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Abstract 

Background:  Lipopolysaccharide (LPS) is one of the leading causes of pulpitis. The differences in establishing an 
in vitro pulpitis model by using different lipopolysaccharides (LPSs) are unknown. This study aimed to determine 
the discrepancy in the ability to induce the expression of inflammatory cytokines and the underlying mechanism 
between Escherichia coli (E. coli) and Porphyromonas gingivalis (P. gingivalis) LPSs in human dental pulp stem cells 
(hDPSCs).

Material and methods:  Quantitative real-time polymerase chain reaction (QRT-PCR) was used to evaluate the mRNA 
levels of inflammatory cytokines including IL-6, IL-8, COX-2, IL-1β, and TNF-α expressed by hDPSCs at each time point. 
ELISA was used to assess the interleukin-6 (IL-6) protein level. The role of toll-like receptors (TLR)2 and TLR4 in the 
inflammatory response in hDPSCs initiated by LPSs was assessed by QRT-PCR and flow cytometry.

Results:  The E. coli LPS significantly enhanced the mRNA expression of inflammatory cytokines and the production 
of the IL-6 protein (p < 0.05) in hDPSCs. The peaks of all observed inflammation mediators’ expression in hDPSCs were 
reached 3–12 h after stimulation by 1 μg/mL E. coli LPS. E. coli LPS enhanced the TLR4 expression (p < 0.05) but not 
TLR2 in hDPSCs, whereas P. gingivalis LPS did not affect TLR2 or TLR4 expression in hDPSCs. The TLR4 inhibitor pretreat-
ment significantly inhibited the gene expression of inflammatory cytokines upregulated by E. coli LPS (p < 0.05).

Conclusion:  Under the condition of this study, E. coli LPS but not P. gingivalis LPS is effective in promoting the expres-
sion of inflammatory cytokines by hDPSCs. E. coli LPS increases the TLR4 expression in hDPSCs. P. gingivalis LPS has no 
effect on TLR2 or TLR4 expression in hDPSCs.

Keywords:  Lipopolysaccharide, Pulpitis, Inflammation mediators, Human dental pulp stem cells, Escherichia coli, 
Porphyromonas gingivalis
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Introduction
Pulpitis is an inflammatory pathosis of pulp tissue in 
response to various external stimuli primarily caused by 
bacterial infection. As a richly vascularized and inner-
vated connective tissue, dental pulp is composed of 
diverse cell populations, among which dental pulp stem 
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cells (DPSCs) are pivotal for their highly proliferative 
potential, self-renewal capability, and multilineage dif-
ferentiation aptitude [1], DPSCs continuously replen-
ish odontoblasts to form secondary and tertiary dentin 
throughout adult life and in reaction to insults [2]. Upon 
stimulation of lipopolysaccharides (LPSs), DPSCs could 
be recruited from their niche, migrate to the site of 
inflammation, and differentiate into odontoblast-like cells 
to form reparative dentin. LPS has also been reported 
to be involved in mesenchymal stem cells (MSCs) dif-
ferentiation and inflammatory responses [3]. It has been 
reported that human dental pulp stem cells (hDPSCs) 
from carious teeth manifested enhanced proliferation 
and osteogenic differentiation in comparison with their 
counterparts from healthy teeth [4]. DPSCs is regarded as 
a readily available source of multipotent stromal cells for 
tissue regeneration. DPSCs also involved in modulation 
of pulp inflammation [5]. Recent evidences have revealed 
that DPSCs could modulate the secretion of inflam-
matory cytokines and participate in the host immune 
response [6–8]. The immunomodulatory potential of 
DPSCs may be of particular importance for pulp tissue 
to repair or regenerate under conditions of pulpitis. To 
date, many studies have focused on the role of DPSCs in 
the progression and treatment of pulpitis via establish-
ing in vitro pulpitis models to simulate an inflammatory 
environment of DPSCs [7, 9, 10].

Toll-like receptors (TLRs) are pattern recognition 
receptors sensing specific pathogen-associated molecu-
lar patterns (PAMPs), connecting innate and adaptive 
immunity. TLRs are crucial in pathogenesis of chronic 
inflammatory, autoimmune, and infectious diseases [11]. 
So far, 10 functional human TLRs have been identified. 
Among them, TLR2 and TLR4 are extracellular TLRs 
which could recognize peptidoglycans and lipoteichoic 
acid (LTA) of Gram-positive bacteria [12, 13] and 
lipopolysaccharide (LPS) primarily from Gram-negative 
bacteria [14] respectively. When cultured in vitro, DPSCs 
express TLRs 1–10 at differential levels, with TLR2 and 
TLR4 in significant amounts, making them susceptible to 
LPS or LTA [15].

