
Jiang et al. BMC Oral Health          (2021) 21:466  
https://doi.org/10.1186/s12903-021-01827-2

RESEARCH

Association between chronic periodontitis 
and the risk of Alzheimer’s disease: combination 
of text mining and GEO dataset
Zhengye Jiang1,2†, Yanxi Shi3†, Wenpeng Zhao1,2, Liwei Zhou1,2, Bingchang Zhang1,2, Yuanyuan Xie1,2, 
Yaya Zhang1,2, Guowei Tan1,2 and Zhanxiang Wang1,2* 

Abstract 

Background:  Although chronic periodontitis has previously been reported to be linked with Alzheimer’s disease 
(AD), the pathogenesis between the two is unclear. The purpose of this study is to analyze and screen the relevant 
and promising molecular markers between chronic periodontitis and Alzheimer’s disease (AD).

Methods:  In this paper, we analyzed three AD expression datasets and extracted differentially expressed genes 
(DEGs), then intersected them with chronic periodontitis genes obtained from text mining, and finally obtained inte-
grated DEGs. We followed that by enriching the matching the matching cell signal cascade through DAVID analysis. 
Moreover, the MCODE of Cytoscape software was employed to uncover the protein–protein interaction (PPI) network 
and the matching hub gene. Finally, we verified our data using a different independent AD cohort.

Results:  The chronic periodontitis gene set acquired from text abstracting was intersected with the previously 
obtained three AD groups, and 12 common genes were obtained. Functional enrichment assessment uncovered 
12 cross-genes, which were mainly linked to cell morphogenesis involved in neuron differentiation, leading edge 
membrane, and receptor ligand activity. After PPI network creation, the ten hub genes linked to AD were retrieved, 
consisting of SPP1, THY1, CD44, ITGB1, HSPB3, CREB1, SST, UCHL1, CCL5 and BMP7. Finally, the function terms in the 
new independent dataset were used to verify the previous dataset, and we found 22 GO terms and one pathway, 
"ECM-receptor interaction pathways", in the overlapping functional terms.

Conclusions:  The establishment of the above-mentioned candidate key genes, as well as the enriched signaling 
cascades, provides promising molecular markers for chronic periodontitis-related AD, which may help the diagnosis 
and treatment of AD patients in the future.
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Background
Periodontitis constitutes a chronic inflammatory dis-
ease. During the development of periodontitis, associ-
ated complications such as alveolar bone destruction, as 

well as the loss of attachment of collagen fibers to peri-
odontal ligament, will occur, eventually leading to tooth 
loss [1]. There are reports that the occurrence of chronic 
periodontitis may be related to the increase of IL-6 [2]. 
At the same time, interdisciplinary disease studies have 
shown that the serum and saliva levels of Galectin-3 in 
patients with chronic periodontitis + coronary heart dis-
ease (CHD) are significantly higher than those in patients 
with just CHD [3]. The concentration the concentration 
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of serum and saliva NLRP3 in patients with chronic peri-
odontitis + type-II diabetes mellitus (DM) is also signifi-
cantly higher than that of patients with simple type-II 
DM [4]; results indicated that periodontitis was signifi-
cantly correlated with the above biomarkers. However, 
in the studies on chronic periodontitis and neurodegen-
erative diseases such as cognitive decline, although there 
have been relevant reports, such as Cestari et al. ’s results 
showing that the level of inflammatory cytokines in indi-
viduals with Alzheimer’s disease (AD) is correlated with 
periodontitis, it is still unclear which specific gene targets 
are involved [5].

AD constitutes a progressive neurodegenerative dis-
ease. Its clinical indications primarily include cogni-
tive decline, which eventually develops into AD. It has a 
place in diseases that threaten the lifespan of the elderly. 
A large number of previous studies have confirmed that 
immune factors, depression, genetic factors, etc. could be 
positively correlated with the incidence and development 
of AD [6–11]. Despite the huge advances in AD research, 
the current AD treatments can only improve and relieve 
patient conditions to some level [12]. As the threat of AD 
to the elderly becomes greater and greater, it is impera-
tive for us to establish the etiology, as well as the molecu-
lar features of AD disease.

