The present study used the optical reflectometer to assess erosive demineralization. Previous studies had already shown that the optical reflectometer produces satisfactory results [8, 11, 12]. The principle of the optical reflectometer is based on the amount of light reflected back from the enamel surface (Fig. 5). The optical reflectometer shines a laser beam (wavelength: 635 nm) onto the enamel surface at an incidence angle of ~23°. This beam is reflected from the enamel surface also at a ~23° angle (specular reflection), and this reflected beam is then captured by the detector. In more practical terms, smoother enamel surfaces allow for a more regular reflection of the laser, hence they yield higher reflection intensity. Rougher enamel surfaces, however, tend to scatter the beam, and, hence, yield lower reflection intensity (Fig. 5) [12, 13].
In order to comprehend the results of this experiment, it is crucial to understand the histopathology of initial enamel erosion. First, when enamel comes in contact with the acid, the partial mineral dissolution causes an increase in surface roughness [14], leaving the enamel surface with decreased hardness (softening) and the typical honeycomb pattern reported by JH Meurman and RM Frank [15]. This “rougher” and “softer” enamel has a lower SRI [12] and is more vulnerable to mechanical forces, such as tooth brushing [16]. Abrasive forces partially remove the softened enamel layer and produce slightly smoother surfaces with increased SRI [10]. In the clinical situation, enamel is constantly submitted to these chemical and mechanical forces, so teeth with initial erosive tooth wear (ETW) are clinically characterized as having shiny, smooth surfaces, without perikymata [3, 4]. As reported previously [10, 12], enamel SRI is negatively correlated to surface roughness, hence smoother surfaces yield higher SRI values than rougher surfaces. Given that the teeth in the present study were selected according to their clinical aspects (Fig. 1), these surface topography characteristics explain the difference in initial SRI values between the groups (Fig. 5). The smoother aspects of enamel specimens from teeth that originally presented ETW yielded higher SRI0 values than the specimens from originally sound enamel [13].
After the erosive challenges, the SRI values continually decreased. This is in accordance with E Rakhmatullina, A Bossen, KK Bachofner, C Meier and A Lussi [8], who observed a continuous decrease in reflection intensity of native enamel with each subsequent incubation in orange juice. Interestingly, in our experiment, the enamel specimens from teeth that already presented ETW had a significantly greater rSRI decrease than the specimens from originally sound teeth after 24 min erosion. This is corroborated by the surface topography of the specimens, observed in Fig. 4. Although these SEM images (Fig. 4) serve only as illustrations, we see that, after the erosive challenges, there was a considerable change in surface topography on the teeth that originally presented ETW, in which we notice the typical honeycomb pattern of etched enamel. This pattern, however, is not as clearly detected on the originally sound enamel. Hence, we suggest that teeth with clinical signs of ETW are probably more prone to further acid demineralization than originally sound teeth.
The explanation for this difference could lie either on the different mineral composition of the surface enamel (perikymata), or on the genetic variation of the patients who donated the teeth. On the one hand, the specimens of teeth that originally presented ETW had already lost their perikymata, consequently, their outermost layer of enamel was already worn away. We have previously shown that different enamel depths have different solubility to erosion [17], so the dissolution of enamel can, therefore, be affected twofold. First, different enamel layers contain different mineral compositions [18], with outer layers having greater mineral density [19] and lower mineral solubility [7]. Secondly, originally sound teeth still have their perikymata, which might not dissolve as readily as prismatic enamel [15, 20], leading to no apparent alterations to the enamel surface after exposure to acid. Teeth that already present signs of ETW have lost their perikymata; their prism-heads are, therefore, more exposed to the acids, and are more liable to the effects of demineralization. Hence, we can observe the typical honeycomb structure after erosion. This suggests that once the prismatic enamel is reached, erosion progression will be faster. This was already observed by JH Meurman and RM Frank [15], who showed a distinct dissolution of prismatic enamel, but an irregular dissolution of the aprismatic surface. On the other hand, one should also consider the influence of genetic components on enamel solubility. One example is the study by JB Sovik, AR Vieira, AB Tveit and A Mulic [21] that recently observed an overrepresentation of the G allele of an enamelin marker in the saliva from patients presenting signs of erosive tooth wear. The authors suggested that genetic variations contribute to alterations in the enamel mineral structure, and, hence, it can lead to a greater susceptibility to erosive demineralization [21].
Taking the calcium results into consideration, we detected no differences between the two groups. However, the distinctions observed in the rSRI values and in the SEM images are still plausible. The citric acid used for the erosive challenges in the present experiment was completely unsaturated with respect to all fractions of the enamel mineral. This led to a maximum rate of dissolution for all specimens at all erosion times [22]. This means that the citric acid reacted to its maximal potential with all enamel surfaces, thus removing similar amounts of mineral from both originally sound teeth and teeth that originally presented ETW. Also, the presence of impurities in the crystal lattice of deeper enamel layers could affect these results. In deeper enamel layers, there is greater concentration of carbonated hydroxyapatite crystals [23], which have a more distorted structure and can accommodate more magnesium [24]. Magnesium, in turn, appears as a substituent for calcium; hence less calcium would be detected in deeper layers. It is suggested that the analysis of phosphate release in further experiments could clarify this effect, and possibly allow observations of subtler differences between the two surfaces. Still, notwithstanding the lack of difference in the calcium release values, the physical changes occurring during erosion were distinct on the different enamel surfaces. It is important to bear in mind that chemical analyses of calcium, albeit precise to measure erosive demineralization, does not provide any information on the physical and morphological changes of the enamel surfaces [25]. So all these changes were actually measured by the optical reflectometer, and can be observed with the SEM.
Despite the fact that we found no differences in calcium released from originally sound and teeth that originally presented ETW, we have observed a significant correlation between the calcium and rSRI results (r
s
= −0.66; p < 0.001). Additionally, we also observed different correlation coefficient values when we analysed results only from sound teeth (r
s
= −0.61; p < 0.001) or from teeth that already presented signs of ETW (r
s
= −0.83; p < 0.001). One reason for this could be the presence of perikymata in originally sound teeth that causes greater variation in SRI measurements, and hence lower correlation values with the calcium results. On the other hand, the smoother aspects of teeth that already presented signs of ETW lead to a more regular (higher) reflectivity, which, in turn, causes less variation in SRI measurements, and hence higher correlation values with the calcium results. Previous studies with highly polished (smoother) enamel surfaces also presented satisfactory correlation with calcium release [11, 12]. Furthermore, although our general correlation coefficient value (r
s
= −0.66) is lower than that reported by E Rakhmatullina, A Bossen, C Höschele, X Wang, B Beyeler, C Meier and A Lussi [12], it is in a similar range as that reported by SC Brevik, A Lussi and E Rakhmatullina [11]. In any case, calcium release and the optical reflectometer assess different experimental parameters. The former focuses on the analysis of minerals released from enamel during erosion, while the latter is more closely related to the surface texture of enamel. Recently, AT Hara, SV Livengood, F Lippert, GJ Eckert and PS Ungar [26] showed that some devices are able to differentiate the complex surface textures of erosion and erosion-abrasion lesions. So, further studies are still necessary to verify how the reflectometer differentiates different kinds of lesions (erosion, abrasion or erosion-abrasion) on both enamel and dentine.