LPS, composed of lipids and polysaccharides, is a major 
component of the membrane of gram-negative bacteria 
that causes cell inflammation [16, 17]. By binding to TLRs 
of the cell, LPS activates various downstream signaling 
pathways, leading to the synthesis of inflammation medi-
ators, such as interleukin (IL)-1β, tumor necrosis factor-
alpha (TNF-α), IL-6, IL-8, and cyclooxygenase-2 (COX-2) 
[18, 19]. Being the critical initiator in pulpitis pathogen-
esis, bacterial LPS penetrates into the affected dental 
pulp tissue, motivates substantial release of inflamma-
tory mediators from dental pulp, such as IL-1β, TNF-α, 
IL-6, and IL-8 [20, 21], thus triggering the inflammatory 

response of the dental pulp [22, 23]. The inflammation-
inducing effects of LPS varies among different bacterial 
sources and different target cells. Nebel et al. compared 
the IL-6 gene and protein production of human peri-
odontal ligament cells (hPDLCs) upon stimulation by 
LPSs from Escherichia coli (E. coli) and Porphyromonas 
gingivalis (P. gingivalis) [24]. They found that E. coli LPS 
enhances the IL-6 expression dramatically, whereas P. 
gingivalis LPS has no effect on hPDLCs. In another study, 
gingival fibroblast cells are reported to be more sensitive 
to E. coli LPS than to P. gingivalis LPS in the expression of 
inducible nitric oxide, IL-6, and monocyte chemotactic 
protein-1 (MCP-1) [25]. By contrast, macrophages mani-
fest a more robust inflammatory reaction in expression of 
of IL-1β, IL-6, and MCP-1 in response to P. gingivalis LPS 
in comparison with E. coli LPS [25]. In a study conducted 
by Palaska et  al., no significant difference in inflamma-
tory response of human mast cells between P. gingivalis 
LPS and E. coli LPS was observed [26]. Obviously, the 
inflammation-inducing impact of LPS on target cells is 
both bacteria-specific and cell-specific.

Different stimuli such as LPS, TNF, bacterial extracts 
are used to imitate an inflammatory dental pulp micro-
environment [27–29]. To stimulate DPSCs in estab-
lishing in  vitro pulpitis models, many researchers use 
E. coli LPS [10, 30] whereas others use P. gingivalis LPS 
[27, 31]. LPS from E. coli, targets TLR4 and activates the 
downstream NF-κB signaling pathway, leading to the 
expression of inflammatory cytokines [32]. The inter-
action of P. gingivalis LPS with TLR2 or TLR4 remains 
controversial [33]. The TLR2 activity of P. gingivalis LPS 
might be caused by a contaminant lipoprotein [34]. As 
LPSs of different bacteria have been used in these stud-
ies, it is imperative to understand the discrepancy of the 
inflammation-inducing property between E. coli and P. 
gingivalis LPSs when interpretting and comparing these 
results. According to a most recently published system-
atic review [35], despite 105 in vitro studies using LPS in 
induction of pulp cell inflammation have been reported 
so far, only 2 experiments adopted both E. coli and P. 
gingivalis LPSs in stimulating heterogenous dental pulp 
cells [36, 37]. Moreover, scarce evidence exists comparing 
the inflammatory effects of E. coli and P. gingivalis LPS 
on DPSCs. Thus, our study aims to determine the differ-
ences in the ability to induce the expression of inflam-
matory cytokines over time by hDPSCs between E. coli 
and P. gingivalis LPSs. Furthermore, we have investigated 
the role of TLR4 and TLR2 in hDPSCs response to E. coli 
and P. gingivalis LPS-induced inflammation. The hypoth-
esis is that the LPS from E. coli is more potent than the 
LPS from P. gingivalis in eliciting inflammatory reac-
tions in hDPSCs. The LPSs could induce proinflamma-
tory expression in hDPSCs via TLR4. The novelty of this 
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study is to provide comparative data of the inflammation-
inducing capacitity between E. coli and P. gingivalis LPSs 
on hDPSCs.

