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Abstract 

Background:  The oral microbiota is a significant risk indicator for oral diseases, such as dental caries and periodontal 
inflammation. Much attention is presently paid to the development of functional foods (e.g. beverages containing 
cranberry constituents, or foods containing probiotics) that may serve as adjuncts for oral disease treatments (e.g. 
periodontitis and caries). Cranberry fruit, due to its unique chemical composition and antimicrobial potential, is a 
possible ingredient of such foods. The study aimed to investigate the effects of cranberry juice (CJ) and a cranberry 
functional beverage (mixture of 80% v/v apple juice, 20% v/v cranberry juice, and 0.25 g/100 mL ground cinnamon; 
CFB) on the growth and metabolic activity of selected oral bacteria.

Methods:  Serial dilution pour plate method (SDPP) was used to examine the effect of CJ and CFB on the growth of 
Actinomyces naeslundii, Streptococcus mutans, and Lactobacillus paracasei subsp. paracasei. 48-h electrical impedance 
measurements (EIM) during the cultivation of A. naeslundii were applied to evaluate the utility of the method as a 
rapid alternative for the assessment of the antimicrobial potential of cranberry beverages.

Results:  The tested bacteria differed in their susceptibility to the antimicrobial action of CJ and CFB, with L. paracasei 
subsp. paracasei being least vulnerable to CFB (according to SDPP). Although CJ at a concentration of 0.5 mL/mL, 
showed a bactericidal effect on the growth of S. mutans, A. naeslundii was more sensitive to CJ (SDPP). Its inhibitory 
effect on A. naeslundii was seen even at concentrations as small as 0.03125–0.125 mL/mL (SDPP and EIM). On the 
other hand, S. mutans seemed to be more vulnerable to CFB than A. naeslundii (SDPP).

Conclusions:  CFB may be considered an adjunct in the treatment of oral diseases due to its action against selected 
oral pathogens, and not against the presumably beneficial L. paracasei subsp. paracasei. Bioelectrical impedance 
measurements appear to be a quick alternative to evaluating the antimicrobial activity of fruit beverages, but their 
utility should be confirmed with tests on other bacteria.
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Background
The pathogenic oral microbiota is a significant risk indi-
cator for oral diseases, such as dental caries and peri-
odontal inflammation [1]. Prevention and treatment 
of these diseases can include removing as many patho-
logical microbiotas as possible using physical methods 
(tooth brushing, scaling, and root planning) or chemical 
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methods (mouth rinses and antibiotic therapy). Some 
methods, such as antibiotic therapy, are questionable 
due to their possible side effects, such as the acquisition 
of resistance by oral pathogens or their negative effect 
on gastrointestinal tract microbiota. In recent years, the 
issue of mouthwash safety has also been raised. In par-
ticular, it has been suggested that regular long-term use 
of such items may lead to an overgrowth of pathogenic 
or resistant bacteria, eventually reducing the clinical effi-
cacy of antibiotics [2–4]. Furthermore, the regular use 
of mouthwashes containing chlorhexidine or cetylpyri-
dinium chloride is thought to contribute to an increased 
risk of hypertension (as a result of the destruction of 
oral microbes responsible for catalyzing the reduction 
of nitrate to nitrite) [2, 5–11] and to the development of 
prediabetes or diabetes [2]. Thus, much attention is pres-
ently being paid to the search for safe adjuncts for oral 
disease treatment. One solution may be found in so-
called functional foods—items consumed as part of a reg-
ular diet and possessing health-related benefits that may 
contribute to diminishing the risk of specific chronic dis-
eases [12]. In recent decades, cranberry fruit (Vaccinium 
macrocarpon) has received much attention regarding its 
possible use in the treatment of metabolic and oral dis-
eases, including periodontal diseases [13–15]. The unique 
chemical composition of this fruit, including the pres-
ence of A-type procyanidins, makes it a potential ingredi-
ent of functional foods. It has previously been observed 
that cranberry compounds can inhibit the activity of 
Streptococcus sorbinus and Streptococcus mutans [15–20] 
and also possess antiadhesive potential against those 
bacteria, as well as against some periopathogens such as 
Porphyromonas gingivalis and Fusobacterium nucleatum 
[15, 21–25]; it also seems that they can restrain bacterial 
biofilm formation [14, 26–28]. It has been suggested that 
cranberry constituents can modulate the host’s immune 
response in the course of periodontitis [27, 29–31]. Apart 
from oral health, cranberry beverages have also been 
studied concerning their possible benefits in modulating 
inflammation and oxidative status in overweight adults 
and patients with metabolic syndrome [32–34]. However, 
the use of cranberry in functional foods production has 
to date been limited due to its tart and astringent taste, 
which affect the taste and flavor of food items it enriches. 
Attempts have been made to overcome this disadvantage 
by adding artificial sweeteners, such as sucralose, aspar-
tame, and acesulfame K. However, undesirable descrip-
tors—such as sweet and bitter aftertaste, bitterness, and 
metallic flavor—are frequently reported for such bever-
ages [35, 36]. In our previous study, we developed a func-
tional beverage containing cranberry juice without any 
added sugars or artificial sweeteners, intended to possess 
a highly acceptable taste and other organoleptic features 

