Douglass LJ: Candida biofilms and their role in infection. Trends Microbiol. 2003, 11: 30-36. 10.1016/S0966-842X(02)00002-1.
Article
Google Scholar
Douglass LJ: Medical importance of biofilms in Candida infections. Rev Iberoam Micol. 2002, 19: 139-143.
Google Scholar
Kumamoto CA: Candida biofilms. Curr Opin Microbiol. 2002, 5: 608-611. 10.1016/S1369-5274(02)00371-5.
Article
PubMed
Google Scholar
Kawamura-Sato K, Wachino J, Kondo T, Ito H, Arakawa Y: Reduction of disinfectant bactericidal activities in clinically isolated Actinetobacter species in the presence of organic material. J Antimicrob Chemother. 2008, 61: 568-576. 10.1093/jac/dkm498.
Article
PubMed
Google Scholar
Lopez-Ribot JL, McAtee RK, Perea S, Kirkpatrick WP, Rinalci MG, Petterson TF: Multiple resistance phenotypes of Candida albicans coexist during episodes of oropharyngeal candidiasis in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 1999, 43: 1621-1630.
PubMed
PubMed Central
Google Scholar
Mukherjee PK, Clandra J: Candida biofilm resistance. Drug Resist Updat. 2004, 7: 301-309. 10.1016/j.drup.2004.09.002.
Article
PubMed
Google Scholar
Ramage G, Wickes BL, Lopez-Ribot JL: Biofilms of Candida albicans and their associated resistance to antifungal agents. Am Clin Lab. 2001, 20: 42-44.
PubMed
Google Scholar
Eggimann P, Garbino J, Pittet D: Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect Dis. 2003, 3: 685-702. 10.1016/S1473-3099(03)00801-6.
Article
PubMed
Google Scholar
Bailli GS, Douglas LJ: Matrix polymers of Candida biofilmsand their possible role in biofilm resistance to antifungal agents. J Antimicrob Chemother. 2000, 46: 397-403. 10.1093/jac/46.3.397.
Article
Google Scholar
Donlan RM, Costerton JW: Bioiofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002, 15: 167-193. 10.1128/CMR.15.2.167-193.2002.
Article
PubMed
PubMed Central
Google Scholar
Kumamoto CA, Vinces MD: Alternative Candida albicans lifestyles: growth on surfaces. Annu Rev Microbiol. 2005, 59: 113-133. 10.1146/annurev.micro.59.030804.121034.
Article
PubMed
Google Scholar
Nett J, Lincoln L, Marchillo K, Massey R, Holoyda K, Hoff B, VanHandel M, Andes D: Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother. 2007, 51: 510-520. 10.1128/AAC.01056-06.
Article
PubMed
Google Scholar
Richards MJ, Edwards JR, Culver DH, Gaynes RP: Nosocomial infections in coronary care units in the United States. National Nosocomial Infections Surveillance System. Am J Cardiol. 1998, 82: 789-793. 10.1016/S0002-9149(98)00450-0.
Article
PubMed
Google Scholar
Reichart PA, Philipsen HP, Schmidt-Westhausen A, Samaranayake LP: Pseudomembranous oral candidiasis in HIV infection: ultrastructural findings. J Oral Pathol Med. 1995, 24: 268-281.
Google Scholar
de Repentigny L, Lewandowski D, Jolicoeur P: Immunopathogenesis of oropharyngeal candidiasis in human immunodeficiency virus infection. Clin Microbiol Rev. 2004, 17: 729-759. 10.1128/CMR.17.4.729-759.2004.
Article
PubMed
PubMed Central
Google Scholar
Fu Y, Rieg G, Fonzi WA, Belanger PH, Edwards JE, Filler SG: Expression of the Candida albicans gene ALSI in Saccharomyces cerevisiae induces adherence to endothelial cells. Infect Immun. 1998, 66: 1783-1786.
PubMed
PubMed Central
Google Scholar
McDonnell GE: Antisepsis, Disinfection, and sterilization; types, action, and resistance. 2007, Washington, DC: AZM press
Book
Google Scholar
Sandovsky-Losica H, Chauhan N, Calderone R, Segal E: Gene transcription studies of Candida albicans following infection of HEp2 epithelial cells. Med Mycol. 2006, 44: 329-334. 10.1080/13693780500434701.
Article
PubMed
Google Scholar
Cawson RA, Rajasingham KC: Ultrastructural features of the invasive phase of Candida albicans. Br J Dermatol. 1972, 87: 435-443. 10.1111/j.1365-2133.1972.tb01591.x.
Article
PubMed
Google Scholar
Eversole LR, Reichart PA, Ficarra G, Schimidt-Westhausen A, Romagnoli P, Pimpinelli N: Oral keratinocyte immune responses in HIV-associated candidiasis. Oral Surg Oral Med Oral Pathol Oral Radiol Endodont. 1997, 84: 372-380. 10.1016/S1079-2104(97)90035-4.