Materials & methods
Cell isolation and culture
We collected impacted molars without caries from 
healthy volunteers aged 18 to 25 years. The procedures of 
collecting the extracted teeth were under the Committee 
of Ethics of School and Hospital of Stomatology, Fujian 
Medical University (No.201652), and informed consent 
was obtained. Immediately after extraction, each tooth 
was fractured into several parts by pliers (bone forceps) 
under sterile conditions. The dental pulp tissue from the 
teeth was isolated and collected into the Eppendorf tube. 
As described in the previous study, the pulp tissue was 
minced into 1 × 1 mm2 fragments and digested with a 
mix of type I collagenase (3 mg/ml) and dispase (4 mg/
ml; Sigma -Aldrich, St Louis, MO, USA) for 30–60 min 
at 37 °C [38]. Next, we obtained a single-cell suspension 
using a 70  mm cell strainer to filter solutions[38]. The 
suspension was then transferred onto a 6  cm culture 
dish, and cultured in an incubator maintained at 37  °C 
containing 5% carbon dioxide. The minimum essential 
medium with 10% fetal bovine serum (FBS, Gibco BRL, 
Rockville, MD, USA), 100  mg/ml streptomycin (Gibco 
BRL), and 100 units/ml penicillin (Gibco BRL) was used 
as culture medium. We used the third and fourth passage 
cells in subsequent experiments.

Characterization of hDPSCs
Following the method in a previous study [39], the mes-
enchymal antigen markers of the cells were identified 
using flow cytometry. The fluorescently conjugated anti-
bodies used were as follows (eBioscience, San Diego, CA, 
USA): anti-CD90-allophycocyanin (APC), anti-CD105-
phycoerythrin (PE), anti-CD73-PE, anti-CD146-PE, anti-
CD45-APC, and anti-CD34-fluorescein isothiocyanate 
(FITC). Correspondingly conjugated isotype control 
included mouse IgG-APC, IgG-PE, and IgG-FITC.

The cells were cultured in an osteogenic induction 
medium supplemented with 10  nM dexamethasone, 
0.2 mM ascorbic acid-2-phosphate, and 10 mM sodium 
β-glycerophosphate (Sigma-Aldrich) for osteogenic dif-
ferentiation for 3 weeks. Then the culture was fixed with 
4% paraformaldehyde for 30  min and stained with 2% 
Alizarin Red.

The cells were cultured in the adipogenic induction 
medium (Cyagen, Santa Clara, CA, USA) for 3 weeks and 
then stained with oil red “O” solution (Sigma-Aldrich) to 
test the adipogenic differentiation ability.

The colony-forming unit (CFU) test was carried out 
to determine the self-renewal potential of the isolated 

cells. Briefly, 1000 cells per well were seeded in a 6-well 
dish and cultured in the growth medium. The culture 
medium was changed every 3 days. After 14  days, cells 
were stained with 0.5% crystal violet solution for 30 min, 
observed, and photographed using a microscope.

The immunofluorescence staining for specific proteins 
was performed to detect the origin of cells. The immu-
nofluorescence staining protocol was in accordance 
with a previous study [40]. Rabbit antihuman vimentin 
(Abclonal, Woburn, MA, USA) and rabbit antihuman 
cytokeratin (Abclonal) proteins referred to mesenchy-
mal and epithelial origins. FITC-labeled goat antirabbit 
IgG (Abcam, Cambridge, UK) was used as the secondary 
antibody, and DAPI (Solarbio, Beijing, China) was used 
as nuclear-staining fluorescence.

LPS treatment and grouping
Upon reaching 80%–90% confluence, hDPSCs were 
stimulated with LPS of P. gingivalis (InvivoGen, Carls-
bad, CA, USA)(standard version, # tlrl-pglps) or E.coli 
(Sigma Aldrich) (serotype 055:B5, L5418) at the concen-
tration of 1 μg/mL [41, 42] referring to a previous study 
[43]. The cells not treated by E. coli LPS or P. gingivalis 
LPS were used as the control group. The treated cells at 
different time points (1.5, 3, 6, 12, and 24  h) were har-
vested for assessing the mRNA expression of IL-6, IL-8, 
COX-2, IL-1β, and TNF-α. Besides, we measured the 
gene levels of TLR4 and TLR2 stimulated by E. coli and 
P. gingivalis LPSs (1 μg/mL) at 1.5, 3, 6, 12, and 24 h to 
investigate the underlying mechanism of LPS-induced 
inflammation of hDPSCs. Also, we explored the effects 
of E. coli and P. gingivalis LPSs (1 μg/mL) on the protein 
production of TLR4 and TLR2 in hDPSCs by flow cytom-
etry. Furthermore, cells were pretreated with or without 
10 μmol/L TAK-242 (HY-11109, MedChem Express, NJ, 
USA) for 30  min and added with E. coli LPS (1  μg/mL) 
for another 3 h to confirm how TLR4 acted in the inflam-
matory mediator expression of hDPSCs induced by E. 
coli LPS. Afterward, we collected all cells and evaluated 
the fluctuation in the gene expression levels of IL-6, IL-8, 
COX-2, IL-1β, TNF-α, and TLR4.