while being an effective and risk-free agent for support-
ing standard nonsurgical periodontal treatment. Apple 
juice—a highly acceptable, widely available, and relatively 
economical resource—was used as a base of the bever-
age; 100% cranberry juice was used as the main bioactive 
compound and the proportion used made up the high-
est sensory acceptable percentage of the cranberry juice 
in the beverage, based on our unpublished consumer 
sensory evaluation of four different variants of the bev-
erage with cranberry juice; ground cinnamon was also 
used to enrich the taste. These considerations led to the 
following formula: 80% v/v apple juice (from the variety 
Antonówka Zwykła), 20% v/v of cranberry juice (Vac-
cinium macrocarpon), and 0.25 g/100 mL of ground cin-
namon. This beverage, which we refer to as the cranberry 
functional beverage (CFB), was successfully introduced 
as an adjunct to standard periodontal therapy in patients 
with gingivitis. Full details can be found in our previous 
work [37].

For the present study, we intended to characterize the 
antimicrobial potential of CFB in vitro; we hypothesized 
that CFB possesses antimicrobial activity against selected 
oral pathogens (Streptococcus mutans and Actinomyces 
naeslundii) and does not affect the growth of the presum-
ably beneficial Lactobacillus paracasei subsp. paracasei. 
We assessed the effects of CFB on the growth of these 
oral bacteria using the serial dilutions pour plate (SDPP) 
method, and we compared the activity of CFB with the 
activity of 100% cranberry juice (CJ). Furthermore, we 
attempted to verify the results obtained using SDPP 
via the quick alternative method of electrical imped-
ance measurement (EIM) on one selected pathogen, A. 
naeslundii.

Material and methods
Antimicrobial agents
Cranberry juice (CJ) was obtained from Vaccinium mac-
rocarpon fruits. The fresh fruits were washed, heated 
to 80  °C, and pressed in a Bucher press (Niederwenin-
gen, Switzerland). Immediately after cooling, the CJ was 
stored at − 20 °C until the microbiological tests were per-
formed. The CFB was produced according to the above 
formula by the firm Polska Róża Ernest Michalski. The 
chemical composition and nutritional value of CJ and 
CFB are shown in Table 1.

Phenolic compounds analysis
Reversed-phase (C18 column) ultra-high-performance 
liquid chromatography-electrospray ionization-mass 
spectrometry (RP-UHPLC-ESI–MS) analysis was per-
formed using a Dionex UltiMate 3000 UHPLC (Thermo 
Fisher Scientific, Sunnyvale, CA, USA) coupled to a 
Bruker maXis impact ultrahigh resolution orthogonal 
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quadrupole-time-of-flight accelerator (qTOF) equipped 
with an ESI source and operated in the positive- and 
negative-ion mode (Bruker Daltonik, Bremen, Germany). 
The RP chromatographic separation was achieved with 
a Kinetex™ 1.7 µm C18 100 Å, LC column 100 × 2.1 mm 
(Phenomenex, Torrance, CA, USA) according to Bies-
aga and Pyrzyńska [38]. The ESI–MS settings were 
previously described by Mildner-Szkudlarz et  al. [39]. 
Molecular ions: [M + H]+ and [M-H]− for phenolic com-
pounds were extracted from full scan chromatograms 
(± 0.003 m/z) and peak areas were integrated with TASQ 
2.1 (Bruker Daltonik, Bremen, Germany). The com-
pounds present in each sample were identified based on 
the retention time of standard and/or molecular mass 
and structural information from the MS detector during 
MS/MS experiments. Additionally, the hydrolysis of sam-
ples was performed to confirm the presence of phenolic 
glycosides identified using MSMS spectra. The occurring 
of phenolic aglycones or increase in their concentration 
after hydrolysis proves the presence of glycosides. The 
samples were hydrolyzed with 1.2 M HCl for 2 h at 90 °C 