At present, high-throughput sequencing techniques, 
such as molecular diagnosis, prognosis estimation, as 
well as drug target discovery, which can be employed to 
assess the gene expression differences, as well as the vari-
able splicing variation, are gradually considered to have 
important clinical significance in disease research. The 
Integrated Gene Expression Database (GEO), a publicly 
available website supported by the National Center for 
Biotechnology Information (NCBI), harbors dozens of 
basic experimental disease gene expression patterns and 
is extensively employed to explore key genes and pro-
spective mechanisms of disease onset and development 
[13]. Though the pathogenesis of chronic periodontitis 
has been recently found to be related to AD, its patho-
genesis, as well as the molecular mechanism, remains 
unknown. Hence, we need to utilize the gene expres-
sion chip in the bulletin database and explore its data via 
modern software to find novel diagnostic biomarkers and 
treatment targets [14].

Herein, we retrieved GSE5281, GSE15222 and 
GSE132903, the human AD gene expression patterns, 
respectively, from the GEO website. After that, R soft-
ware (V. 3.6.3) installed Limma package was utilized to 
screen the differentially expressed genes (DEGs) [15, 16]. 
Text mining about chronic periodontitis was then carried 
out by the pubmed2ensembl online tool [17]. After the 
data obtained from microarray, and the text mining, were 
intersected to obtain the common gene, GO enrichment 

and KEGG pathway assessment were performed on the 
obtained DEGs [18]. Then, the PPI (protein–protein 
interaction) network was developed using the Search 
Tool for the Retrieval of Interacting Genes (STRING), 
along with Cytoscape software, to screen candidate hub 
genes, as well as the highly relevant functional modules. 
Finally, we verified our results using a different independ-
ent GSE28146 cohort. From these findings, we could find 
the gene biomarkers and linked cascades that might be 
linked to AD, providing novel insights into the molecular 
mechanism underlying hidden AD. In short, we explore 
the molecular biomarkers by studying the correlation 
between chronic periodontitis and AD disease to provide 
evidence for early diagnosis, prevention, and treatment of 
this disease.

Methods
Data abstraction
We retrieved the gene expression chip data GSE5281, 
GSE15222, GSE132903 and GSE28146 from the NCBI 
GEO data repository (https://​www.​ncbi.​nlm.​nih.​gov/​
geo/) [13, 19]. These four cohorts all contained ten con-
trol samples and ten AD samples.

Identification of DEGs
The core R package was employed to process the 
abstracted matrix files. Following the normalization, we 
determined the differences between AD and the control 
group via truncation criteria (|log fold change (FC)|≥ 1, 
adjusted P < 0.05), and determined the significant DEGs 
for subsequent analyses [20].

Text mining
We carried out the text mining based on the pubme-
d2ensembl public tool (http://​pubme​d2ens​embl.​ls.​manch​
ester.​ac.​uk/). When manipulated, pubmed2ensembl 
retrieves all the gene names from the existing literature 
relevant to the research topic. We screened for chronic 
periodontitis. We then uncovered all the genes linked 
to the topic from the data. Finally, we used the gene set 
acquired by text mining and the previously abstracted 
differential gene set for the subsequent step of analysis 
after the intersection.

Gene ontology analysis of DEGs, along with KEGG pathway 
analysis
The obtained DEGs were imported to David V. 6.8 
(https://​david.​ncifc​rf.​gov/). The GO annotation, along 
with KEGG cascade enrichment, were carried out in the 
web resource, which provided a sequence of functional 
annotation tools for systematic analysis of biological sig-
nificance of gene lists. The above gene tables were ana-
lyzed with adjusted P < 0.05 as the significant threshold.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://pubmed2ensembl.ls.manchester.ac.uk/
http://pubmed2ensembl.ls.manchester.ac.uk/
https://david.ncifcrf.gov/
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Assessment of the PPI network of the DEGs
We used the STRING online search tool to analyze the 
PPI data encoded by DEGs [21], and only the combi-
nation score > 0.6 was considered significant. Then, 
the PPI network was analyzed and visualized using 
Cytoscape, and the first five hub genes were determined 
as per the connectivity between DEGs. The standard 
default setting of the mcode parameter. The function 

enrichment of DEGs of each module was analyzed by 
adjusted P < 0.05 as the cutoff standard.