Quantitative real‑time polymerase chain reaction 
(QRT‑PCR)
Briefly, we extracted the total RNA of hDPSCs by using 
Trizol (Invitrogen). According to the manufacturer’s pro-
tocol, we synthesized the cDNA from 1  μg total RNA 
using the PrimeScript RT reagent kit with the gDNA 
Eraser (Takara, Kusatsu, Japan). The primer sequences 
used in our research are shown in Additional file  1: 
Table S1. Each cDNA sample was amplified in triplicate 
on the LightCycler 480 II real-time PCR system using a 
two-step method. The expression of targeted genes was 
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analyzed by calculating the amount of target cDNA rela-
tive to the housekeeping gene glyceraldehyde-3-phos-
phate dehydrogenase following the 2−ΔΔCT principle.

Enzyme‑linked Immunosorbent Assay (ELISA)
The IL-6 protein released into the cell culture superna-
tant was measured to assess the influence of E. coli and 
P. gingivalis LPSs on the inflammation-inducing abil-
ity. The hDPSCs were cultured in triplicate at a density 
of 5 × 104 per well in 24-well plates in the completed 
culture medium containing 10% FBS. After reaching 
approximately 80% confluence, the medium was removed 
and replaced with a new medium free of serum for 18 h. 
Then, hDPSCs were stimulated by 1 μg/mL E. coli LPS or 
1 μg/mL P. gingivalis LPS in the completed medium for 
another 24 h. Supernatants were gathered and stored at 
80  °C until further use. By the manufacturer’s protocol, 
we analyzed the IL-6 protein level from culture super-
natants using a commercially available human-specific 
ELISA kit (Neobioscience, Shenzhen, China).

Flow cytometry
The BD Accuri C6 Software was used to investigate TLR4 
and TLR2 expression on the surface of hDPSCs stimu-
lated by LPS (1 μg/mL) from E. coli or P. gingivalis. Cells 
were collected, washed with PBS, counted, and then 

resuspended in the staining buffer. Cells were incubated 
with the anti-TLR4 antibody (Abcam) (ab13556) or anti-
TLR2 antibody (Abcam) (ab213676) for 1 h at 4 °C. The 
secondary antibody diluted to 1/2000 was added for 
another 30 min in the dark (Abcam) (ab150079). The iso-
type control antibody (Abcam) (ab37415) was used under 
the same conditions. Data analysis was performed using 
the FlowJo 10.6.2 software.

Statistical analysis
Data were expressed as a mean ± standard deviation and 
analyzed using one-way Analysis of variance, followed 
by Tukey’s test (equal variance) or Dunnett’s T3 (une-
qual variance). Statistical significance was determined at 
p < 0.05.

Results
Characterization results of hDPSCs
The flow cytometry showed mesenchymal markers 
(CD73, CD105, CD90, CD146) positive and hemat-
opoietic markers (CD34, CD45) negative on hDPSCs 
(Fig.  1A). Many mineralized nodules and several red 
lipid droplets formed in hDPSCs, respectively (Fig.  1B, 
C). The CFU test showed prominent colonies in hDP-
SCs, displaying the apparent self-proliferation capacity of 
hDPSCs (Fig. 1D, d). The isolated cells were positive for 

Fig. 1  Characterization of hDPSCs. A Representative histograms about surface markers on hDPSCs by flow cytometry. B Mineralized nodules 
formed in hDPSCs after osteogenic differentiation for 3 weeks. C Lipid droplets after adipogenic induction in hDPSCs for 3 weeks. D, d Colonies of 
hDPSCs visualized using crystal violet staining. E Positive immunofluorescence to vimentin and negative immunofluorescence to cytokeratin of 
hDPSCs. All scale bars are equal to 50 μm in B–E 
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anti-vimentin and negative for anti-cytokeratin, proving 
that hDPSCs in our study were derived from human mes-
enchymal cells (Fig. 1E).

