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periapical periodontitis
Jing Hu1†, Marie Aimee Dusenge1†, Qin Ye1, Ya‑Qiong Zhao1, Li Tan1, Yao Feng1, Jie Zhao1, Zheng‑Rong Gao1, 
Shao‑Hui Zhang1, Yun Chen1, Ying‑Hui Zhou2, Yue Guo1* and Yun‑Zhi Feng1* 

Abstract 

The immunological response occurring during periapical inflammation includes expression of nucleotide binding oli‑
gomerization domain containing 2 and hepcidin. Nucleotide binding oligomerization domain containing 2 deficiency 
increases infiltration of inflammatory cells close to alveolar bone. Hepcidin has an important role in iron metabolism 
affecting bone metabolism.We investigated the role of nucleotide binding oligomerization domain containing 2 
and hepcidin in inflammatory periapical periodontitis. Periapical periodontitis was induced in rats and confirmed by 
micro-computed tomography. Nucleotide binding oligomerization domain 2 and hepcidin were evaluated through 
immunohistochemistry. Bioinformatics analysis was undertaken usingthe Kyoto Encyclopedia of Genes and Genomes 
and Gene Ontology databases. Micro-computer tomography revealed alveolar bone resorption in the periapical 
region and furcation area of mandibular molars in rats of the periapical periodontitis group. Immunohistochemistry 
showed increased expressionof nucleotide binding oligomerization domain containing 2 and hepcidin around root 
apices in rats of the periapical periodontitis group. Bioinformatics analysis of differentially expressed genes in inflamed 
and non-inflamed tissues revealed enrichment in the NOD-like receptor signaling pathway. Our data suggest that 
nucleotide binding oligomization domain contain2 and hepcidin have important roles in periapical periodontitis 
severity because they can reduce alveolar bone loss.They could elicit new perspectives for development of novel 
strategies for periapical periodontitis treatment.
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Introduction
A periapical lesion involves an inflammatory process 
affecting the soft and hard tissues surrounding the tooth. 
Periapical periodontitis (PP) is an inflammatory disease 
of periradicular tissues. It occurs in response to infection 
of dental pulp due to trauma, dental caries, or iatrogenic 
factors [1]. PP develops from a complex inflammatory 

immune response triggered by microbial elements which, 
ultimately results in bone destruction [2].

Various proinflammatory mediators have important 
roles in the occurrence and development of PP and the 
reaction that induces bone resorption. Interleukin (IL)-6 
and IL-8 enhance infiltration of inflammatory cells and 
promotes bone remodeling. Similarly, tumor necrosis 
factor (TNF)-α helps the initiation and regulation of the 
inflammatory process through activation and differentia-
tion of osteoclasts and collagen production [3–5].

Nucleotide binding oligomerization domain contain-
ing 2(NOD2) is a protein that can recognize different 
peptides in bacterial walls. NOD2 mediates activa-
tion of nuclear factor-kappa B (NF-κB) and expression 
of the proinflammatory cytokine TNF-α, thereby 
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initiating the immune response to pathogens. It has 
been suggested that NOD2 deficiency increases the 
infiltration of inflammatory cells near alveolar bone 
[6]. In addition, a balanced NOD2 signal is essential 
for maintaining homeostasis of the immune system. 
An inactive form of NOD2 (caused by NOD2 muta-
tion) or high expression of NOD2 is associated with 
various inflammatory diseases [7]. Therefore, the role 
of NOD2 in PP is not clear, and further research is 
needed.