using the method described previously by Nuutilla et al. 
[40]. The tandem mass spectrometric data were used 
for searching molecular structure using CSI:FingerID 
(Friedrich Schiller University, Jena Germany), which 
combines fragmentation tree computation and machine 
learning [41, 42]. Limit of quantification (LOQ where 
S/N > 15) was determined for caffeic acid, chlorogenic 
acid, p-coumaric acid, sinapic acid, quercetin and it was 
not lower than 0.01 µg/mL.

The content of selected phenolic compounds of CJ and 
CFB is given in Table 2. The presented compounds were 
selected based on their antibacterial potential known 
from previous studies or their abundance in the tested 
beverages. In general, CJ was richer in phenolic com-
pounds compared to CFB.

Tested microorganisms
Strains of Actinomyces naeslundii (DSMZ 17,233), Strep-
tococcus mutans (DSMZ 20,523), and Lactobacillus par-
acasei subsp. paracasei (DSMZ 4905) were used as test 
microorganisms. All strains were purchased from the 
Deutsche Sammlung von Mikroorganismen und Zellkul-
turen, Germany. These bacteria were cultured using the 
following media: Actinomyces Broth Vegitone for A. 
naeslundii; Casein-soy broth or agar with yeast extract 
for S. mutans (P-0236 or P-0237, BTL, Łódź, Poland), 
and MRS broth or agar for L. paracasei subsp. paracasei 
(CM0359 or CM0361, Oxoid, Hampshire, UK).

Preparation of test cultures
For both experiments, liquid monocultures of the tested 
bacterial strains were prepared. The cultures for SDPP 
were prepared in standard glass tubes to a volume of 
5  mL. The cultures for electrical impedance measure-
ment were prepared in special 10-mL measuring tubes 
that were incubated in the automated microbiological 
growth analyzer (BacTrac 4100, Sy-Lab, Austria). A series 
of two-fold dilutions of CJ (0.50 mL/mL CJ1, 0.25 mL/mL 
CJ2, 0.125 mL/mL CJ3, 0.0625 mL/mL CJ4, 0.03125 mL/
mL CJ5) or CFB (0.50 mL/mL CFB1, 0.25 mL/mL CFB2, 
0.125 mL/mL CFB3) with sterilized liquid growth media 

Table 1  Chemical composition, acidity, and pH of cranberry 
juice (CJ) and cranberry functional beverage (CFB)

Results are presented as means ± SDs; *determined by the method utilizing 
2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) free radical (ABTS), 
#determined by the method utilizing 2,2-diphenyl-1-picrylhydrazyl free radical 
(DPPH)

Characteristics CJ CFB

Glucose (g/L) 22.2 ± 0.4 26.5 ± 0.25

Fructose (g/L) 3.3 ± 0.1 73.6 ± 0.35

Sucrose (g/L)  ≤ 2 6.2 ± 0.3

Vitamin C (mg/100 g) 2.4 ± 0.7 1.3 ± 0.35

Total polyphenols (g/L) 2.17 ± 0.06 3.22 ± 0.03

Anthocyanins (mg/100 mL) 5.4 0.7

Ash (g/L) 1.4 1.9

Total antioxidant activity (µM Trolox/mL)* 11.50 ± 0.43 6.84 ± 0.22

Antioxidant capacity (µM Trolox/mL)# 10.57 ± 0.24 2.64 ± 0.04

pH 2.5 3.5

Acidity (g/L) 17.68 ± 0.03 8.62 ± 0.04

Volatile acidity (g/L) 0.23 ± 0.02 0.10 ± 0.02

Table 2  Selected phenolic compounds of cranberry juice (CJ) and cranberry functional beverage (CFB)

Results are presented as means ± SDs; *calculated according to standard curves of appropriate aglycone; LOD level of detection

Compound Molecular Formula MS precursor ion MSMS ions CJ (µg/100 mL) CFB (µg/100 mL)