Inflammatory cytokine mRNA expression
Compared with the untreated cell, hDPSCs stimulated 
by E. coli LPS (1  μg/mL) significantly upregulated IL-6 

mRNA expression at all observed time points (p < 0.05, 
Fig. 2A). The IL-8 mRNA level was increased significantly 
in hDPSCs stimulated by E. coli LPS from 1.5 h to 24 h 
(p < 0.05, Fig.  2B). The gene expression levels of COX-2 
and IL-1β by hDPSCs were significantly increased from 
3 to 12 h in the group stimulated by E. coli LPS (p < 0.05, 
Fig. 2C, D). E. coli LPS elicited a significant upregulation 

Fig. 2  Inflammatory cytokines mRNA expression patterns in hDPSCs triggered by E. coli or P. gingivalis LPS. A IL-6, B IL-8, C COX-2 D IL-1β, and 
E TNF-α mRNA. Cells are stimulated by 1 μg/mL LPS from E. coli or P. gingivalis for 0.75,1.5, 3, 6, 12, and 24 h, respectively. The cells without LPS 
treatment (untreated cells) were used as the control group. This figure is a typical one of three independent experiments with three replications 
for each experiment. Data are shown as mean ± SD (n = 3). Y-axis represents the relative fold expression of inflammatory mediators relative to the 
control group. *p < 0.05, vs the control group at the same time point
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of TNF-α mRNA in hDPSCs at 1.5 and 3  h (p < 0.05, 
Fig.  2E). However, we detected no IL-6, IL-8, COX-2, 
IL-1β and TNF-α expression level discrepancy in hDP-
SCs between the P. gingivalis LPS and the control groups 
at each time point (p > 0.05, Fig.  2A–E). In our study, 
a high concentration of P. gingivalis LPS (10  μg/mL) 
showed no elevated mRNA expression level of proinflam-
matory cytokines in hDPSCs (Additional file 2: Fig. S1).

In general, only the LPS from E. coli notably improved 
IL-8, IL-6, COX-2, IL-1β, TNF-α mRNA expression lev-
els in hDPSCs, and the peaks expression levels of above 
inflammatory cytokines were reached at 3  h –12  h 
(Fig. 2).

IL‑6 protein expression
Results showed that the IL-6 protein production was sig-
nificantly enhanced by E. coli LPS stimulation (p < 0.05). 
However, the protein production of IL-6 remained low in 
the 1 μg/mL P. gingivalis LPS stimulation group, and this 
finding was similar to that in the control group (p > 0.05, 
Fig. 3).

TLR4 and TLR2 expression reactions to E. coli or P. gingivalis 
LPS
The TLR4 and TLR2 mRNA expression levels by hDP-
SCs were measured using QRT-PCR. Results showed 
that 1 μg/ mL E. coli LPS significantly increased the TLR4 
gene expression at 3  h (p < 0.001, Fig.  4B), 6  h (p < 0.05, 
Fig.  4C), 12  h (p < 0.05, Fig.  4D), and 24  h (p < 0.01, 
Fig.  4E), respectively. Moreover, the relative expres-
sion fold of TLR4 mRNA in the E. coli LPS group was 
highest at 3 h compared with that in the control group, 
corresponding to the peak expression period of pro-
inflammatory cytokines. Nevertheless, no significant 

change in the mRNA expression was observed in hDP-
SCs activated by 1  μg/ mL P. gingivalis LPS (p > 0.05, 
Fig.  4). The expression of TLR2 mRNA was altered by 
neither E. coli nor P. gingivalis LPS in hDPSCs (p > 0.05, 
Fig. 4). Then, the flow cytometry analysis further verified 
the results of QRT-PCR (Fig.  5). The TLR4 production 
increased on the surface of hDPSCs initiated by 1  μg/ 
mL E. coli LPS (Fig. 5A, C). In contrast, the TLR4 protein 
amount in the 1 μg/ mL P. gingivalis LPS group was simi-
lar to that in the control group (Fig. 5A, B). However, the 
TLR2 protein was maintained at a deficient level on the 
surface of hDPSCs stimulated by 1 μg/ mL LPS from E. 
coli or P. gingivalis (Fig. 5D–F).

TLR4 involved in the upregulation of inflammatory 
cytokines in hDPSCs by E. coli LPS
The TLR4 selective inhibitor TAK-242 was applied to 
confirm whether TLR4 participated in the expression of 
proinflammatory cytokines incited by 1  μg/ mL E. coli 
LPS in hDPSCs. First, our results revealed that 10 μmol/L 
TAK-242 could significantly block the expression of 
TLR4 in the group treated with E. coli LPS (p < 0.05) but 
did not influence the expression of TLR2 (p > 0.05, Fig. 6). 
As shown in Fig. 7, the pretreatment of TAK-242 signifi-
cantly inhibited the E. coli LPS-induced expression of 
proinflammatory cytokines in hDPSCs, including IL-8, 
IL-6, COX-2, IL-1β, and TNF-α (p < 0.05).