Ubiquitin, methylation, and endoplasmic reticulum 
stresscan regulate various biological processes, including 
bone remodeling [8–10]. Iron overload regulated by hep-
cidin (a peptide hormone made in the liver) is also closely 
related to bone remodeling. Hepcidin is an iron regulat-
ing hormone that is primarily responsible for maintaining 
iron homeostasis. It causes degradation of the iron export 
protein ferroportin, which is necessary for iron transfer 
from enterocytes and macrophages to the systemic cir-
culation. Increased iron stores cause hepcidin expres-
sion to be upregulated. Low hepcidin, on the other hand, 
boosts iron absorption from the gut, restoring iron stores 
[11, 12]. Hasler P and colleagues [13] showed that mice 
lacking hepcidin had a low-bone-mass phenotype, which 
may have been due to the decreased differentiation and 
activity of osteoblasts causing the inhibition of bone for-
mation. The “vicious circle "between hepcidin deficiency 
and iron overload enhanced bone abnormalities in hep-
cidin-deficient mice [13, 14].It has been reported that, in 
the oral cavity, an increased serum level of iron increases 
the susceptibility to periodontal disease [15]. Ferritin, a 
protein that stores iron, was also found to be upregulated 
in periodontitis; factors like P.gingivalis-LPS, IL-6, and 
TNF- α, which are elevated in patients with periodontitis 
were confirmed to induce ferritin expression and secre-
tion, suggesting the role of ferritin in development of 
periodontitis [16]. Patients with iron overload have been 
found to suffer from periodontitis [17].Whether hepcidin 
plays an important part in PPis not known.

We investigated the role of NOD2 and hepcidin in 
periapical inflammationaffecting bone remodeling in 
PP. We hypothesized that NOD2 and hepcidin have 
important roles in PPprogression.

Materials and methods
Ethical approval of the study protocol
The Ethics Committee of Second Xiangya Hospital of 
Central South University (Furong, China) approved 
(2021031) the study protocol.

Experimental animal model
Ten male Sprague–Dawley rats (400  g; SJA Laboratory 
Animals, Hunan, China) were divided into two groups of 
five: control and PP.

PP induction
PP was induced in rats in the PP group. First, anesthe-
sia was injected (1% sodium pentobarbital, i.p.). In each 
rat, the pulp chambers of both sides of mandibular first 
molars were opened. Then, the pulp was removed from 
the pulp cavity. Exposure of the pulp chamber and pulp 
removal followed the guidelines set in The Guide to Clini-
cal Endodontics published by the American Association 
of Endodontists [18, 19]. The pulp cavity was left open to 
the oral-cavity environment for 4 weeks to allow forma-
tion of a periapical lesion. Rats in both groups were given 
soft food to prevent possible tooth pain due to eating 
hard food. Micro-computed tomography (micro-CT) was 
undertaken 4 weeks later to observe the periapical condi-
tion of the first mandibular molars on both sides to con-
firm that the model had been created.

Micro‑CT
The right and left lower mandibles were removed and 
fixed in 4% paraformaldehyde (dissolved in phosphate-
buffered saline) for 48  h. They were preserved in70% 
ethanol solution at 4°C until use. Three-dimensional pro-
jection images were reconstructed from a stack of two-
dimensional images using a micro-CT machine (μ-CT50; 
Scanco, Basserdorf, Switzerland). Periapical lesions were 
imaged at 90 kV and 160 μA. Then, the images obtained 
from micro-CT were reconstructed using VGStudio-
MAX3.0 (Volume Graphics, Berlin, Germany). The 
low-density space around the mesial root of mandibular 
molars was measured and considered to be the volume of 
the periapical lesion.

Immunohistochemistry
After the killing of rats, samples were obtained and 
embeddedin paraffin blocks. Immunohistochemistry was 
undertaken using the streptavidin–biotin method.Briefly, 
paraffin-embedded tissues were sectioned into slides at a 
thickness of 4 μm, dewaxed, and rehydrated in a graded 
series of ethanol solutions (100, 95, and 80%). Slides were 
heated for 30 min at 65  °C for antigen retrieval and left 
to cool naturally. After blockade with 5% bovine serum 
albumin (Beyotime Institute of Biotechnology, Shanghai, 
China) for 1 h at 37 °C, slides were incubated with anti-
bodies against NOD2 (1:400 dilution; catalog number, 
NB100-524SSS;NovusBio, Littleton, CO, USA) and hep-
cidin (1:200; ab30760; Abcam, Cambridge, UK) for < 12 h 
at 4 °C. Antibody diluents were directly added to negative 
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control. The next day, slides were washed thrice with 
bovine serum albumin and allowed to incubate with 
50–100 μL of horseradish peroxidase-labeled secondary 
antibody for 30 min at room temperature. For the nega-
tive control each slide was treated with 50–100μLDAB 
working solution per tissue block, while the experimental 
group can be seen brown to the naked eye, each slide was 
cleaned with tap water and distilled water respectively. 
Then, dehydration was carried out with a graded series 
of ethanol solutions (80, 95, and 100%) for 2 s each time. 
Finally, the tissue sections were fixed with neutral gum, 
and the positive staining in the tissue was observed under 
a microscope (Olympus CX31) after fixation.