Article
Google Scholar
Kamai Y, Kobota M, Hosokawa T, Fukuoka T, Filler SG: New model of oropharyngeal candidiasis in mice. Antimicrob Agents Chemother. 2001, 45: 3195-3197. 10.1128/AAC.45.11.3195-3197.2001.
Article
PubMed
PubMed Central
Google Scholar
Montes LF, Wilbom WH: Ultrastructural features of host-parasite relationship in oral candidiasis. J Bacteriol. 1986, 96: 1349-1356.
Google Scholar
Matsui-Inohara H, Uematsu H, Narita T, Satoh K, Yonezawa H, Kuroda K, Ito T, Yoneda S, Kawarai T, Sugiya H, Watanabe H, Senpuku H: E2F-1-deficient NOD/SCID mice developed showing decreased saliva production. Exp Biol Med. 2009, 234: 1519-1524. 10.3181/0903-RM-115.
Article
Google Scholar
Ito T, Maeda T, Senpuku H: Roles of salivary components in Streptococcus mutans colonization in a new animal model using NOD/SCID.e2f1−/− mice. PLoS One. in press
Naglik JR, Fidel PL, Odds FC: Animal models of mucosal Candida infection. FEMS Microbiol Lett. 2008, 283: 129-139. 10.1111/j.1574-6968.2008.01160.x.
Article
PubMed
PubMed Central
Google Scholar
de Repentigny L: Animal models in the analysis of Candida host-pathogen interactions. Curr Opin Microbiol. 2004, 7: 324-329. 10.1016/j.mib.2004.06.001.
Article
PubMed
Google Scholar
Pandiyan P, Conti HR, Zheng L, Peterson AC, Mathern DR, Hernández-Santos N, Edgerton M, Gaffen SL, Lenardo MJ: Cell: CD4(+)CD25(+)Foxp3(+) regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Th17 cell infection model. Immunity. 2011, 34: 422-434. 10.1016/j.immuni.2011.03.002.
Article
PubMed
PubMed Central
Google Scholar
Matsumoto N, Salam MA, Watanabe H, Amagasa T, Senpuku H: Role of gene E2f1 in susceptibility to bacterial adherence of oral streptococci to tooth surfaces in mice. Oral Microbiol Immunol. 2004, 19: 270-276. 10.1111/j.1399-302X.2004.00151.x.
Article
PubMed
Google Scholar
Senpuku H, Matin K, Salam MA, Kurauchi I, Sakurai S, Kawashima M, Murata T, Miyazaki H, Hanada N: Inhibitory effects of MoAbs against a surface protein antigen in real-time adherence in vitro and recolonization in vivo of Streptococcus mutans. Scand J Immunol. 2001, 54: 109-116. 10.1046/j.1365-3083.2001.00962.x.
Article
PubMed
Google Scholar
Salam MA, Matsumoto N, Matin K, Tsuha Y, Nakao R, Hanada N, Senpuku H: Clin Diagn Lab Immunol. 2004, 11: 379-386.
PubMed Central
Google Scholar
Cannon RD, Nand AK, Jenkinson HF: Adherence of Candida albicans to human salivary components adsorbed to hydroxylapatite. Microbiology. 1995, 141: 213-219. 10.1099/00221287-141-1-213.
Article
PubMed
Google Scholar
Nikawa H, Nishimura H, Hamada T, Yamashiro H, Samaranayake LP: Effects of modified pellicles on Candida biofilm formation on acrylic surfaces. Mycoses. 1999, 42: 37-40. 10.1046/j.1439-0507.1999.00270.x.
Article
PubMed
Google Scholar
Nikawa H, Nishimura H, Makihira S, Hamada T, Sadamori S, Samaranayake LP: Effect of serum concentration on Candida biofilm formation on acrylic surfaces. Mycoses. 2000, 43: 139-143. 10.1046/j.1439-0507.2000.00564.x.
Article
PubMed
Google Scholar
Tobgi RS, Samaranayake LP, MacFarlane TW: In vitro susceptibility of Candida species to lysozyme. Oral Microbiol Immunol. 1988, 3: 35-39. 10.1111/j.1399-302X.1988.tb00603.x.
Article
PubMed
Google Scholar
Xu T, Levitz SM, Diamond RD, Oppenheim FG: Anticandidal activity of major human salivary histatins. Infect Immun. 1991, 59: 2549-2554.
PubMed
PubMed Central
Google Scholar
Nikawa H, Samaranayake LP, Tenovuo J, Pang KM, Hamada T: The fungicidal effect of human lactoferrin on Candida albicans and Candida krusei. Arch Oral Biol. 1993, 38: 1057-1063. 10.1016/0003-9969(93)90167-K.
