visible that several teeth slipped down in the holder. Since 
we were particularly interested in the bottom part of the teeth (top in this view) this poses no problem for further analysis. The irregular brightness 
along the vertical axis stems from the rudimentary stitching process of the overview images and is not visible in the reconstructed slices
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the datasets, we extracted the middle slices and gener-
ated the maximum intensity projection (MIP) for each of 
the anatomical planes [28]. Since the teeth were scanned 
rotationally invariant, the two anatomical planes along 
the long axis of the tooth (coronal and sagittal) are not 
related to the real tooth anatomy and simply correspond 
to the respective direction in the tomographic dataset.

Root canal extraction
It was of paramount importance for the analysis to visual-
ize the root canal system inside the tooth. We thus wrote 
a function to extract the root canal based on its appear-
ance in the axial slices of the datasets. By using an auto-
mated Otsu thresholding implemented in scikit-image 
[26] on each slice of the datasets, we separated the tooth 
from the background. By inversion of the image we select 
all that is not tooth. From this, we remove all the pixels 
that touch the image border i.e. the air surrounding the 
tooth, with the clear_border function of scikit-image. We 
further removed speckles with an area of less than 64 pix-
els and closed holes with an area smaller than 100 pixels 
in the remaining image data to extract the root canal sys-
tem from inside the tooth (with the remove_small_objects 
and remove_small_holes functions, respectively  (both 
scikit-image)). Datasets of the root canal have again been 
written to disk for further analysis and display. Since 
these are binarized datasets, we were able to store them 
on disk very efficiently, with the total size of all 104 data-
sets containing only the root canal system being only 
309 MB. Display of the datasets for visual assessment was 
done with itkwidgets (version 0.21.1) [29], permitting a 
basic 3D visualization of each tooth for quality control 
(an example is shown in Fig. 3).

Root canal system classification
To facilitate the global characterization of the tooth, we 
extracted slices at four defined locations along the tooth. 
These slices, located at the border between enamel and 

dentin (EDB), the bottom of the tooth and equidistantly 
between, were then used to describe the root canal con-
figuration (as extracted above in subsection Root canal 
extraction) with a 4-digit system and to assess the num-
ber of main foramina, both according to a previously pro-
posed method [17]. The three-dimensional location of 
these extracted slices is shown in Fig. 4.

We calculated the brightness value along the long-
est axis of the tooth followed by smoothing of the curve 
using a locally weighted scatterplot smoothing imple-
mented in the statsmodels library (version 0.10.1) [30]. 
By finding the maximal derivation of this curve with 
NumPy (version 1.17.2) [31], we were easily able to detect 
the EDB (see the two left panels in Fig.  6). For small 
regions of 400 µm around these four equidistant slices to 
be extracted for the Briseño classification, we wrote the 
minimum gray value to the resulting image. As a conse-
quence this increased the visible noise for these regions 
but greatly helped to classify accessory canals in these 
regions (as shown in the four right panels in Fig. 6). These 
regions and an overview of the tooth were written to an 
image for each sample to help with an efficient manual 
characterization of each tooth without manually looking 
for the correct axial reconstruction (see Fig. 5).

To further aid the manual classification of each tooth 
we used the label function of the SciPy library to count 
the root canal or root canals in each extracted slice and 
thus automatically extract the Briseño classification [17] 
for each tooth. An example of such an automated extrac-
tion (for the same tooth as shown in Fig. 5) is shown in 
Fig. 6.

Analysis of the physiological foramen geometry
The apical foramen of the teeth was evaluated as previ-
ously described [19] by assessing the bottom part of each 
tooth using Fiji (version 1.53c) [32] to scroll through the 
stack of images and measure the diameter of the physi-
ological and anatomical foramen as well as the distance 

Fig. 3  Basic 3D visualization directly from our preparation and analysis pipeline. This tooth is interesting as it features a 1–2-2/2 root canal 
configuration as defined by Briseño et al. [17]. The whole tooth has a length of 2.39 cm
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between the physiological and anatomical foramina. The 
physiological (main) foramen was defined as one with a 
diameter of 0.20 mm or more. Foramina with diameters 
smaller than 0.20  mm were defined as accessory ones 
[19]. Since we have extracted the root canal for each 
tooth, we can easily calculate its diameter at each point, 
that is, exactly calculate the exact Euclidean distance 
transform (EDT) where each 3D voxel of the root canal is 
labeled with its distance relative to the background (wall 
of the canal). We used the morphology.distance_trans-
form_edt function of the SciPy library for this. To aid the 
assessment of the geometry of the physiological fora-
men, we extracted the bottom 3.5 mm part of each tooth, 
merged the reconstructed slices of the data with the cal-
culated EDT from the root canal and wrote this data to 
disk reformatted into sagittal slices. In such a way, the 
radius of the largest sphere fitted into the root canal sys-
tem at each point can easily be read off the image upon 
visual examination. The use of the Dask library facilitated 
efficient reformatting of the datasets and writing them to 
disk.

Results and discussion
High resolution datasets of large batches of teeth were 
acquired in an efficient manner with minimized operator 
effort due to the batch-scanning abilities of the desktop 
micro-CT scanner. The acquired datasets were imaged at 

a voxel size (10 μm) permitting the analysis of the finest 
features of interest in the teeth.