Drug‑gene usually: crosstalk and functional analysis 
of potential genes
The drug gene interaction database (DGIDB) was used 
to screen potential drug delivery targets for mutated 
and altered genes [22].
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Fig. 1  Twelve DEGs were identified by integrated analysis of AD gene expression datasets. a–c Clustering of the 12 DEGs in AD versus control 
across each independent dataset. Each column represents a sample and each row represents the expression level of a given gene. The color 
scale represents the raw Z score ranging from blue (low expression) to red (high expression). Dendrograms by each heatmap correspond to the 
hierarchical clustering by expression of the 12 genes. d Venn diagram of DEGs from three microarray datasets and genes list from text mining



Page 4 of 11Jiang et al. BMC Oral Health          (2021) 21:466 

Statistical analysis
Statistical analysis was performed using R/BioCon-
ductor (R Foundation for Statistical Computing, ver-
sion 3.6.3). All indicated p values are two-tailed values. 
p < 0.05 was considered significant.

Results
DEGs identification
Firstly, we selected 6155 DEGs from AD samples and 
healthy controls in the GSE5281 data set via limma 
package screening of R software. Of these, we selected 
2201 upregulated genes and 3954 downregulated 
genes. At the same time, 1787 DEGs consisting of 
1431 upregulated genes and 355 downregulated genes, 

were uncovered via analysis of the AD samples in the 
GSE15222 data set. And from the GSE132903 data-
set, we also obtained 1303 upregulated genes and 1301 
downregulated genes. Then, the overall distribution 
of the three data sets and the first 12 DEGs were rep-
resented by volcano map, and heat map respectively 
(Fig.  1a–c), using |log FC|≥ 1 criteria and adjusted 
P < 0.05.

Through text abstraction, 1096 human genes were 
linked to chronic periodontitis (S. s 1). After crossing 
the DEGs in the microarray data, the intersection of 
chosen genes was determined, and 12 genes participat-
ing in AD group were obtained (Fig. 1d).

Fig. 2  All available significant gene ontology enrichment terms and signal pathway of the common genes from three datasets and text mining. 
a–c A Top 10 GO terms. Number of gene of GO analysis was acquired from DAVID functional annotation tool. P < 0.05. D KEGG pathway
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Function along with signal cascade enrichment analysis
After introducing the DEGs obtained above into 
DAVID, we subjected them to GO and KEGG enrich-
ment analysis. GO term assessment illustrated that 
these genes, which were abundant in cell morpho-
genesis, were involved in neuron differentiation (BP), 

leading edge membrane (CC), and receptor ligand 
activity (MF) (Fig.  2a–c), respectively. KEGG cascade 
analysis identified 3 pathways associated with the 
DEGs: ECM − receptor interaction, PI3K − Akt signal-
ing cascade, and shigellosis (Fig. 2d).

Module screening from the PPI network
Based on the 12 co-genes, the Cytoscape publicly avail-
able platform and the STRING resource were employed 
to develop the PPI network, perform module analysis, 
as well as visualization. Consequently, we developed a 
PPI network bearing 16 crosstalk based on 10 integrated 
DEGs related to AD (Fig. 3a). We employed the MCODE 
algorithm to determine highly interconnected subnets, 
which are frequently protein complexes, as well as com-
ponents of cascades as per the topological structure. We 
selected only one module from the entire network for 
further analysis (Fig.  3b). Additional functional enrich-
ment assessment of the established modules demon-
strated that genes in the module were majorly abundant 
in the GO, in terms of “extracellular matrix organization”, 
“focal adhesion”, “integrin binding”, as well as KEGG cas-
cade of “ECM-receptor interaction” (Table 1).