Discussion
Our research displays different inflammatory cytokine 
patterns in hDPSCs induced by  E. coli LPS and P. gin-
givalis LPS. Only the LPS from E. coli significantly 
increases the expression of proinflammatory cytokines in 
hDPSCs within 24 h. Consistently, E. coli LPS increases 
the TLR4 expression in hDPSCs. Our results suggested 
that E. coli LPS but not P. gingivalis LPS should be used 
to stimulate hDPSCs in establishing an in vitro model of 
pulpitis.

The expression levels of inflammatory cytokines can 
reflect the pathological state in dental pulp tissue [44]. 
IL-1β is one of the essential mediators of acute den-
tal pulp inflammation, and the increase of IL-1β level 
in dental pulp tissue aggravates the pulp inflammation 
[45]. IL-6 is a classic type of proinflammatory cytokine 
that mediates pulp inflammation [46]. IL-6 production in 
inflamed dental pulp tissues is significantly higher than 
in healthy tissues [47]. TNF-α, as an indicator of early 
pulp inflammation, plays a vital role in the pulp immune 
response [48]. IL-8 shows rapid chemotaxis and recruits 
immune cells to the inflammatory site [49], and COX-2 
can induce vascular endothelial growth factor, thus pro-
moting pulp inflammation [50].

Fig. 3  IL-6 protein concentration from the cell supernatant of 
hDPSCs through ELISA. The same concentration of LPS (1 μg/mL) 
from E. coli- or P. gingivalis-treated hDPSCs for 24 h. Data are shown as 
mean ± SD (n = 3). Cells without E. coli or P. gingivalis LPS treatment 
serve as the control group. ***p < 0.001
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The time-dependent expression pattern of cytokines in 
hDPSCs by LPSs is conducive to determining an optimal 
stimulation time to establish an in vitro model of pulpi-
tis. Our research has compared the expression patterns 
of inflammatory mediators in hDPSCs induced by LPSs 
within 24  h. The peaks of all observed inflammatory 
mediators’ expression are unanimously reached 3–12  h 

after stimulation by 1 μg/mL E. coli LPS. These results are 
in line with those of previous studies [17, 42]. The types, 
concentrations, and stimulation times of stimuli used 
are different in earlier studies on potential pulp capping 
agents with anti-inflammatory effects. These differences 
are not suitable for comparing the anti-inflammatory 
effects of various potential pulp capping molecules. Our 

Fig. 4  TLR4 and TLR2 mRNA expression in hDPSCs elicited by E. coli or P. gingivalis LPS. Cells are motivated by E. coli or P. gingivalis LPS (1 μg/mL). 
Cells without LPS stimulus serve as the control group. TLR4 and TLR2 on mRNA levels at A 1.5 h, B 3 h. C 6 h, D 12 h, and E 24 h. Data are shown as 
mean ± SD (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001
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Fig. 5  Production of TLR4 and TLR2 proteins on the surface of hDPSCs by flow cytometry. Cells are stimulated with E. coli or P. gingivalis LPS (1 μg/
mL) for 24 h. Cells without LPS stimulus serve as the control group. Expression levels of A–C TLR4 and D–F TLR2 on the cell surface. Red-filled or 
unfilled histograms refer to TLR4 and TLR2, respectively, whereas blue-filled or unfilled histograms refer to the Isotype control IgG

Fig. 6  TAK-242 on E. coli LPS-induced TLR4 and TLR2 mRNA 
expression in hDPSCs. Treatment groups are added with TAK-242 in 
advance for 30 min and exposed to 1 μg/mL E. coli LPS for another 
3 h. Cells without LPS stimulus and TAK-242 serve as the control 
group. Lines above the bar connect the two groups with statistical 
differences marked with star symbols. Data used are expressed as 
mean ± SD (n = 3). **p < 0.01, ***p < 0.001

Fig. 7  TAK-242 on the mRNA expression of E. coli LPS-induced 
inflammatory cytokines in hDPSCs. The hDPSCs are pretreated with 
or without TAK-242 for 30 min and exposed to 1 μg/mL E. coli LPS 
for another 3 h. Cells without LPS stimulus and TAK-242 serve as 
the control group. Lines above the bar connect the two groups 
with statistical differences marked with star symbols. Data used are 
expressed as mean ± SD (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001
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results are beneficial to establishing a baseline level of 
in vitro model of pulp inflammation to furtherly develop 
and screen new potential pulp capping agents with out-
standing anti-inflammatory quality.