Article
PubMed
Google Scholar
Müller F, Frøland SS, Brandtzaeg P, Fagerhol MK: Oral candidiasis is associated with low levels of parotid calprotectin in individuals with infection due to human immunodeficiency virus. Clin Infect Dis. 1993, 16: 301-302. 10.1093/clind/16.2.301.
Article
PubMed
Google Scholar
Challacombe SJ: Immunologic aspects of oral candidiasis. Oral Surg Oral Med Oral Pathol. 1994, 78: 202-210. 10.1016/0030-4220(94)90148-1.
Article
PubMed
Google Scholar
Samaranayake YH, MacFarlane TW, Samaranayake LP, Aitchison TC: The in vitro lysozyme susceptibility of Candida species cultured in sucrose supplemented media. J Nat Prod. 1992, 55: 1648-1654. 10.1021/np50089a014.
Article
PubMed
Google Scholar
Cantorna MT, Balish E: Mucosal and systemic candidiasis in congenitally immunodeficient mice. Infect Immun. 1990, 58: 1093-1100.
PubMed
PubMed Central
Google Scholar
Wei XQ, Charles IG, Smith A, Ure J, Feng GJ, Huang FP, Xu D, Muller W, Moncada S, Liew FY: Altered immune responses in mice lacking inducible nitric oxide synthase. Nature. 1995, 375: 408-411. 10.1038/375408a0.
Article
PubMed
Google Scholar
Schutte BC, Mitros JP, Bartlett JA, Walters JD, Jia HP, Welsh MJ, Casavant TL, McCray PB: Discovery of five conserved beta-defensin gene clusters using a computational search strategy. Proc Natl Acad Sci U S A. 2002, 99: 2129-2133. 10.1073/pnas.042692699.
Article
PubMed
PubMed Central
Google Scholar
Liljemark WF, Gibbons RJ: Suppression of Candida albicans by human oral streptococci in gnotobiotic mice. Infect Immun. 1973, 8: 846-849.
PubMed
PubMed Central
Google Scholar
Müller G, Kramer A: Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity. J Antimicrobial Chemother. 2008, 61: 1281-1287. 10.1093/jac/dkn125.
Article
Google Scholar
Sanchez IR, Nusbaum KE, Swaim SF, Hale AS, Henderson RA, McGuire JA: Chlorhexidine diacetate and povidone-iodine cytotoxicity to canine embryonic fibroblasts. Staphylococcus aureus. 1988, 17: 182-185.
Google Scholar
Grubb SE, Murdoch C, Sudbery PE, Saville SP, Lopez-Ribot JL, Thornhill MH: Adhesion of Candida albicans to endothelial cells under physiological conditions of flow. Infect Immun. 2009, 77: 3872-3878. 10.1128/IAI.00518-09.
Article
PubMed
PubMed Central
Google Scholar
Braun BR, Johnson AD: Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science. 1997, 277: 105-109. 10.1126/science.277.5322.105.
Article
PubMed
Google Scholar
Braun BR, Head WS, Wang MX, Johnson AD: Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics. 2000, 156: 31-44.
PubMed
PubMed Central
Google Scholar
Murad AM, Leng P, Straffon M, Wishart J, Macaskill S, MacCallum D, Schnell N, Talibi D, Marechal D, Tekaia F, d’Enfert C, Gaillardin C, Odds FC, Brown AJ: NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J. 2001, 20: 4742-4752. 10.1093/emboj/20.17.4742.
Article
PubMed
PubMed Central
Google Scholar
Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL: Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell. 2003, 2: 1053-1060. 10.1128/EC.2.5.1053-1060.2003.
Article
PubMed
PubMed Central
Google Scholar
Silverman RJ, Nobbs AH, Vickerman MM, Barbour ME, Jenkinson HF: Interaction of Candida albicans cell wall Als3 protein with Streptococcus gordonii SspB adhesin promotes development of mixed-species communities. Infect Immun. 2010, 78: 4644-4652. 10.1128/IAI.00685-10.
Article
PubMed
PubMed Central
Google Scholar
Cannon RD, Chaffin WL: Oral colonization by Candida albicans. Crit Rev Oral Biol Med. 1999, 10: 359-383. 10.1177/10454411990100030701.
Article
PubMed
Google Scholar
Jabra-Rizk MA, Falkler WA, Merz WG, Kelley JI, Baqui AA, Meiller TF: Coaggregation of Candida dubliniensis with Fusobacterium nucleatum. J Clin Microbiol. 1999, 37: 1464-1468.
PubMed
PubMed Central
Google Scholar
Chaffin WL, López-Ribot JL, Casanova M, Gozalbo D, Martínez JP: Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev. 1998, 62: 130-180.
PubMed
PubMed Central
Google Scholar