Verification in GSE28146 cohort
To assess the reliability of the findings derived from 
previous cohort, we extracted a cohort of ten AD sam-
ples and ten healthy control samples from a different 
independent AD dataset, GSE28146, and analyzed its 
gene expression data (Fig. 4). Interestingly, we found an 
enriched feature overlap between GSE28146 and the 

Fig. 3  The protein–protein interaction (PPI) networks construction and significant gene modules analysis. a Based on the STRING online database, 
12 common genes were filtered into common genes PPI network. b The most significant module from the PPI network

Table 1  Functional enrichment assessment of the established 
modules

GO gene ontology, BP biological processes, CC cellular composition, MF 
molecular function, KEGG Kyoto Encyclopedia of Genes and Genomes

Term Category Category

GO:0030198 BP Extracellular matrix organization

GO:0007155 BP Cell adhesion

GO:0022617 BP Extracellular matrix disassembly

GO:0007160 BP Cell–matrix adhesion

GO:0016337 BP Single organismal cell–cell adhesion

GO:0050900 BP Leukocyte migration

GO:0043547 BP Positive regulation of GTPase activity

GO:0005925 CC Focal adhesion

GO:0070062 CC Extracellular exosome

GO:0045121 CC Membrane raft

GO:0009897 CC External side of plasma membrane

GO:0009986 CC Cell surface

GO:0048471 CC Perinuclear region of cytoplasm

GO:0005178 MF Integrin binding

hsa04512 KEGG ECM-receptor interaction

hsa05131 KEGG Shigellosis

hsa04670 KEGG Leukocyte transendothelial migration

hsa05205 KEGG Proteoglycans in cancer

hsa04510 KEGG Focal adhesion
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previous data set: there were 22 GO terms in the overlap-
ping functional terms. And it is worth noting that when 
we added the gene enrichment analysis of the modules 
together, we found in KEGG there was only one pathway, 
"ECM-receptor interaction" (Table 2).

Drug‑gene crosstalk and functional analysis of potential 
genes
Using the DGIDB data resource, we analyzed drug-gene 
interactions among four potential genes aggregated 
in key gene modules. As a result, six drugs interacted 
with the gene SPP1, five also interacted with CD44, and 
ITGB1 was closely associated with nine different drugs. 
Among the 20 drugs discovered, 7 drugs (Calcitonin, 
Wortmannin, Gentamicin, Tacrolimus, Progesterone, 

Gentamicin, and Hyaluronan) have been reported to have 
certain experimental and clinical use for the treatment of 
AD. The remaining 13 drugs have not been found to be 
related to the treatment of AD and can be used as poten-
tial target drugs for AD (Table 3).

Discussion
This study explored the possible molecular biomarkers 
between chronic periodontitis and AD through bioin-
formatics analysis and data mining (Fig.  5). The results 
showed that through network analysis of GO, KEGG and 
PPI, four pivot genes (ITGB1, SPP1, CD44 and THY1) 
and two other genes of interest (CCL5 and BMP7) were 
screened out. Among them, 20 genes targeted SPP1, 
CD44 and ITGB1, which had therapeutic properties 
for AD. Moreover, after verification via the GSE28146 

Fig. 4  All available significant gene ontology enrichment terms and signal pathway of the common genes from GSE28146 dataset. a–c Top 10 GO 
terms. Number of gene of GO analysis was acquired from DAVID functional annotation tool. P < 0.05. D KEGG pathway
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cohort, the only overlapping KEGG term "ECM-receptor 
interaction" was obtained.

In many epidemiological studies, in addition to the 
reported involvement of inflammatory mediators in 
chronic periodontitis and CHD/type-II DM, our study 
also found that chronic periodontitis may be the result 
of the gradual deterioration of neuronal function during 
aging. Therefore, a new potential treatment method for 
preventing the progression of AD has emerged: delay-
ing or preventing chronic inflammatory diseases.  How-
ever, at present, the pathogenesis and effective treatment 
of chronic periodontitis for cognitive decline remain 
unclear. Hence, it is imperative to explore the molecu-
lar mechanism of cognitive decline after chronic peri-
odontitis to determine efficient biomarkers and effective 
approaches for the diagnosis, monitoring, and treatment 
of patients.