Quercitin pentoside* C20H18O11 [M-H]− 151, 227, 243, 255, 271, 300 1962.9 ± 54.0 347.6 ± 10.7

Quercitin pentoside* C21H20O11 [M-H]− 151, 179, 227, 255, 271, 300 542.6 ± 0.3 96.6 ± 0.9

Quercitin C15H10O7 [M-H]− 107, 121, 151, 179, 227, 243 16.6 ± 0.1  < LOD

Procyanidin isomers* C30H26O12 [M + H]+ 123, 127, 139, 163, 287, 409 614.3 ± 11.0 628.1 ± 8.1

Epicatechin C15H14O6 [M + H]+ 123, 139, 207 945.0 ± 15.4 757.9 ± 12.9
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were prepared and inoculated with the test microorgan-
ism. The applied inoculum constituted 5% for SDPP and 
10% for impedance measurement of the volume of the 
entire culture. Aside from the test cultures enriched with 
CJ or CFB and inoculated with the test microorganisms, 
reference cultures (RC) inoculated with the test micro-
organisms, but not enriched with CJ or CFB, were also 
prepared.

Serial dilutions pour plate (SDPP) method
To evaluate the inhibitory effects of CJ and CFB, the 
number of bacteria was determined at the 0 h time point 
and after 48 h of incubation at 37 °C. To that end, a vol-
ume of 0.1 mL of each liquid culture (after a series of dec-
imal dilutions) was placed on sterile Petri dishes, covered 
with sterile agar medium; and incubated at 37 °C for 48 h. 
Colony forming units (cfu) were then counted, and dishes 
with cfu counts ranging from 30 to 300 were consid-
ered. The pour plate cultures were prepared in triplicate. 
The results of the experiment are presented as the mean 
number of cfu/mL of cultures after 48  h of incubation 
(Table  3). Further, the numbers of cfu/mL of each cul-
ture were log-transformed, and the differences (changes) 
between the log of the cfu/mL number at 48 h and 0 h in 
each culture were calculated.

Electrical impedance change measurements
The inhibitory effect of CJ and CFB against A. naeslun-
dii was additionally verified by analyzing the electrical 
impedance changes in the growth medium during incu-
bation. Such changes, caused by the metabolic activity 
of A. naeslundii during its growth in the medium con-
taining CJ or CFB, were measured using an automated 
microbiological growth analyzer (BacTrac 4100, Sy-Lab, 
Austria). Special 10-mL measuring test tubes (Sy-Lab), 
equipped with four electrodes, were filled with 9 mL of 

growth medium containing CJ (0.50–0.03125  mL/mL) 
or CFB (0.50–0.125  mL/mL), and then inoculated with 
1  mL inoculum of the tested bacteria. The measuring 
tubes were incubated at 37  °C in the analyzer’s thermo-
stat. Changes in the electrical impedance were calculated 
using the formula:

where y—is the change (expressed in %) in the electri-
cal impedance of the growth medium, y0—is the value 
of electrical impedance at the beginning of culturing, 
and yi—is the value of electrical impedance at a common 
point of measurement (measured every 10 min).

The changes in electrical impedance caused by the bac-
terial metabolic processes can be presented as a curve 
that parallels the classic microbial growth curve with lag, 
logarithmic, and stationary phases [41–45]. To facilitate 
comparative analysis, we employed an impedance thresh-
old of 2% of the changes and determined the parameter 
of impedance detection time (IDT).

Statistical analysis
Data were analyzed using the T-test for independent 
variables, except for the comparison of IDT between CJ2 
and RC, in which case the one-sample T-test was used. 
Statistical significance was set at p < 0.05. All analysis was 
performed using the StatSoft Statistica data analysis soft-
ware system (version 13.1, 2016; www.​stats​oft.​com).

Results
Actinomyces naeslundii
The number of cfu/mL of A. naeslundii at 48 h was sig-
nificantly lower in CJ1, CJ3, CJ4, and CJ5 than in the ref-
erence culture (RC; Table  3). No significant difference 
was found between CJ2 and RC. In the CFB2 and CFB3 

y =

(

y0 − yi
)

y0
× 100%

Table 3  Number of cfu per 1 mL of reference and test cultures at 48 h

Values are means from three replicates. *, **, ***: Significantly lower than reference culture (*p < 0.05, **p < 0.01, *** p < 0.001). #, ##, ###: Significantly higher than 
reference culture (#p < 0.05, ##p < 0.01, ###p < 0.001). CJ, cranberry juice; CFB, cranberry functional beverage; NS, not significantly different from reference culture