Analyses of enrichment of function and signaling 
pathways of differentially expressed genes (DEGs)
Gene expressions in different inflamed tissues and unin-
flamed tissueswere compared based on public Gene 
Expression Omnibus (GEO) datasets (www.​ncbi.​nlm.​nih.​
gov/​gds) (Additional file 2: Fig. S1) and fifteen DEGs (fold 
change > 2, P < 0.05) were obtained through comparing dif-
ferent inflamed samples and uninflamed samples. Then, 
fifteen DEGs were mapped to GO and KEGG databases. 
Enrichment of function and signaling pathways was ana-
lyzed using the Gene Ontology (GO; www.​genome.​jp/​
kegg/), Kyoto Encyclopedia of Genes and Genomes (http://​
geneo​ntolo​gy.​org/) databases, respectively, using cluster 
Profiler (https://​bioco​nduct​or.​org/).

Statistical analyses
Results are the mean ± SD. Statistical analyses were 
undertaken using Prism 8(GraphPad, San Diego, CA, 
USA) and Image J 1.49  m (Wayne Rasband, National 
Institute of Mental Health, USA). Analysis of variance 
was used to evaluate differences between the twogroups. 
P < 0.05 was considered significant.

Results
PP development
Bone resorption was identified and quantified by micro-
CT. Radiolucent periapical regions indicated areas where 
the hard bone tissue had become a soft periapical lesion 
due to the inflammatory process Fig.  1a. Micro-CT of 
mandibular alveolar bone revealed that the trabecular 
bone volume (BV/BT) in the furcation area of mandibu-
lar first molars had undergone bone resorption. Repre-
sentative micro-CT images ofa treated tooth compared 
with a control tooth are shown in Fig.  1b and c. A sig-
nificantdifference between the two groups was noted for 

trabecular thickness (Tb. Th) in the mandible Fig.  1d. 
However, there was no significant difference in the tra-
becular number (Tb. N) Fig. 1e or trabecular separation 
(Tb. Sp) between the two groups Fig. 1f.

NOD2 and hepcidinhavehigh expression in periapical 
tissues compared with that in controls
We analyzed cell infiltration by immunohistochemistry 
for further illustration of the inflammatory response 
in the area of interest. Figure  2 demonstrates NOD2 
staining in the periapical tissues of mandibular molars 
of rats in the two groups. NOD2-positive staining was 
observed in induced periapical inflammatory lesions.
NOD2-postive staining area in PP group is significantly 
larger than that of control group.Hepcidin staining 
in the periapical tissues of mandibular molars of rats 
between the two groups is shown in Fig.  3. Hepcidin-
positive staining was observed in rats with induced per-
iapical inflammatory lesions. Ratsin the control group 
with no periapical tissues did not show positive stain-
ing for hepcidin. Hepcidin was expressed on the extra-
cellular membrane in periapical lesions.