The batch-characteristics of the proposed dataset prep-
aration and analysis method makes it easy and efficient 
to begin processing tooth datasets as scanning of a large 
batch of teeth is already underway. Our script facilitates 
short turnaround time for feedback on single scans in 
the batch, since samples can be processed by the script 
as soon as they are reconstructed and while other teeth 
are still being scanned or waiting to be scanned. Crop-
ping the datasets with a simple algorithm—as described 
in subsection Dataset cropping above—greatly reduces 
the size of the datasets on disk.

The proposed method is completely devoid of any 
manual input, all the datasets present on disk are pre-
pared and analyzed automatically. This allows for a highly 
reproducible and completely unbiased analysis. Previ-
ous studies [13, 33] have analyzed teeth with a precisely 
defined manual protocol which necessitated several, 
accurately performed manual steps, increasing the likeli-
hood of operator error being introduced. This is avoided 
in the method presented here.

Several teeth contained metal fillings (amalgam) in 
the crown area, which are difficult to penetrate with the 
X-ray source available to us. A simple thresholding leads 
to artefacts that extended to the border of the original 
dataset, thus for these datasets, there were no gains in 

Fig. 4  Three-dimensional visualization of tooth sample 045. This tooth is interesting as it features a 1–2-2/2 root canal configuration as defined 
by Briseño et al. [17]. The extracted root canal is shown in red, the tooth itself is shown semitransparent. The four slices which were automatically 
extracted based on the enamel-dentin border are also visualized semitransparent in their correct 3D position. The whole tooth has a length of 
2.39 cm. A video of the 3D visualization is found in Additional file 1 of this manuscript
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disk space. Since the cropping part only influences the 
final size of the dataset on disk and not the extraction of 
the root canal system from the tooth, it is only of minor 
concern. Additionally, the implants or metal fillings in 
several teeth made it impossible to automatically detect 
the enamel-dentin border. If an implant or filling is pre-
sent in the tooth, the largest derivation in the gray value 
profile along the tooth is situated at the bottom end of 

the implant. The function to extract the EDB was imple-
mented in a way that a manual extraction of the border 
and the corresponding slices along the tooth axis was 
possible.

The reformatting of only the bottom part of the tooth 
greatly facilitated the analysis of the geometry of the 
physical foramen of each tooth. While all reconstructions 
of a single tooth are more than 1 GB in size, these partial 

Fig. 5  Slice extraction for characterization of a tooth. This tooth features a 1–1-1/1 root canal configuration as defined by Briseño et al. [17]. The 
blue line in the two leftmost panels shows the gray value plot along the longest tooth axis, the orange line shows the smoothed plot. Based on 
the largest derivation we detect the enamel-dentin border at slice 911 of this dataset. Based on the bottom around slice 2341 we extracted the 
equidistant slices in-between

Fig. 6  Automatic Briseño classification [17] of the extracted tooth slices. This tooth features a 1–1-1/1 root canal configuration as also seen in Fig. 5. 
All automatically extracted classifications are only extracted to aid a the skilled observator fully describing the teeth since the simple automatic 
classification does not correctly classify each tooh in the whole cohort
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datasets are only around 22  MB per tooth. In total, the 
bottom 3.5 mm of all 104 teeth occupied only 2.3 GB of 
disk space, making further assessment of the foramen 
easily and efficiently possible on a standard office laptop.

The non-destructively acquired three-dimensional 
datasets of the tooth can also be used for additional anal-
ysis of tooth morphology, akin to the process outlined by 
Di Angelo et al. [34], Peters et al. [35] or Paqué et al. [16]. 
Further work will focus on automatically extracting a 
description of the physiological foramen which will allow 
for dentists to gain important information required for a 
successful root canal treatment.

The hereby presented workflow is based completely on 
free and open-source software and can therefore be veri-
fied independently by any interested reader. The Jupyter 
notebook described here is also freely available online 
[22]. A copy with two samples from the cohort can be 
run in your browser without installing any software via 
Binder [36] by clicking a single button in the README 
file of the project repository.

Conclusions
The presented method offers an efficient approach to 
scan, check and preview micro-computer tomographic 
datasets of many teeth. We describe a helpful, free and 
open-source software tool to prepare datasets for precise 
description and characterization of the internal mor-
phology of human permanent teeth using automated 
segmentation of features of interest. Due to the high 
reproducibility and standardization of the presented 
method, datasets of large cohorts and populations can be 
investigated easily and rapidly.

A follow-up study will fully describe the cohort men-
tioned in this manuscript and use the hereby presented 
method for describing the teeth in detail.
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The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12903-​021-​01551-x.

Additional file 1: Video of tooth sample 045 rotating around its longest 
axis. This tooth is interesting as it features a 1–2-2/2 root canal configura-
tion as defined by Briseño et al. [17]. The extracted root canal is shown 
in red, the tooth itself is shown semitransparent. The four slices which 
were automatically extracted based on the enamel-dentin border are also 
visualized semitransparent in their correct 3D position. The whole tooth 
has a length of 2.39 cm.
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