Compared with LPS from P. gingivalis, our results 
show that only the LPS from E. coli is a potent stimula-
tor of proinflammatory cytokines in hDPSCs, which are 
in line with many previous studies [51–53]. An earlier 
study describes that the production of IL-6, IL-1β, and 
TNF-α from THP-1 cells and human monocytes stimu-
lated by the E. coli LPS are relatively higher than those by 
the P. gingivalis LPS at 1, 10, 100, 1000, and 10,000 ng/ml 
[51]. Nebel et  al. have compared the IL-6 expression by 
hPDLCs in response to LPS from E. coli or P. gingivalis 
and found that only the E. coli LPS is a competent stimu-
lus [24]. Further studies reveal cell-specific response to 
LPSs of various bacterial origins. In another study, the 
LPS from E. coli induces strong chemokine and cytokine 
expression in the gingival fibroblasts, whereas the LPS 
from P. gingivalis elicits a strong reaction in macrophages 
[25].

Previous studies showed LPS with a concentration of 
1 μg/ml is commonly used as a stimulus to induce inflam-
mation [41, 42]. This concentration was found to be opti-
mal in LPS inducing DPSCs inflammation in a previous 
study [43]. Our results show that P. gingivalis LPS (1 μg/
mL) could not affect the tested inflammatory mediators’ 
expression in hDPSCs. Previous studies have reported 
different results exploring the inflammatory response of 
hDPSCs induced by P. gingivalis LPS [27, 31]. In the study 
by Ko YJ et al., 1, 5, 10, and 20 μg/mL P. gingivalis LPS 
significantly elevate the mRNA expression levels of IL-6 
and TNF-α in a dose-dependent manner [38]. However, 
Ko YJ et al. have used P. gingivalis LPS in the laboratory 
extracted using the phenol/water method, which is dif-
ferent from the commercialized LPS in our study. Using 
the Northern blot analysis, Chang has demonstrated that 
P. gingivalis LPS rapidly induces IL-8 and IL-6 in dental 
pulp stem cells [27]. However, the P. gingivalis LPS in 
their research is donated by Dr. Arnold, who shows the 
P. gingivalis LPS is prepared in the laboratory by a hot 
phenol/water method [54]. Different preparations of LPS 
result in divergent contents of nucleic acid and protein 
impurities despite the similarity in structure [55]. More-
over, the expression of inflammatory mediators in the 
same cells induced by different preparations of LPS can 
be pretty differentiated [55]. Previous studies show that 
LPS structures have considerable heterogeneity among 
various bacterial species and activate host cells differently 
[33, 56]. The LPS from P. gingivalis is different in struc-
ture and function from E. coli [51]. The lipid A of P. gingi-
valis LPS lacks a phosphate group in the 4′ position and 
tetradecanoic acids but has long-chain fatty acids. Thus, 

the endotoxic activity of P. gingivalis LPS is relatively 
weak [53, 57]. Besides, P. gingivalis LPS is heterogeneous 
and has several lipid A species, including tri-, tetra-, and 
penta-acylated lipid As [58]. However, in their labora-
tory, all kinds of synthetic lipid As of LPS from P. gingi-
valis cannot induce intense inflammatory responses [57]. 
Moreover, tri- and tetra-acylated lipid As are even antag-
onistic in IL-8 and IL-6 expression [57]. Characteristic 
structures may be the part reason for the low potential of 
P. gingivalis LPS in inducing the inflammatory response 
of hDPSCs in our study.

However, Jung et  al. show that the same commercial-
ized P. gingivalis LPS from InvivoGen promotes IL-1β 
and IL-6 mRNA expression in human deciduous dental 
pulp cells [59], possibly related to the aging heterogene-
ity of hDPSCs in responses to P. gingivalis LPS. This find-
ing is inconsistent with our results. Gingival fibroblasts 
show a considerable heterogeneity response to P. gingi-
valis LPS, which is reflected in increasing IL-6 expres-
sion on the mRNA level in gingival fibroblasts from some 
donors, remaining unchanged in gingival fibroblasts from 
the other donors [60]. The author speculates that het-
erogeneity can be due to the host cells’ different genetic 
backgrounds, ages, genders, and smoking status [60]. The 
P. gingivalis LPS seems not so stable as an inflammatory 
stimulus to fibroblasts. In our study, the hDPSCs sepa-
rated from young permanent teeth rather than deciduous 
teeth are also a kind of fibroblast. We cannot eliminate 
the possibility of aging-individual heterogeneity of hDP-
SCs resulting in the poor bioactivity of P. gingivalis LPS 
in inducing the inflammatory response of hDPSCs in our 
study. Besides, the endotoxin activity of P. gingivalis LPS 
is susceptible to environmental factors, such as ATP, lev-
els of hemin in the culture medium, Mg2+, ambient tem-
perature, and pH [33, 61–64]. The above factors also may 
partly explain the inconsistency between the results of 
these studies.