Antimicrobial agent Concentration of CJ or 
CFB (mL/mL)

Culture symbol A. naeslundii S. mutans L. paracasei 
subsp. 
paracasei

Reference culture – RC 6.57 × 107 9.40 × 107 2.80 × 108

Cranberry juice 0.50000 CJ1 5.00 × 105*** No growth 3.23 × 106***

0.25000 CJ2 7.43 × 107NS 1.58 × 107*** 2.04 × 108**

0.12500 CJ3 1.93 × 107*** 1.45 × 108# 4.46 × 108##

0.06250 CJ4 4.60 × 107** 2.80 × 108### 2.85 × 108NS

0.03125 CJ5 4.60 × 107*** 2.46 × 108### 2.86 × 108NS

Cranberry functional beverage 0.50000 CFB1 5.97 × 107NS 6.40 × 107* 1.45 × 108**

0.25000 CFB2 1.63 × 108## 1.93 × 108## 5.73 × 108##

0.12500 CFB3 5.07 × 108### 2.23 × 108## 2.34 × 108NS

http://www.statsoft.com
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cultures, the number of cfu/mL at 48 h was substantially 
higher than in RC. No difference was seen between CFB1 
and RC. Compared to changes in the number of cfu/
mL in RC—which illustrates the growth of the tested 
microorganism under optimal growing conditions—an 
inhibitory effect of CJ was observed at concentrations of 
0.50 mL/mL (CJ1) and 0.125–0.03125 mL/mL (CJ 3–5); 
surprisingly, a slight stimulation of A. naeslundii growth 
was seen at 0.25 mL/mL (CJ2, Fig. 1a). At the concentra-
tion of 0.50  mL/mL CFB, the intensity of A. naeslundii 
growth was comparable to that in RC, while at 0.125–
0.25 mL/mL CFB, an intensification was seen (Fig. 1b).

Analyzing the changes in electrical impedance dur-
ing incubation of the tested microorganisms an inhibit-
ing effect in both cases (CJ as well as CFB) was observed. 
The significant differences in the value of impedance 
detection time (IDT) for all the tested juices concen-
trations were registered. In general, the higher was the 

concentration of CJ or CFB, the higher was the growth 
inhibition of the tested A. naeslundii (the longer was the 
IDT). In the highest concentration (0.50 mL/mL) a bac-
tericidal effect of CJ was noted (Fig.  2a). The inhibition 
of A. naeslundii metabolic activity was noted in CJ2, 
CJ3, and CJ4 (as determined by the longer IDT in those 
cultures in comparison to RC). Similarly, at a concentra-
tion of 0.50 mL/mL of CFB, a bactericidal effect was seen 
(Fig. 2b). In CFB2 and CFB3, inhibition of A. naeslundii 
metabolic activity was also observed (IDT was signifi-
cantly longer than in RC).

Streptococcus mutans
No growth of S. mutans was observed at 48  h in CJ1 
(0.50  mL/mL; bactericidal effect, Table  3). The number 
of cfu/mL was significantly lower in CJ2 than in RC. In 
subsequent cultures enriched with CJ, the number of 
cfu/mL was higher than in RC. Regarding the cultures 

Fig. 1  Changes in the number of cfu/mL between 0 and 48 h time points. a, b A. naeslundii, c, d S. mutans, e, f L. paracasei subsp. paracasei. Results 
are expressed as means ± SDs. *, **, ***: Significantly lower than reference culture (*p < 0.05, **p < 0.01, ***p < 0.001). #, ##, ###: Significantly higher than 
reference culture (#p < 0.05, ##p < 0.01, ###p < 0.001). NS: not significantly different from reference culture. CJ, cranberry juice; CFB, cranberry functional 
beverage
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enriched with CFB, lower numbers of cfu/mL than in 
RC were observed solely in CFB1, while these values for 
CFB2 and CFB3 were higher than in the RC. Compared 
to the changes in the number of cfu/mL in RC, an inhibi-
tory effect of CJ was observed at a concentration of 0.5 
and 0.25 mL/mL (CJ1 and CJ2), and of CFB at a concen-
tration of 0.50 mL/mL (CFB1, Fig. 1c, d). In all succeed-
ing cultures, an intensification of S. mutans growth was 
observed.