To obtain more reliable experimental results, our vali-
dation with a separate GSE28146 cohort revealed the 
only overlapping term in KEGG: "ECM receptor inter-
action". ECM receptors are composed of many struc-
tural and functional macromolecules, including collagen, 
laminin, and fibronectin (FN), especially FN [23]. At the 
same time, ECM receptor interactions play an important 
role in the microenvironmental pathways that balance 
the structure and function of cells and tissues. Previous 
reports have confirmed the role of the ECM receptor 
interaction pathway(s) in many cancers such as breast 
cancer [24], glioblastoma [25], prostate cancer [26], 

and colorectal cancer [27]. Unfortunately, there is no 
clear report about whether ECM receptor interaction is 
involved in the occurrence and development of chronic 
periodontitis and AD.

It is critical to point out that Integrin β1 (ITGB1) 
constitutes a prevalent gene in most of the rich KEGG 
pathways in AD. Additionally, the ITGB1 gene com-
prised one of the hub genes uncovered by the PPI 
network. ITGB1 is one of the most common integrin 
heterodimer subchains. The bi-directional signaling 
of ITGB1, as well as cross-talking with other cellular 
receptors, has been shown to play an important role in 
survival, cell adhesion, differentiation and proliferation 
[28]. Previous research has illustrated that ITGB1 plays 
an indispensable role in the survival and metastatic 
potential of lung, breast, and colon tumors [29–34]. 
At the same time, ITGB1 has been found to promote 
tumor resistance to anti-cancer drugs such as bevaci-
zumab, erlotinib and gefitinib [35–38].

Secreted phosphoprotein 1 (SPP1) is a secreted gly-
cophosphate protein with a wide range of functions and 
is also known as osteopontin, which plays an indispen-
sable role in B cell-triggered cellular immunity [39, 40]. 
At the same time, it plays a significant role in numer-
ous autoimmune diseases, e.g., rheumatoid arthritis, 
systemic lupus erythematosus, and multiple sclerosis 
[41]. Studies have shown that SPP1 levels in pyramidal 

Table 2  Overlap of the enriched function terms between the 
two datasets

GO gene ontology, BP biological processes, CC cellular composition, MF 
molecular function, KEGG Kyoto Encyclopedia of Genes and Genomes

Term Category Category

GO:0070487 BP Monocyte aggregation

GO:0030198 BP Extracellular matrix organization

GO:0034116 BP Positive regulation of heterotypic cell–cell 
adhesion

GO:0043065 BP Positive regulation of apoptotic process

GO:0044344 BP Cellular response to fibroblast growth factor 
stimulus

GO:0043407 BP Negative regulation of MAP kinase activity

GO:0007155 BP Cell adhesion

GO:0045669 BP Positive regulation of osteoblast differentiation

GO:0045893 BP Positive regulation of transcription, DNA-
templated

GO:0022617 BP Extracellular matrix disassembly

GO:0045666 BP Positive regulation of neuron differentiation

GO:0005925 CC Focal adhesion

GO:0005615 CC Extracellular space

hsa04512 KEGG ECM-receptor interaction

Table 3  Candidate drugs targeting genes with AD

Drugs in bold have not been previously reported for AD patients

Number Drug Gene

1 ASK-8007 SPP1

2 CALCITONIN SPP1

3 ALTEPLASE SPP1

4 WORTMANNIN SPP1

5 GENTAMICIN SPP1

6 TACROLIMUS SPP1

7 PROGESTERONE CD44

8 BIVATUZUMAB CD44

9 HYALURONATE SODIUM CD44

10 GENTAMICIN CD44

11 HYALURONAN CD44

12 ABITUZUMAB ITGB1

13 VOLOCIXIMAB ITGB1

14 NATALIZUMAB ITGB1

15 INTETUMUMAB ITGB1

16 ETARACIZUMAB ITGB1

17 FIRATEGRAST ITGB1

18 PF-04605412 ITGB1

19 GLPG-0187 ITGB1

20 SAN-300 ITGB1
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neurons in the hippocampus of AD patients are signifi-
cantly elevated [42].