Enrichment in NOD‑like receptor signaling of DEGs using 
KEGG and GO databases
The GEO data base identified the following DEGs 
in inflamed tissue and non-inflamed tissue (Fig.  4a), 
(Additional file  3: Table  S1, Additional file  4: Table  S2, 
Additional file  5: Table  S3): Signal transducing adap-
tor family member1 (STAP1), ribosomal protein 
S4,Y-linked1(RPS4Y1), cathepsin Z(CTSZ), UDP glucu-
ronosyltransferase 2 family polypeptide B15(UGT2B15), 
claudin8(CLDN8), matrix metallopeptidase3(MMP3), 
regenerating islet-derived 1 alpha (REG1A), serum 
amyloid A1(SAA1), chemokine (C-X-C motif ) ligand 
8(CXCL8), S100 calcium binding protein A8(S100A8), 
TNFAIP3 interacting protein3(TNIP3), chemokine(C-
X-C motif ) ligand 2(CXCL2), chemokine (C-X-C 
motif ) ligand 1(CXCL1) and chemokine (C-X-C motif ) 
ligand 3(CXCL3.). Figure  4b shows the top30 signifi-
cantly enriched signaling pathways in these DEGs using 
the KEGG database, including the NOD-like recep-
tor signaling pathway, IL-17 signaling pathway, and 
TNF pathway. Figure  4c shows the top10 significantly 
enriched functions of 15 DEGs using the GO database. 
For the molecular function (MF) classification, “trans-
membrane receptor protein tyrosine kinase”, “chem-
oattractant activity” and “carboxypeptidase activity” 
were documented. For the classification of cellularcom-
ponent (CC), the enriched functions were “intracellu-
larmembrane-bounded organelle”, “endocytic vesicle 
lumen” and “cell cortex region”. For the biological process 
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(BP) classification, the functions enriched were “cel-
lular response to lipopolysaccharide”, “negative regu-
lation of ruffle assembly”, and “negative regulation of 
phosphorylation”.

Discussion
We established a model in rats to study the role of hep-
cidin and NOD2 in PP. After exposing the pulp cavity 
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of the mandibular first molar for 4 weeks, the condition 
of periapical alveolar bone was evaluated by micro-
CT to confirm establishment of the PP model. Immu-
nohistochemical analyses were carried out to measure 
expression of NOD2 and hepcidin.The GEO database 
was employed to obtain DEGs in inflamed tissues and 

non-inflamed tissues. Analyses of functional enrich-
ment and signaling-pathways enrichment using the GO 
and KEGG databases, respectively, was carried out to 
ascertain the effects of NOD2 and hepcidin in PP.
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Fig. 2  Immunohistochemical expression of NOD2 in periapical tissues. a–d Representative images of the NOD2-positive staining in induced rat 
periapical inflammatory lesions. Rat periapical lesions showed a negative observation of NOD2 in control group. e Quantitative analysis of the NOD2 
expression.Original magnification: ×4 (a and c), ×40 (b and d)
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PP is a continuation of dental-pulp infection. It trig-
gers a local chronic inflammatory immune response 
and impairment of periapical tissues, including the 

periodontal ligament, cementum, and alveolar bone [20]. 
NOD2 staining was positive in the periapical tissue of the 
mandibular first molar of rats suffering from PP, but not 
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Fig. 3  Representative images of the immunohistochemical expression of hepcidin in periapical tissue. Hepcidin-positive staining could be 
observed in induced rat periapical inflammatory lesions. Rat periapical tissue showed a negative observation of hepcidin in control group. Hepcidin 
was expressed on the ECM in periapical lesions. e Quantitative analysis of the hepcidin expression. Original magnification: ×4 (a and c), ×40 (b and 
d)
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in the periapical tissue of the mandibular first molar of 
rats not suffering from PP. Analyses of signaling-pathway 
enrichment using the KEGG database showed that DEGs 
in inflamed tissues were enriched in the NOD-like recep-
tor signaling pathway.

NOD2 is related to progression of the inflamma-
tory response [7]. NOD2 recognizes the peptidoglycan 
components of bacteria, drives activation of mitogen-
activated protein kinase and NF-κB pathways, leads to 
production of proinflammatory cytokines, and plays a 
critical partin protecting the body from pathogen inva-
sion [21]. NOD2 is involved in recognizing certain bac-
teria and stimulating the immune system to respond 

appropriatelyto reduce the risk of bacterial infections [22] 
It has been reported that NOD2 expression is increased 
in areas of inflammation in rheumatoid arthritis [23] and 
atherosclerosis [24]. NOD2 promotes the progression 
of vascular inflammation by mediating the production 
of proinflammatory factors such as IL-8 [25]. In the oral 
cavity, activation of NOD2 by muramyl dipeptide (MDP) 
can upregulate expression of proinflammatory mediators 
and cytokines, thereby enhancing the immune response 
of dental pulp to pathogens [26]. Porphyromonas gingi-
valisis responsible for destruction of cementum and pro-
gression of PP in general [27, 28].Upregulation of NOD2 
expression may be due to NOD2 activation by MDP in 
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P. gingivalis, which participates in the progression of 
periapical inflammation. Analyses of functional enrich-
ment of DEGs using the GO database indicated that 

DEGs were enriched mainly in regulation of the cellu-
lar response to lipopolysaccharide (BP), transmembrane 
receptor protein tyrosine kinase (MF), and intracellular 
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membrane-bounded organelle (CC). GO enrichment was 
also associated with inflammatory progression.