Lactobacillus paracasei subsp. paracasei
At 48 h, the numbers of cfu/mL in CJ1 and CJ2 were sig-
nificantly lower than in RC, and in CJ3 higher than in RC 
(Table 3). In the cultures enriched with CFB, significantly 
lower and significantly higher numbers of cfu/mL than in 
RC were observed in CFB1 and CFB2, respectively. Com-
pared to the changes in the number of cfu/mL in RC, an 
inhibitory effect of CJ was observed only at a concentra-
tion of 0.50 mL/mL (CJ1), while an intensification in the 
growth of L. paracasei subsp. paracasei was observed 
at 0.125  mL/mL (CJ3; Fig.  1e). At no tested concentra-
tion did CFB inhibit the growth of L. paracasei subsp. 
paracasei, determined as changes in cfu/mL; at 0.25 mL/
mL (CFB2), an intensification was observed in bacterial 
growth.

Discussion
The results of our study support the hypothesis that cran-
berry functional beverage (CFB) possesses a certain anti-
microbial activity against the oral pathogens Actinomyces 
naeslundii and Streptococcus mutans, but not against 
Lactobacillus paracasei subsp. paracasei. The bacteria S. 
mutans and A. naeslundii differ in their vulnerability to 
the inhibitory action of CJ and CFB. CJ possesses greater 
antimicrobial activity than CFB against the tested oral 
bacteria, including both oral pathogens and L. paracasei 
subsp. paracasei.

The evaluation of the antimicrobial effect of the tested 
beverages was performed using two methods: serial dilu-
tions pour plate (SDPP) method and electrical imped-
ance measurement. Similar studies on inhibitory and 
bactericidal activity evaluation [46–49] have indicated 
the usefulness of the impedimetric technique as a fast 
and precise test. Our results confirmed that bioelectrical 
impedance measurement can be an adequate and rapid 
method for determining the antimicrobial potential of 
fruit beverages against oral bacteria, at least in the case of 
A. naeslundii.

Each of the tested microorganisms has its own spe-
cific optimal growing conditions and specific effect on 
dental plaque biofilm development, as well as possessing 

Fig. 2  Impedance detection time of A. naeslundii in cultures with CJ (a) or CFB (b). Results are expressed as means ± SDs. *, **, ***: Significantly 
different from reference culture (*p < 0.05, **p < 0.01, ***p < 0.001). CJ: cranberry juice; CFB: cranberry functional beverage
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characteristic adaptation mechanisms to changes in 
growth conditions, which under in vivo conditions con-
cern the dental plaque microenvironment [50–52]. All 
these aspects affect the vulnerability of particular micro-
organisms to antimicrobial agents. Among the bacteria, 
we tested here, Lactobacillus paracasei subsp. paracasei 
proved to be relatively tolerant to the presence of CJ or 
CFB in the growth media. The role of the Lactobacillus 
genus in oral health is yet not clear. Studies of the involve-
ment of Lactobacillus in the initiation and progression of 
dental caries have been carried out for decades, though 
without resolving the issue. The Lactobacillus genus con-
tains about 80 species of bacteria. Although the total 
number of Lactobacillus spp. present grows with the 
progression of dental caries, it needs to be emphasized 
that some Lactobacillus species—such as L. paracasei, 
L. plantarum, L. rhamnosus, and L. salivarius—possess 
inhibitory potential against certain cariopathogens, like 
S. mutans. The inhibitory action seems to be greater in 
strains obtained from chronic periodontitis patients than 
in those from healthy volunteers [50, 53–55]. In view of 
this, the lack of strong antimicrobial potential of CJ or 
CFB against L. paracasei subsp. paracasei should not 
be perceived negatively. There is no data on the effect of 
cranberry components on oral lactobacilli species. The 
results of the studies on food microflora indicate none-
theless, that probiotic Lactobacillus species (L. rhamno-
sus), are less susceptible to the antimicrobial action of 
cranberry or blueberry phenolic compounds compared to 
foodborne pathogens (E. coli, Listeria monocytogenes or 
Salmonella typhinurium) [56, 57]. Phenolic compounds 
are generally known for their inhibitory action on bac-
teria growth. In recent years, however, it has been sug-
gested that polyphenols can have even stimulatory effects 
on the growth of some bacteria, including species of lac-
tic acid bacteria. The mechanism that gives Lactobacillus 
species greater resistance for phenolic compounds com-
pared to the sensitivity of some oral pathogens (as shown 
in the current study) or food pathogens is unclear. Con-
cerning lactic acid bacteria, they rely heavily on energy-
transducing systems to survive in incessantly changing 
and often-hostile environments. Most of these meta-
bolic energy-generating systems offer the prevention of a 
lethal decrease of the internal pH [58, 59]. The interac-
tion between phenolic compounds and lactic acid bacte-
ria is bidirectional, e.g. lactic acid bacteria can determine 
the bioavailability of polyphenols, and polyphenols can 
affect the growth of bacteria. The impact of phenolic 
compounds on lactic acid bacteria is determined by many 
factors, such as the structure of polyphenol, its concen-
tration, bacterial species, and its growth phase, metabolic 
abilities, and adaptation response [60]. It is worth noting 
that apple juice, which constitutes 80 v/v% of CFB, has 