Thymus cell antigen 1 (Thy1), alias cluster differentia-
tion (CD) 90, which is expressed in the cell membranes 
of all types of cells, is a glycoprotein anchored to glyco-
phosphatidylinositol [43]. It plays an indispensable role 
in cell–cell and cell–matrix interactions [44]. THY has 
been proven to be a cancer marker [45], and it has been 
found that high expression of THY1 is linked to poor 
prognosis in individuals with extrahepatic cholangio-
carcinoma [46] and lung cancer patients [47].

CD44 is a member of the glycoprotein family. It is 
an inflammation-related gene that encodes widely dis-
tributed alternatively spliced cells. The glycoprotein is 
related to inflammation-related neuronal damage. Pre-
vious studies have shown that CD44’s involvement in 
the pathological process of AD [48–50] may be related 
to its adhesion and migration in immune cells [51] and 
microglia [52]. Interestingly, in the study by Velez et al., 

it was found that the CD44 gene is specifically associ-
ated with AD, and it has been confirmed that CD44 is 
closely related to the age at onset of AD [53].

In addition to the above four target genes, we also 
found two more interesting genes, CCL5 and BMP7.

Chemokine (C–C motif ) ligand 5 (CCL5), is a 
chemokine that can be produced by a variety of cells. 
CCL5 can help white blood cells enter the inflammatory 
area through endothelial cells [54], thereby indirectly 
participating in the inflammatory response. Therefore, 
studies have shown that after periodontitis and periodon-
titis treatment, the concentration of CCL5 in the blood 
of patients remains at a high level [55, 56]. Compared 
with cognitively healthy subjects, AD patients have lower 
CCL5 expression [57, 58]. However, in the study of Mark-
steiner et al. [59], CCL5 levels are higher in AD patients. 
In addition, the results of Soares et  al. [60] found that 
there was no difference in the protein level of CCL5 
between AD and the control group.

Fig. 5  The framework of data analyses
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Recent studies have found that Bone morphoge-
netic protein 7 (BMP7) can be produced in the salivary 
glands of mice [61]. Although there is no clear report on 
whether BMP7 is related to periodontitis and AD in the 
current study, related studies have proved that BMP7 be 
related to a variety of tumors, such as colorectal cancer 
[62], breast cancer [63], and prostate cancer [64].

Among the 20 drugs discovered, 7 drugs (Calcitonin, 
Wortmannin, Gentamicin, Tacrolimus, Progesterone, 
Gentamicin, and Hyaluronan) have been reported to 
have certain experimental and clinical benefit for the 
treatment of AD. This shows that our GEO cohort based 
on big data the analysis has certain value for the poten-
tial treatment of AD. The remaining 13 drugs have not 
been found to be related to the treatment of AD and can 
be used as potential target drugs for AD. These include 
ASK-8007, Alteplase, Bivatuzumab, Hyaluronate sodium, 
Abituzumab, Volociximab, Natalizumab, Intetumumab, 
Etaracizumab, Firategrast, PF-04605412, GLPG-0187, 
and SAN-300.

Conclusions
By employing a sequence of bioinformatics tools for gene 
expression profiling, we established the core function 
of key candidate genes, including ITGB1, SPP1, CD44, 
THY1, CCL5, and BMP7, and the enriched signaling cas-
cades constituting the ECM-receptor interaction path-
ways in the molecular modulation network of cognitive 
decline via integrated bioinformatic analysis. Through 
the above results, we found that there may be a signifi-
cant correlation between chronic periodontitis and AD. 
This provides a prospective target for the diagnosis and 
clinical treatment of AD in patients with chronic perio-
dontitis in the future. However, in vitro and in vivo stud-
ies should be conducted to verify our findings.
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