Inflammatory progression is closely related to bone 
loss. Yuan and colleagues showed thatNOD2-defi-
ciency in rats led to aggravation of inflammatory pro-
cesses associated with atherosclerosis and periodontitis. 
NOD2-deficient ratshad increased numbers of resorb-
ing osteoclasts, which supports the notion that NOD2 
prevents bacteria-induced bone loss due to inflamma-
tion.They also showed that, the activation of NOD2 by 
MDP treatment in rats, result in a significant decrease 
in plaque accumulation, alveolar bone loss, and serum 
levels of cytokines and cholesterol [29]. Souza and col-
leagues induced periodontitis in rats and showed that 
NOD2 reduced bone resorption and osteoclastogen-
esis, but the reduction in bone resorption did not affect 
inflammation as observed by histology [30]. In our study, 
micro-CT showed root absorption and alveolar bone loss 
of the first molar of rats with PP.

Similar to changes in NOD2 expression in PP, hepci-
din levels in inflammatory periapical lesions were higher 
than those in normal tissues. Several studies have dem-
onstrated the role of hepcidin in reducing bone loss and 
preventing osteoporosis. Hepcidin deficiency might 
cause bone loss by interfering with the canonical wing-
less type/β-catenin pathway via Forkhead box-3a [31].

Hepcidin synthesis is controlled mainly by transcrip-
tion. The primary systemic regulators of hepcidin include 
plasma iron concentrations, through the interaction of 
diferric transferrin with transferrin receptors TFR1 and 
TFR2 in the liver, hepatic iron stores, systemic inflam-
mation, primarily conveyed to hepatocytes by IL-6, and 
erythroid activity. Anemia and hypoxia are the significant 
causes of hepcidin downregulation [32, 33].Hepcidin 
deficiency increases circulating levels of iron and leads 
to severe bone loss in rats [13]. Those results are not dis-
similar to our findings; we revealed an increase of alveo-
lar bone loss in rats of the PP group compared with that 
in the control group. Shen GS and collaborators showed 
that hepcidin deficiency inhibited an increase in the hep-
cidin level in response to iron accumulation, and caused 
severe iron overload in tissues, including iron overload in 
bone that affected the micro-architecture of bone [34]. 
Dissimilar results were reported by Guo and colleagues 
they suggested a negative role for hepcidin in regulation 
of bone homeostasis by promotion of proliferation and 
differentiation of osteoclast precursors. They implicated 
hepcidin in osteoblastic amyloid protein-induced osteo-
clastogenesis, and suggested that increased levels of hep-
cidin contributed to trabecular bone loss [35]. Hepcidin 
is associated with bone resorption in various diseases, 
and the hepcidin level was increased in the PP group 
in our study. Hence, we speculated that hepcidin plays 

an important partin the progression of alveolar bone 
resorption in PP. Analyses of signaling-pathway enrich-
ment of DEGs using the KEGG database in the present 
study showed that hepcidin has an important role in PP 
progression. We found that DEGs were enriched in the 
NOD-like receptor signaling pathways well as other path-
ways. Fan and colleagues demonstrated that the gene for 
signal transducer and activator of transcription (STAT1) 
takes part in the gene–gene interaction network for hep-
cidin [36]. STAT1 is part of the NOD signaling pathway 
network, and we showed that the NOD-like receptor 
signaling pathway plays a partin PP progression. It sug-
gested that there may be a connection between NOD2 
and hepcidin, but whether there is a connection between 
NOD2 and hepcidin still needs further research.

Conclusions
NOD2 and hepcidin have important roles in PP severity 
because they can reduce alveolar bone loss. They could 
elicit new perspectives for development of novel strate-
gies for PP treatment.
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