recently been proposed as a suitable medium for deliv-
ering certain strains of Lactobacillus (e.g. L. paracasei, 
L. plantarum) and producing potentially probiotic fruit 
juices [61]. It would be reasonable to consider enriching 
CFB with probiotic bacteria, to develop a product with 
even greater pro-health properties.

Actinomyces naeslundii is a gram-positive early colo-
nizer of the dental plaque biofilm. It has two types of 
fimbriae: type 1 fimbriae facilitate its adhesion to acidic, 
proline-rich salivary proteins and statherin (which is 
present in the salivary pellicle). Type 2 fimbriae are 
associated with the attachment of A. naeslundii to the 
glycosidic receptors on epithelial cells, polymorphonu-
clear leukocytes, and oral streptococci. A. naeslundii 
associates and forms biofilms with Streptococcus and 
periodontal pathogens such as Porphyromonas gingivalis 
and Fusobacterium nucleatum, which have been known 
to induce alveolar bone resorption (in the course of 
periodontitis). Studies on animal models have reported 
alveolar bone destruction induced by A. naeslundii [62]. 
Some data are indicating the potential of a high molecu-
lar weight nondialysable material (NDM) from cranberry 
to inhibit the coaggregation of A. naeslundii with other 
periodontopathogenic microorganisms [21, 63, 64]. We 
have determined that A. naeslundii seems to be more 
sensitive than S. mutans to the presence of CJ in growth 
media, as the inhibitory effect was observed even at low 
concentrations of CJ. This was demonstrated by both the 
SDPP and electrical impedance measurement methods. 
As expected, CJ was a more potent inhibitor of A. naes-
lundii growth and metabolic activity than was CFB. The 
electric impedance measurements demonstrated a dose-
dependent relation between the concentration of CJ or 
CFB in the growth medium and the degree of inhibition 
of the metabolic activity of A. naeslundii, as determined 
by IDT. Both tested agents exhibited a bactericidal effect 
at the highest concentrations, as measured by IDT; this is 
consistent with the results of the SDPP method, but only 
for the CJ-enriched culture.

Streptococcus mutans is a primary colonizer of den-
tal plaque and is considered one of the primary causa-
tive agents of dental caries. This bacterium possesses a 
wide range of virulence factors, the most important of 
which include sucrose-independent and sucrose-depend-
ent adhesion within the dental plaque (which plays a 
prominent role in initiating the changes in plaque ecol-
ogy that lead to dental caries), acidogenicity, acid toler-
ance, and the production of a wide range of mutacins. 
All these features give S. mutans an ecological advantage 
over other microorganisms during the processes of den-
tal biofilm formation and maturation [51, 65–71]. It has 
previously been observed in in vitro models that certain 
phenolic fractions of cranberry fruits (e.g. NDM and 
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A-type cranberry proanthocyanidins) have the potential 
to inhibit the activity of glucosyltransferases and fruc-
tosyltransferases from S. mutans, and may interfere in 
sucrose-dependent and sucrose-independent adhesion of 
the bacteria. However, from the viewpoint of our experi-
ment, the most likely mechanism of antimicrobial action 
of CJ and CFB against S. mutans would seem to be the 
interruption of adaptive processes that occurs at low pH; 
this is referred to as the acid tolerance response. This 
process involves the ability of S. mutans to maintain a 
transmembrane pH gradient, with the interior of the cell 
being more alkaline; this is achieved by upregulation of 
a proton-translocating F1F0-ATPase that extrudes H+ as 
the external environment becomes more acidic. Acid-tol-
erant growth is also associated with changes in metabolic 
pathways, such as the downregulation or upregulation 
of certain proteins [69]. Previous in  vitro studies have 
indicated the potential of cranberry phenolics to affect 
the acid tolerance response of S. mutans, decreasing its 
acidogenic capabilities [17, 72]. The inhibitory effect of 
CJ on the growth of S. mutans was evident at high con-
centrations (0.25–0.50  mL/mL), whereas the effect was 
noted even at lower concentrations of CJ in the case of A. 
naeslundii (0.03125–0.1250 mL/mL). A concentration of 
0.50 mL/mL of CFB was effective in inhibiting the growth 
of S. mutans, though not of A. naeslundii, as measured by 
the SDPP method alone.