Previous studies have documented TLRs, particu-
larly TLR2 and TLR4 play a crucial role in regulating the 
intensity of the immune-inflammatory response during 
bacterial infection [65, 66]. Our data show that E. coli 
LPS increases the TLR4 expression level but not TLR2 in 
hDPSCs, whereas P. gingivalis LPS does not affect TLR4 
or TLR2 expression. This result may suggest that the LPS 
from P. gingivalis may activate neither TLR2 nor TLR4 in 
hDPSCs and that TLR4 plays a pivotal role in the inflam-
matory reaction to E. coli LPS in hDPSCs.

TAK-242, a small-molecule derivative of cyclohexene, 
can selectively inhibit TLR4 signaling [67]. In a previ-
ous study, 10 μmol/L TAK-242 exclusively suppresses the 
TLR4-mediated cytokine production without inhibitory 
effect on other TLRs, such as TLR2, TLR3, or TLR9 in 
RAW264.7 cells [68]. In our study, TAK-242 at the same 
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concentration also selectively blocks the activation of 
TLR4 in hDPSCs treated by E. coli LPS. The expression 
of all E. coli LPS-induced inflammatory mediators is dra-
matically suppressed by TAK-242. These data collectively 
imply that the LPS from E. coli, but not P. gingivalis, is 
a potent stimulus to propel the production of inflamma-
tory cytokines by hDPSCs via the TLR4 signaling.

However, the current study’s limitations cannot pre-
cisely explain the inability of P. gingivalis LPS to elicit 
inflammatory reactions in hDPSCs in our research. Aside 
from the structural differences of P. gingivalis LPS caused 
by different synthetic methods, the interindividual het-
erogeneities of hDPSCs can be regarded as a possible 
reason. hDPSCs from volunteers should be collected and 
classified under differences in age, gender, lifestyle hab-
its (such as smoking status), and genetic background. It 
would be interesting to determine the hDPSCs from vol-
unteers with different conditions responding to P. gingi-
valis LPS individually and conclude whether individual 
differences cause it and reveal its underlying mechanism.

Besides, taking account of P. gingivalis being character-
istic of immune escape, P. gingivalis is regarded as a poor 
inflammatory mediator stimulus [69, 70]. However, it has 
a solid capability to invade the tissue to avoid the phago-
cytosis of host immune cells and efficiently cause chronic 
inflammation [71]. P. gingivalis has been detected in root 
canal in irreversible pulpitis and periapical periodonti-
tis [72]. P. gingivalis may enter the pulpal tissue through 
periapical foramen, lateral canal, or dentinal tubules [73]. 
Studies have shown that root scaling with hand instru-
ments may facilitate bacterial penetration of P. gingivalis 
through dentinal tubules [74].

As LPS stimulation at early stages of pulp inflammation 
contributes to migration and differentiation of MSCs [3] 
leading to possible slowing or arresting or even reversal 
of pulpitis, the weak inflammatory-inducing compacity 
of P. gingivalis LPS observed in our study might explain 
the relatively advanced stages of endodontic lesion in 
which P. gingivalis has been detected. And, we can not 
rule out the possibility that the low induction of inflam-
matory mediators by P. gingivalis LPS in dental pulp may 
also be due to insufficient activation of the host immune 
response. So that to escape the monitoring of immune 
cells, it is easier to enter the pulp tissue for P. gingivalis 
LPS. Then it is more likely to cause chronic irreversible 
inflammation. The above hypothesis needs to be eluci-
dated with more data in the future.

In conclusion, our research displays that E. coli LPS is 
a more stable and more potent stimulus than P. gingivalis 
LPS in producing inflammatory mediators in hDPSCs. 
The cytokine expression patterns induced by LPS in hDP-
SCs may help target treatment for inflammation media-
tors in pulpitis. Besides, our data suggest that TLR4 acts 

as an essential signaling intermediate between exogenous 
E. coli LPS and hDPSCs inflammatory reaction.
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