The antimicrobial potential of cranberry and other 
fruit and vegetable juices against oral pathogens has been 
studied before. However, most of these studies focused 
on juice extracts or biochemical compounds derived 
from fruits and vegetables [73–75]. Studies of juices in 
the form they are habitually consumed are sparse [76]. 
In our study, we tested the beverages in a form that can 
be directly incorporated into the diet, and this should be 
seen as a strength of our approach. One limitation of our 
study is the use of planktonic monocultures of bacteria; 
the dental biofilm is generally less sensitive to antimicro-
bial agents than the planktonic form, and shows greater 
pathogenic synergism, and is harder to remove via physi-
cal or chemical agents [51, 77, 78]. For this reason, the 
results of this study cannot be taken to demonstrate the 
effects of CJ or CFB on dental plaque in  vivo. In fact, 
the anticipation of the actual action of any antimicrobial 
agent in in vitro models is nearly impossible. Molecular 
techniques have identified over 700 bacterial species in 
the subgingival microbiota, but about 50–60% of these 
are uncultivable [79, 80]. Nonetheless, in our previ-
ous study, where gingivitis patients drank 750 mL of the 
tested CFB daily for eight weeks, we did note a reduction 
in the number of S. mutans in dental plaque, compared 
to patients drinking water. In that study, having in mind 
the relatively high content of sugars of CFB, and thus 

possible risk of dental caries development or progression, 
we evaluated the number of S. mutans as a CFB safety 
control. We demonstrated then, that the consumption 
of CFB improves gingival and plaque indices, without 
posing a risk of caries development [37]. This is in agree-
ment with the results of the current study. It should be 
also mentioned that the low pH of CFB and high content 
of acids might pose a risk of dental erosion. This patho-
logical process is defined as the partial demineralization 
of the tooth surface caused by repeated exposure to acid. 
The microorganisms are not involved [81, 82]. However, 
taking into account the high phenolic content of CFB 
and its antioxidant capacity, this beverage should be rec-
ommended as part of a varied and well-balanced diet in 
which the erosive potential of fruit and fruit drinks is bal-
anced by the consumption of milk and yoghurt (or other 
dietary calcium sources) that can serve as a protective 
factor.

Another methodological issue is that the numbers of 
cfu in the cultures at 0  h were not standardized in the 
pour plate experiment. However, the calculations allowed 
us to compare the changes in the number of cfu between 
the cultures enriched with CJ or CFB and the reference 
cultures.

Conclusions
In conclusion, the tested bacteria differed in their suscep-
tibility to the antimicrobial action of CJ and CFB, with L. 
paracasei subsp. paracasei being, as expected, the least 
vulnerable to CFB. Although CJ at a concentration of 
0.5  mL/mL showed a bactericidal effect on the growth 
of S. mutans, A. naeslundii proved more sensitive to the 
presence of CJ in the growth medium, as demonstrated 
by the inhibitory effect of CJ on A. naeslundii, which was 
seen even at concentrations as low as 0.03125–0.125 mL/
mL. S. mutans seemed to be more vulnerable to CFB 
than A. naeslundii. The results allow us to state that CFB 
may be further investigated as a possible safe adjunct in 
oral disease treatment on account of its action against 
selected oral pathogens, and not against the presumably 
beneficial Lactobacillus paracasei subsp. paracasei. In 
addition, bioelectrical impedance measurement appears 
to be a rapid alternative method for evaluating the anti-
microbial activity of fruit beverages, but its utility should 
be confirmed with tests on other bacteria.
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